UP SI MOCK TEST - 54 (SOLUTION)

81. (B) Let fruit-seller buys $100 x$ bananas.
A.T.Q.,
$40 x \mathrm{SP}=100 x \mathrm{CP}$
SP : CP = 5: 2
Take SP of each banana is 5 and CP is 2 .
80% of the remaining bananas
$=\frac{80}{100} \times 60 x=48 x$
SP of $48 x$ will be overall profit of fruit seller since he has realized CP of all bananas by selling 40% of them,
SP of $48 x$ bananas $3.5 \times 48 x=168 x \ldots$
(SP is 3.5 since profit is half of previous)
$\%$ profit $=\frac{168 x}{100 x \times 2} \times 100=84 \%$
82. (B) When a value is first increased and then decreased by the same percentage, then initial value is always decreased by
$\frac{x^{2}}{100} \%$ (irrespective of initial value)
So, loss profit
$=\frac{(16)^{2}}{100}=2.225 \%$
83. (B) MP of the item
$=₹ 3402 \times \frac{100}{108} \times \frac{100}{90} ₹ 3500$
84. (A) A.T.Q.,
$\frac{4000 \times 3 \times x}{100}=\frac{5000 \times 12 \times 2}{100}$
$12000 x=1200000$
$x=10 \%$
85. (D) Given amount $=₹ 12100$
$\mathrm{R} \%=10 \%=\frac{1}{10}$
Time $=2$ years

Total amount for 2 year
$=10+10+1+100=121$
$\Rightarrow 121$ units \rightarrow ₹ 12100
$\Rightarrow 1$ unit $\rightarrow 100$
\Rightarrow Principal $=100$ units
$=100 \times 100=10000$
86. (D)

M : W
$\left.\begin{array}{l}\begin{array}{l}\text { Initial } \longrightarrow 7: 2 \\ \text { After } \\ \text { adding } \\ \text { water }\end{array} \\ \text { wat }\end{array}\right)$ 1 unit
Always milk will be same
i.e. 1 unit of water will be added $=1$ unit $\Rightarrow 81$ mili litres
87. (D) $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)[(a+b+$
c) $\left.)^{2}-3(a b+b c+c a)\right]$
$a^{3}+b^{3}+c^{3}-a b c=(4)(16-3 \times 2)$
$=4(10)=40$
88. (A) $\sqrt{x}-\frac{1}{\sqrt{x}}=\sqrt{6}$
$x+\frac{1}{x}=8$
$x^{2}+\frac{1}{x^{2}}=62$
89. (D) $\Rightarrow 0.5 \mathrm{~A}=0.6 \mathrm{~B}=0.75 \mathrm{C}$
$\Rightarrow \frac{5}{10} \times \mathrm{A}=\frac{6}{10} \times \mathrm{B}=\frac{75}{10} \mathrm{C}$
$\Rightarrow \frac{1}{2} \mathrm{~A}=\frac{3}{5} \mathrm{~B}=\frac{3}{4} \mathrm{C}$
$\Rightarrow 10 \mathrm{~A}=12 \mathrm{~B}=15 \mathrm{C}$
$\Rightarrow \mathrm{A} \quad \mathrm{B} \quad: \mathrm{C}$
$12 \times 15: 10 \times 15: 10 \times 12$
$\Rightarrow 180: 150 \quad: 120$
$\Rightarrow 6 x: 5 x: 4 x$
Total $=6 x+5 x+5 x=15 x$
$15 x=1740$
$\Rightarrow x=\frac{1740}{15}=₹ 116$
\therefore Share of C is $=4 x=4 \times 16=₹ 464$
90. (D) Let $A=8 h$
$\mathrm{B}=4 \frac{1}{2} h=\frac{9}{2} h$
Time required to finish together $=\sqrt{a b}$
$=\sqrt{8 \times \frac{9}{2}}=6 \mathrm{hd}$
91. (C) Given that
$\Rightarrow \cos x=\sin y$
$\Rightarrow \cos x=\cos \left(90^{\circ}-y\right)$
Then, $x+y=90^{\circ}$
and, $\cot \left(x-40^{\circ}\right)=\cot \left(90^{\circ}-50^{\circ}+y\right)$
$\Rightarrow x-40=40^{\circ}+y$
$\Rightarrow x-y=80^{\circ}$
From equ. (i) and (ii)
$x=85, y=5^{\circ}$
92. (B)

In $\triangle \mathrm{ABC}$,
$\mathrm{AB}=\mathrm{BC}=50 \mathrm{~m}$
In $\triangle \mathrm{ABD}$,
$\tan 30^{\circ}=\frac{A B}{B D}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{50}{50+x}$
$\Rightarrow 50+x=50 \sqrt{3}$
$\Rightarrow x=50(\sqrt{3}-1)$
93. (B) Here $a^{3}+b^{3}+c^{3}-3 a b c=0$
$\Rightarrow a+b+c=0$
Here, $a=x-5$
$b=x-6$
$c=x-7$
$\Rightarrow x-5+x-6+x-7=0$
$\Rightarrow 3 x-18=0$
$\Rightarrow x=6$
94. (B)

