Campus

KD Campus Pvt. Ltd

UP SI MOCK TEST - 53 (SOLUTION)

81. (A) Marks obtained by A
= 360 marks
Marks obtained by $\mathrm{C}=\frac{360}{125} \times 100$
$=288$ marks
Marks obtained by $=\frac{288}{80} \times 100$
= 360 marks
Required percent marks obtained by D

$$
=\frac{360}{500} \times 100=72 \%
$$

82. (D)

One part $=\frac{1}{6} \times 60=10 \mathrm{~cm}^{2}$
Area of two part $=2 \times 10=20 \mathrm{~cm}^{2}$
83. (C) Let $\mathrm{CP}=100$ units

SP = 130 units
130 units \rightarrow ₹ 1690
100 units $\rightarrow \frac{₹ 1690}{130} \times 100$
\rightarrow ₹ 1300
84. (C) A.T.Q,

Let original price $=100$

14%.
85. (A) Total surface area of tank without top
$\mathrm{TSA}=30 \times 20+2(12 \times 20)+2(30 \times 12)$
$=1800 \mathrm{~m}^{2}$
\therefore area of iron sheet $=$ T.S.A without top
\Rightarrow Length \times width $=1800$
\Rightarrow Length $=\frac{1800}{3}=600 \mathrm{~m}$
\therefore Cost $=600 \times 10=₹ 6000$
86. (B) $a^{3}+b^{3}+c^{3}-3 a b c=0$
$\Rightarrow a+b+c=0$
$3 x-1+4 x-3+2 x+1=0$
$9 x-3=0$
$\Rightarrow x=\frac{1}{3}$ But $x \neq \frac{1}{3}$
$\Rightarrow a=b=c$
$\Rightarrow 3 x-1=4 x-3$
$\Rightarrow x-2=0$
$\Rightarrow x=2$
87. (B) Given $x^{2}-\frac{1}{x^{2}}=6$ then

$$
\begin{aligned}
& x^{6}-\frac{1}{x^{6}}=234 \\
& x^{6}-\frac{1}{x^{6}}-5\left(x^{2}-\frac{1}{x^{2}}\right)+5=234-5(6)+5=209
\end{aligned}
$$

88. (A)

Draw a line A from $A F \perp B C$
Let $\angle \mathrm{ABC}=\theta$
A.T.Q.,
$\tan \theta=\frac{\mathrm{AF}}{\mathrm{BF}}=3.6$
From diagram
$\tan \mathrm{ABC}=\frac{18}{5}=3.6$
$\angle \mathrm{ACB}=\angle \mathrm{ABC}$
Hence, ABC is an equilateral
$\therefore \mathrm{F}$ will be midpoint of BC
$\frac{\mathrm{AC}}{\mathrm{CD}}=\frac{\mathrm{CF}}{\mathrm{CE}}$
$[\because \triangle \mathrm{ACE}$ and $\triangle \mathrm{ACF}$ congruence]
$\frac{2 C F}{2 C E}=\frac{B C}{2 C E}$
$A C: C D=B C: 2 C E$
89. (C) Single discount
$=20+40-\frac{20 \times 40}{100}=52 \%$
90. (B) Percent discount
$=\frac{1200-1100}{1200} \times 100=8 \frac{1}{3} \%$
91. (C) Time $=18+28+31+30+31+8=146$ days

Simple interest
$=\frac{12,000 \times 146 \times 15}{365 \times 100}$
Simple interest $=₹ 720$
Amount $=₹(12,000+720)$
= ₹ 12,720

Campus

KD Campus Pvt. Ltd

92. (B)

\Rightarrow According to figure
\Rightarrow SI for 5 years = ₹ 300
\Rightarrow SI for 1 years $=₹ 60$
\Rightarrow SI for 2 years $=60 \times 2=120$
\Rightarrow Principal amount $=$ Amount after 2
years - 2 years SI = 720-120
\Rightarrow Principal amount $=₹ 600$
93. (D)

$\triangle \mathrm{ABC}$ is equilateral,
$\Rightarrow \angle B C D=\angle D C A=30^{\circ} \quad(\because \mathrm{CD}$ bisectors $\angle \mathrm{ACB}$)
$\therefore \angle \mathrm{ACE}=180^{\circ}-30^{\circ}=150^{\circ}$
$A C=C E$
$\therefore \angle \mathrm{CAE}=\angle \mathrm{CEA}=\frac{30}{2}=15^{\circ}$
94. (D) A.T.Q.,

SP of the mixture $=₹ 320$
Gain = 20\%
$\therefore \mathrm{CP}$ of the mixture $=320 \times \frac{100}{120}$
$=₹ \frac{800}{3}$
Now using allegation method.

$280-\frac{800}{3}=\frac{40}{3} \quad \frac{800}{3}-180=\frac{260}{3}$
Ratio of $\rightarrow 40$: 260
Quantity $\rightarrow 2$: 13
95. (C) A.T.Q.,

Water add in final
$=\frac{2}{10}=\frac{\mathbf{1}}{\mathbf{5}}$
96. (B) A.T.Q.,
$A B|\mid C D$
$x=\frac{4}{3} y$ (given)
$x: y=4: 3$
$y=\frac{3}{8} z$ (given)
$y: z=3: 8$
$\therefore x: y: z=4: 3: 8$
$x=\frac{4}{15} \times 180^{\circ}=45^{\circ}$
In $\triangle A B D$
$\angle \mathrm{BAD}=180^{\circ}-\left(x+36^{\circ}\right)$
$=180^{\circ}-48^{\circ}-36^{\circ}$
$=96^{\circ}$
97. (A) Let their monthly income $8 x$ and $5 x$
A.T.Q.,
$\frac{8 x-12000}{5 x-10000}=\frac{5}{3}$
[Income - saving $=$ expenditure]
$\Rightarrow 24 x-36000$
$=25 x-50000$
$x=14000$
Diff. in monthly income
$=8 x-36000$
$=25 x-5000$
Diff. in monthly income
$=8 x-5 x=3 x$
$x=14000$
$3 x=14000 \times 3$
$=$ ₹ 42000
98. (B) A.T.Q.,
$\frac{11-x}{15-x}=\frac{2}{3}$
$\Rightarrow 33-3 x=30$
$\Rightarrow x=3$
99. (C) $\frac{\left(\mathrm{A}^{3}-\mathrm{B}^{3}\right)}{(\mathrm{A}-\mathrm{B})}=\mathrm{A}^{2}+\mathrm{AB}+\mathrm{B}^{2}$

$$
\begin{aligned}
& =\frac{135\left(\sqrt{5} x^{3}-2 \sqrt{2} y^{3}\right)}{(3 \sqrt{5} x-\sqrt{2} y)} \\
& =45 x^{2}+2 y^{2}+3 \sqrt{10} x y \\
& A+B-9 C=47-27=20
\end{aligned}
$$

100. (B) $\left(8 x^{3}+27 y^{3}\right) \div=\mathrm{A} x^{2}+\mathrm{B} x y+\mathrm{C} y^{2}$

$$
\begin{aligned}
& (2 x+3 y)\left[(2 x)^{2}-(2 x)(3 y)+(3 y)^{2}\right] \\
& \frac{\left[(2 x)^{2}-(2 x)(3 y)+(3 y)^{2}\right]}{(2 x+3 y)} \\
& =\mathrm{A} x^{2}+\mathrm{B} x y+\mathrm{C} y^{2} \\
& \Rightarrow\left(4 x^{2}-6 x y+9 y^{2}\right)=\mathrm{A} x^{2}+\mathrm{B} x y+\mathrm{C} y^{2}
\end{aligned}
$$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

Comparing both sides, we have
$\mathrm{A}=4, \mathrm{~B}=6, \mathrm{C}=9$
$\Rightarrow(5 A+4 B+3 C)=5 \times 4-4 \times 6+3$

$$
=20-24+27=23
$$

101. (D)
$\frac{90 \text { men } \times 16 \text { days } \times 12 \text { hours }}{1 \text { work }}$
$=\frac{70 \text { men } \times 24 \text { days } \times 8 \text { hours }}{\mathrm{W} \text { work }}$
$90 \times 16 \times 12=\frac{70 \times 24 \times 8}{W}$
$9 \mathrm{~W}=7, \mathrm{~W}=\frac{7}{9}$
102. (B) A.T.Q.,
$\Rightarrow 2 \mathrm{~A}=3 \mathrm{~B}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}=\frac{3}{2}$
\Rightarrow Then efficiency ratio $\mathrm{A}: \mathrm{B}=3: 2$
\Rightarrow We know that time is inverse proportional to efficiency
\Rightarrow The time taken by them in ratio
$\mathrm{A}: \mathrm{B}=2: 3$