\because They meet after 6 hours if they walk towards each other i.e. their speed will be added.
\because So their relative speed in opposite direction
$=\frac{\text { Distance }}{\text { Time }}=\frac{60}{6}$
\Rightarrow Relative speed opposite
$\Rightarrow 10 \mathrm{~km} / \mathrm{hr}$
A.T.Q.,
$\Rightarrow \frac{2}{3} \mathrm{~A}+2 \mathrm{~B}=\frac{60}{5}$
$\Rightarrow \mathrm{A}+3 \mathrm{~B}=18$
\Rightarrow B's speed $=\frac{18-A}{3}$
$\Rightarrow \mathrm{A}+\mathrm{B}=10$
$\Rightarrow \mathrm{A}+\frac{18-\mathrm{A}}{3}=10$
$\Rightarrow 3 \mathrm{~A}+18-\mathrm{A}=30$
$\Rightarrow 2 \mathrm{~A}=12$
\Rightarrow A's Speed $=6 \mathrm{~km} / \mathrm{hr}$
95. (D) Volume of prism $=$ (area of base \times height $)$

Area of base (i.e. area of triangle)
\Rightarrow Area of base
$=\sqrt{s(s-a)(s-b)(s-c)}$
$=($ By Hero's formula $)$
So, $S=\frac{13+20+21}{2}=\frac{54}{2}=27$
$\Rightarrow \sqrt{27(72-13)(27-20)(27-21)}$
$\Rightarrow \sqrt{27 \times 14 \times 7 \times 6}$
$\Rightarrow \sqrt{9 \times 3 \times 2 \times 7 \times 7 \times 2 \times 3}$
$\Rightarrow \sqrt{9 \times 9 \times 7 \times 7 \times 2 \times 2}$
$\Rightarrow 9 \times 7 \times 2$
Volume of prism
$=(9 \times 7 \times 2) \times 9=1134 \mathrm{~cm}^{3}$.
96. (B)

Required ratio profit $=3: 4: 4$
97. (B)

\because I divide AC in 1:2
The IC $=\frac{15}{3} \times 2$
$=10 \mathrm{~cm}$
98. (D) $\mathrm{P}=\frac{(\mathrm{C} . \mathrm{I}-\mathrm{S.I}) \times 100 \times 100}{R^{2}}$

$$
\begin{aligned}
& P=\frac{1 \times 100 \times 100}{4 \times 4} \\
& \Rightarrow P=₹ 625
\end{aligned}
$$

99. (D) $\cos ^{2} \theta-3 \cos \theta+2=\sin ^{2} \theta$
$\Rightarrow \cos ^{2} \theta-3 \cos \theta+2=1-\cos ^{2} \theta$
$\Rightarrow 2 \cos ^{2} \theta-3 \cos \theta+1=0$

$K D$
 Campus

KD Campus Pvt. Ltd

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

$\Rightarrow(2 \cos \theta-1)(\cos \theta-1)=0$
$\cos \theta=1, \frac{1}{2}$
$\therefore \theta=0^{\circ}$ or 60°
100. (D)
$9^{\frac{1}{3}} \quad 20^{\frac{1}{4}} \quad 25^{\frac{1}{6}}$
$9^{\frac{1}{3} \times 12} \quad 20^{\frac{1}{4} \times 12} \quad 25^{\frac{1}{6} \times 12}$
[LCM of $3,4 \& 6$ is 12]
$9^{4} \quad 20^{3} 25^{2}$
$\downarrow \quad \downarrow \quad \downarrow$
$65 \quad 618000 \quad 625$
Ascending order is
$\sqrt[6]{25}<\sqrt[2]{9}<\sqrt[4]{20}$
101. (D) From figure
$\angle \mathrm{APC}=2 \angle \mathrm{ABC}$
$\angle \mathrm{APC}=2 \times 35$
$=70^{\circ}$
In $\triangle \mathrm{APC}$
$\mathrm{AP}=\mathrm{PC}$ (radius)
$\therefore \angle \mathrm{PAC}=\angle \mathrm{PCA}$
$\therefore \angle \mathrm{PCA}=\frac{(180-70)}{2}$
$=\frac{110}{2}=55^{\circ}$
102. (D) $r \sin \theta=1$
$r \cos \theta=\sqrt{3}$
$\Rightarrow \frac{r \sin \theta}{r \cos \theta}=\frac{1}{\sqrt{3}} \Rightarrow \tan \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \sqrt{3} \tan \theta=1$
(add 1 both sides)
$\Rightarrow \sqrt{3} \tan +1=1+1$
$\Rightarrow 2$
103. (A) DABC~DDEF
$\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}$
$\frac{64}{121}=\frac{\mathrm{BC}^{2}}{(15.4)^{2}}$
$\mathrm{BC}=11.2 \mathrm{~cm}$.
104. (C) Distance $=\mathrm{S} \times \mathrm{T}=80 \times 7$
$=560 \mathrm{~km}$
105. (C) Total C.P $\rightarrow 25 \times 12 \rightarrow$ ₹ 300