\because A can do the work in 8 days
\Rightarrow i.e. 2 units $\rightarrow 8$
1 unit $\rightarrow 4$
\Rightarrow Time taken by $\mathrm{B} \rightarrow 3$ units
$=3 \times 4$
$=12$ days
103. (B) $\angle \mathrm{ADP}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 100=50^{\circ}$
$\angle \mathrm{DAP}=30^{\circ}$
In $\triangle \mathrm{ADP}$
$\angle \mathrm{APB}=\angle \mathrm{DAP}+\angle \mathrm{ADP}$

$$
\begin{aligned}
& =30^{\circ}+50^{\circ} \\
& =80^{\circ}
\end{aligned}
$$

104. (D)

$x(+) \quad y(-)$ emptied
hour hour
Time will be taken by with of them to fill the tank
$=\frac{x y}{y-x}$

105

$\left\{\right.$ Speed $\left.\propto \frac{1}{\text { Time }}\right\}$
It is given that he takes 2 hours more than the usual time i.e.
1 unit $=2$ hours
3 units $=3 \times 2=6$ hours
So, the usual time taken by man to cover the distance $=6$ hours
106. (D) Second train covers the 120 kms more distance only because of its exceed speed of
$(60-50) \mathrm{km}=10 \mathrm{kmph}$
\Rightarrow Time, taken by trains to meet each other $=\frac{90 \mathrm{kms}}{10 \mathrm{~km} / \mathrm{h}} \Rightarrow 9$ hours.
\Rightarrow Distance covered by first train $=9 \times$ $50=450 \mathrm{~km}$
\Rightarrow Distance covered by the second train $=9$ hours $\times 60 \mathrm{kmph}$
$\Rightarrow 540 \mathrm{~km}$.
\Rightarrow Total distance between A and B
$\Rightarrow 540+450=990 \mathrm{~km}$.
107. (B)

$\triangle \mathrm{AOD} \sim \triangle \mathrm{BOC}$
$\therefore \angle \mathrm{ADB}=\angle \mathrm{DBC}$
[Alternate angle]
In $\triangle A O D$
$\angle \mathrm{DAO}+\angle \mathrm{AOD}+\angle \mathrm{ADO}=180^{\circ}$
$\Rightarrow \angle \mathrm{ADO}=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)$
$\angle \mathrm{DBC}=50^{\circ}$
108. (C) Speed of man in still water, $x=3 \mathrm{~km} / \mathrm{hr}$.

Speed of the stream, $y=2 \mathrm{~km} / \mathrm{hr}$.
Upstream speed $=x-y=1 \mathrm{~km} / \mathrm{hr}$.
Upstream time $=\frac{\text { Distance }}{\text { Upstream speed }}$
$=\frac{10 \mathrm{~km}}{1 \mathrm{~km} / \mathrm{hr}}=10 \mathrm{hr}$.
Downstream speed
$=x+y=5 \mathrm{~km} / \mathrm{hr}$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

Downstream time
$=\frac{\text { Distance }}{\text { Upstream speed }}$
$=\frac{10 \mathrm{~km}}{5 \mathrm{~km} / \mathrm{hr}}=2$ hours
Total time = U.T. + D.T.
$=10 \mathrm{hr}+2 \mathrm{hr}$
$=12 \mathrm{hrs}$.
109. (A) Let the numbers are $7 x$ and $9 x$
A.T.Q.,
$7 x \times 9 x=1575$
$63 x^{2}=1575$
$x^{2}=25$
$x=5$
Then greater number $=45$
110. (A) $3^{50} \rightarrow\left(3^{5}\right)^{10} \rightarrow(243)^{10}$
$4^{40} \rightarrow\left(4^{4}\right)^{10} \rightarrow(256)^{10} \leftarrow$ Largest
$5^{30} \rightarrow\left(5^{3}\right)^{10} \rightarrow(125)^{10}$
$6^{20} \rightarrow\left(6^{2}\right)^{10} \rightarrow(36)^{10}$
111. (C) $(\sqrt{3}+1)(10+\sqrt{12})(\sqrt{12}-2)(5-\sqrt{3})$
$\Rightarrow(\sqrt{3}+1)(10+2 \sqrt{3})(2 \sqrt{3}-2)(5-\sqrt{3})$
$\Rightarrow(\sqrt{3}+1) \times 2(5+\sqrt{3}) \times 2(\sqrt{3}-1)(5-\sqrt{3})$
$\Rightarrow 4(\sqrt{3}+1)(\sqrt{3}-1)(5+\sqrt{3})(5-\sqrt{3})$
$\Rightarrow 4\left[(\sqrt{3})^{2}-1^{2}\right]\left[(5)^{2}-(\sqrt{3})^{2}\right]$
$\Rightarrow 4 \times 2 \times 22 \Rightarrow 176$
112. (B) $(0.2)^{3} \times 200 \div 2000$ of $(0.2)^{2}$
$\Rightarrow \frac{0.2 \times 0.2 \times 0.2 \times 200}{2000 \times 0.2 \times 0.2} \Rightarrow \frac{0.2 \times 200}{2000}$
$\Rightarrow \frac{40.0}{2000} \Rightarrow \frac{1}{50}$
113. (C)

Circum radius of equilateral triangle $=$ $\frac{(\text { side })}{\sqrt{3}}$
In radius of equilateral triangle $=$
$\frac{(\text { side) }}{2 \sqrt{3}}$
$\frac{\text { side }}{\sqrt{3}}=8$
Side $=8 \sqrt{3}$
\therefore In radius of equilateral triangle
$=\frac{(\text { side })}{2 \sqrt{3}}=\frac{8 \sqrt{3}}{2 \sqrt{3}}=4 \mathrm{~cm}$
114. (B)

A.T.Q.,

Here OC = radius
$\therefore r=\frac{a}{2 \sqrt{3}}=\frac{8}{2 \sqrt{3}}$
$r=\frac{4}{\sqrt{3}}$
Required area of shaded portion
$=\frac{\sqrt{3}}{4} \times(8)^{2}-\pi \times \frac{16}{\sqrt{3}}$
$=\sqrt{3} \times 16-\frac{22}{7} \times \frac{16}{3}$
$=10.95 \mathrm{~m}^{3}$
$=11 \mathrm{~m}^{2}$
115. (A)

Area $=\frac{1}{2}$ (sum of parallel sides) \times distance between them
$\frac{1}{2}(7 x+4 x) \times 2 x=176$
$11 x^{2}=176 \Rightarrow x^{2}=16$
$\Rightarrow=4$
$\mathrm{AB}=7 \times 4=28 \mathrm{~cm}$
$\mathrm{CD}=4 \times 4=16 \mathrm{~cm}$
$\mathrm{CM}=2 \times 4=8 \mathrm{~cm}$
$\mathrm{AM}=\mathrm{AN}+\mathrm{NM}$
$=A N+16$
$\Rightarrow 6+16=22\left(\mathrm{AN}=\mathrm{BM}=\frac{12}{2}=6\right)$
$\mathrm{AC}^{2}=\mathrm{CM}^{2}+\mathrm{AM}^{2}$
$A C=\sqrt{64+484} \Rightarrow \sqrt{548} \Rightarrow 2 \sqrt{137}$
116. (A) Ratio of parallel sides $=5: 3$

Let sides are $=5 x$ and $3 x$
$\frac{1}{2}$ (sum of parallel sides) \times perpendicular
distance $=1440 \mathrm{~m}^{2}$
$\frac{1}{2}(5 x+3 x) \times 24=1440$
$4 x \times 24=1440$
$x=\frac{1440}{4 \times 24}=15 \mathrm{~m}$
\therefore Length of longer side
$=5 x$
$=5 \times 15=75 \mathrm{~m}$
117. (B) Required percentage $=\frac{225}{474} \times 100$

$$
=47.5
$$

118. (A) Required percentage $=\frac{23}{474} \times 100$

$$
=4.9
$$

119. (B) $\mathrm{A}=\frac{15}{73} \times 100=20.54 \%$

$$
=21 \mathrm{Appox}
$$

120. (C) Required percentage $=\frac{73}{225} \times 100$ $=32.44=32$ Appox.
121. (C) As Microphone makes sound louder similarly Microscope makes the object magnified.
122. (A)
$\mathrm{As}, \frac{\mathrm{ABDE} \frac{\text { FGIJ }}{\uparrow}}{+5}$
Similarly, $\frac{\text { IJLM }}{+5} \frac{\text { NOQR }}{\uparrow}$
123. (D)