Total SP $\rightarrow(25+5) \times 10.40=₹ 312$
Profit $\%=\frac{(312-300)}{300} \times 100=4$
106. (D)

$\mathrm{CM}=16.8 \mathrm{~cm} \mathrm{AL}=13.2 \mathrm{~cm}$
$B D=64 \mathrm{~cm}$
Area of $\triangle \mathrm{ABCD}$
$=\frac{1}{2} \times \mathrm{BD}(\mathrm{AL}+\mathrm{CM})$
$=\frac{1}{2} \times 64 \times(13.2+16.8)$
$=32 \times 30$
$=960 \mathrm{~cm}^{2}$.
107. (D) $\sin \theta=\frac{\sqrt{3}}{r}$
$\Rightarrow \sin ^{2} \theta=\frac{3}{r^{2}}$
$\cos \theta=\frac{1}{r}$
$\Rightarrow \cos ^{2} \theta=\frac{1}{r^{2}}$
From equation (i) and (ii),
$\sin ^{2} \theta+\cos ^{2} \theta=\frac{3}{r^{2}}+\frac{1}{r^{2}}$
$\Rightarrow 1=\frac{4}{r^{2}}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=2$
$\therefore \sin \theta=\frac{\sqrt{3}}{2}$
$\Rightarrow \sin \theta=\sin 60^{\circ}$
$\theta=60^{\circ}$
108. (B) Let the Average of half of the students is x
Then,
$60 \times 65=(30 \times 85)+(30 \times x)$
$\Rightarrow 60 \times 65=30(85+x)$
$\Rightarrow 130=85+x$
$\Rightarrow x=45$
109. (A) AO : OD : $4: 3$

By property of cevian's we know
$\frac{\operatorname{ar}(\triangle \mathrm{BOC})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{\mathrm{OD}}{\mathrm{AD}}$
$\frac{\operatorname{ar}(\triangle \mathrm{BOC})}{\operatorname{ar}(\triangle \mathrm{BOC})}=\frac{3}{4}$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

$\frac{\operatorname{ar}(\triangle \mathrm{BOD})+\operatorname{ar}(\mathrm{COD})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{3}{4}$
$\frac{39}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{3}{4}$
$\operatorname{ar}(\triangle \mathrm{ABC})=52 \mathrm{~cm}^{2}$.
110. (B) As we know, $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(\left(a^{2}+b^{2}+\right.\right.$
$\left.\left.c^{2}\right)-3(a b+b c+c a)\right)$
$a^{3}+b^{3}+c^{3}-3 a b c=10(102-3 \times 32)$
$=10(100-96)$
$=40$
111. (A)

Efficiency of $A=6-3=3$
Required no. of days $=\frac{360}{3}$
$=120$ days
112. (D) Let the initial radius $=r$
A.T.Q.,
$4 \pi(r+2)^{2}-4 x r^{2}=352$
$4 \pi\left[(r+2)^{2}-r^{2}\right]=352$
$r^{2}+4+4 r-r^{2}=\frac{352 \times 7}{22 \times 4}$
$4 r+4=28$
$4 r=24$
$r=6$
113. (C) $\frac{2 \tan 53^{\circ}}{\cot 37^{\circ}}-\frac{\cot 80^{\circ}}{\tan 10^{\circ}}$
$\Rightarrow \frac{2 \tan 53^{\circ}}{\tan 53^{\circ}}-\frac{\cot 80^{\circ}}{\cot 80^{\circ}}$
$\Rightarrow 2-1=1$
114. (C) Let N is largest among all sides and 24 is smallest side.
$10^{2}+24^{2}>\mathrm{N}^{2}$
$676>\mathrm{N}^{2}$
$26>\mathrm{N}$
$10^{2}+\mathrm{N}^{2}>24^{2}$
$\mathrm{N}^{2}>576-100$
N > 21
From equation (i) and (ii)
$21<N<26$
115. (D) Let the numbers of natural number are $=n$
\because The average of some natural number
is $=15$
\Rightarrow Sum of these natural number $=15$
$\times n=15$

127. (C) Except (C) all are part of Entrepreneur.
128. (A) 60, 69, 85, 110, 146
$\underset{+(3)^{2}}{L} \uparrow+(4)^{2}+(5)^{2} L_{+(6)^{2}}$
129. (B) As, $(6 \times 5)+(3 \times 3)=39$ $(7 \times 5)+(4 \times 4)=51$
Similarly,
$(5 \times 5)+(3 \times 4)=37$
130. (C)

131. (A)

132. (D) More than 29.
133. (B)

134. (C) twin/twin/twin/twin
135. (C)
136. (C) PROMINENT
137. (B) MARINE
138. (D) Neither conclusion I nor conclusion II follows
139. (D)

140. (A)

141. (C) Hard working

142. (B) When Rahul was born, his brother's age $=6$ years;
His father's age $=(6+32)$ years $=38$ years,
His mother's age $=(38-3)$ years $=35$ years;
His sister's age $=(35-25)$ years $=10$ years.
143. (B) It is mentioned in the statement that most people are forced to live under Governments which refuse them from
personal liberty and the right to dissent. This means that they are not indifferent to these rights but have a desire for them. So, only I follows.
144. (D) 'T' Represents students who study both physics and chemistry but not mathematics.
145. (A) $\mathrm{F} 3 \mathrm{M} \rightarrow \mathrm{F}$ is the wife of M
$\mathrm{M} 5 \mathrm{~K} \rightarrow \mathrm{M}$ is the father of K
Therefore, F is the mother of K .
146. (B) Number of families, who have cars $=$ 30% of $60=18$
Remaining number of families $=60-18=42$
Number of families, who have motor cycle $=50 \%$ of $42=21$
So number of families, who have bicycle $=42-21=21$.
147. (C)
148. (D) As,

GIVE \Rightarrow VIEG
$\mathrm{abcd} \quad \mathrm{cbda}$
$\mathrm{OVER} \Rightarrow \mathrm{EVRO}$
a bcd cbda
Similarly, D I S K \Rightarrow S IK D
abcd cbda
149. (C)
150. (A)

151. (B) $4 \times 4 \div 2+2-6=4$
$\Rightarrow 8-4=4$
$\Rightarrow 4=4$
152. (B) 18Q12P4R5S6

After putting the signs as per the given
details,
$18 \times 12 \div 4+5-6$
$=53$
153. (C)

154. (A) Square of the required number $=11^{2}$ $=121$
155. (B) STORY

Direction (156-160): Answer

156. (B) 157. (C)
158. (D)
159. (D)
160. (C)

UP SI ANSWER KEY - 54

1. (B)	21. (D)	41. (C)	61. (C)	81. (B)	101. (D)	121. (B)	141. (C)
2. (D)	22. (A)	42. (C)	62. (D)	82. (B)	102. (D)	122. (B)	142. (B)
3. (C)	23. (D)	43. (D)	63. (C)	83. (B)	103. (A)	123. (A)	143. (B)
4. (A)	24. (C)	44. (C)	64. (C)	84. (A)	104. (C)	124. (D)	144. (D)
5. (D)	25. (B)	45. (C)	65. (D)	85. (D)	105. (C)	125. (A)	145. (A)
6. (C)	26. (A)	46. (C)	66. (B)	86. (D)	106. (D)	126. (A)	146. (B)
7. (A)	27. (B)	47. (B)	67. (D)	87. (D)	107. (D)	127. (C)	147. (C)
8. (A)	28. (B)	48. (B)	68. (A)	88. (A)	108. (B)	128. (A)	148. (D)
9. (B)	29. (C)	49. (B)	69. (C)	89. (D)	109. (A)	129. (B)	149. (C)
10. (A)	30. (C)	50. (C)	70. (B)	90. (D)	110. (B)	130. (C)	150. (A)
11. (B)	31. (A)	51. (B)	71. (A)	91. (C)	111. (A)	131. (A)	151. (B)
12. (D)	32. (A)	52. (D)	72. (A)	92. (B)	112. (D)	132. (D)	152. (B)
13. (D)	33. (A)	53. (C)	73. (B)	93. (B)	113. (C)	133. (B)	153. (C)
14. (A)	34. (A)	54. (C)	74. (B)	94. (B)	114. (C)	134. (C)	154. (A)
15. (C)	35. (A)	55. (A)	75. (C)	95. (D)	115. (D)	135. (C)	155. (B)
16. (D)	36. (B)	56. (C)	76. (D)	96. (B)	116. (D)	136. (C)	156. (B)
17. (C)	37. (A)	57. (A)	77. (B)	97. (B)	117. (A)	137. (B)	157. (C)
18. (B)	38. (A)	58. (B)	78. (B)	98. (D)	118. (D)	138. (D)	158. (D)
19. (B)	39. (D)	59. (C)	79. (B)	99. (D)	119. (B)	139. (D)	159. (D)
20. (C)	40. (B)	60. (B)	80. (B)	100. (D)	120. (C)	140. (A)	160. (C)