124. (D) Students are in college and patients are in hospital.
125. (B) $443 \Rightarrow 4+4+3=11$
$633 \Rightarrow 6+3+3=12$
$821 \Rightarrow 8+2+1=11$
$245 \Rightarrow 2+4+5=11$
126. (C)

Letters	I	Q		
Position	9	17		
\downarrow odd Position				\downarrow odd Position

127. (B) Except Ounce all others are unit of length.
128. (B) In this series, each number is repeated, then 13 is subtracted to arrive at the next number.
129. (A) Triangle $1 \rightarrow 3^{2}=9$ and $4^{2}=16$ hence 916
Triangle $2 \rightarrow 2^{2}=4$ and $5^{2}=25$ hence 425
Similarly, $1^{2}=1$ and $7^{2}=49$
Hence, 149 is the right answer.
130. (C) Here is how we get the sequence $1049760 / 58320=18$
$58320 / 3888=15$
3888/324 = 12 (we can observe a 324/36 = $9 \quad$ difference of 3 in
$36 / 6=6$
Then, $6 / ?=3$
each of the
obtained result.)
$\Rightarrow ?=6 / 3=2$
131. (C) There are two alphabetical series here. The first series is with the first letters only: STUVW. The second series involves the remaining letters: CD, EF, GH, IJ, KL.
132. (C) Total numbers triangle of 24.
133. (C)
134. (D)

135. (A) Hence D is the letter which is missing and it is opposite to face A.

Top face	A	B	F
Bottom face	A	E	C

136. (A) A is the mother of B, B is the brother of C and C is the daughter of D . Hence, D is the father.

Here, the one which are bold are females (A, C) and not bold are males (B, D).
137. (B)

138. (D) Neither conclusion I nor conclusion II follows
139. (C) As, MOTHER

Similarly, $\frac{\text { HOUSE }}{\square} \frac{\text { FMSQC }}{\uparrow}$
140. (A) $56 \times 11 \Rightarrow 56-11=45 \Rightarrow 4+5=9$
$37 \times 13 \Rightarrow 37-13 \Rightarrow 24 \Rightarrow 2+4=6$
$42 \times 12 \Rightarrow 42-12=30 \Rightarrow 3+0=3$
$87 \times 77 \Rightarrow 87-77=10 \Rightarrow 1+0=1$
141. (C) Blackboard is in Class and Class is in the School.
142. (C) Both conclusion I and II follow.
143. (C) From options (3),
$(10 \times 7)-2<(10-2) \times 7$
After changing the signs as per the given details,
$(10+7) \times 2<(10 \times 2)+7$
$\Rightarrow 34<27$
But, 34 is not less than 27
144. (A)

145. (B) The Age of Teacher $=20+21=41$ years
146. (B)

147. (B) 'The only daughter of the father of X 's mother' means mother of X.
Hence X is the son of the lady in the photograph.
148. (B) N U M E R A L
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
$\begin{array}{lllllll}U & E & A & L & R & M & N\end{array}$
$\begin{array}{lllllll}2 & 4 & 6 & 7 & 5 & 3 & 1\end{array}$
Similarly,

A	L	G	E	B	R	A
1	2	3	4	5	6	7
\mathbf{L}	\mathbf{E}	\mathbf{R}	\mathbf{A}	\mathbf{B}	\mathbf{G}	\mathbf{A}
2	4	6	7	5	3	1

149. (C)
150. (A)

151. (D) As, $37+14=51 \Rightarrow \frac{51}{3}=17$
$69+33=102 \Rightarrow \frac{104}{3}=34$
$91+125=216 \Rightarrow \frac{216}{3}=72$
Similarly, $28+56=84 \Rightarrow \frac{84}{3}=\mathbf{2 8}$
152. (B) North-West

153. (B) CURTAIN
154. (D) PANDA, TOAD and DONKEY are the animals which can be formed after including the vowels.
APPLE can also be formed after including vowels A \& E but Apple is not an animal.
155. (D) $10 * 10=5 * 10$? $50 @ 10$

After changing the signs as per the given details,
$10 \times 10-5 \times 10+50 \div 10$
$=100-50+5$
$=55$
Directions (156-160): Answer

156. (B)
157. (D)
158. (D)
159. (C)
160. (A)

UP SI ANSWER KEY - 53

