KD Campus Pvt. Ltd

UP SI MOCK TEST - 51 (SOLUTION)

81. (C) Rate $=12 \frac{1}{2} \%=\frac{1}{8}$

82. (C) Total maximum marks in four subjects
$=120+140+100+180=540$
60% of total maximum marks $=\frac{3}{5} \times 540$
$=324$
Marks obtained in three subjects
$=120 \times \frac{2}{5}+140 \times \frac{11}{20}+100 \times \frac{9}{20}$
$=48+77+45=170$
Marks to be obtained in Maths
= 324-170 = 154
83. (C) $\mathrm{S} . \mathrm{I}=956-800=₹ 156$
\therefore Rate $=\frac{\text { S.I } \times 100}{\text { Principal } \times \text { Time }}$
$=\frac{156 \times 100}{800 \times 3}=6.5 \%$ per annum
\therefore New rate $=10.5 \%$
\therefore S.I $=\frac{\text { Principal } \times \text { Time } \times \text { Rate }}{100}$
$=\frac{800 \times 3 \times 10.5}{100}=₹ 252$
Amount $=800+252=₹ 1052$
84. (A) Population of the village $=5500$

After increment new population of the
village $=6330$
$\%$ increment $=\frac{(6330-5500)}{5500} \times 100$
$=\frac{830}{55}=\frac{166}{11} \%$

According to the question
11 units $=5500$
1 unit $=500$
Number of females $=500 \times 5=2500$
85. (D)

$\mathrm{B} \longrightarrow 15 \xrightarrow{\mathbf{6 0}} \longrightarrow 4$
$\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow 5 \longrightarrow 12$
One day work of $C=12-(3+4)=5$
\therefore Time Taken by $C=\frac{60}{5}=12$ days
86. (B) Total weight of section $A=42 \times 25$

$$
=1050 \mathrm{~kg}
$$

Total weight of group B $=28 \times 40=1120 \mathrm{~kg}$
Total weight of whole class $=2170 \mathrm{~kg}$
Average weight of whole class
$=\frac{2170}{70}=31 \mathrm{~kg}$
87. (A)
C.P.
S.P.
$100 \xrightarrow{+33 \%} 133$
Market price $=\frac{133}{95} \times 100=₹ 140$
Hence, percentage above cost price $=140$
$-100=40$
88. (C) According to the question,

Man $:$ Woman $:$
Efficiency $\rightarrow 6$
money received by (woman
money received by (woman + girl)
$=\frac{10000}{10} \times 4=₹ 4000$
89. (C)

Let R is a point where both the trains meet. Till $2: 45 \mathrm{pm}$ the distance covered by the second train
$=\frac{70}{60} \times 60=70 \mathrm{~km}$
Remaining distance $=510-70=440 \mathrm{~km}$ Now relative speed of both trains $=50$
$+60=110 \mathrm{~km} / \mathrm{h}$
Required time of meeting $=\frac{440}{110}=4$ hours
Distance from Delhi to meeting point $\mathrm{R}=4 \times 50=200 \mathrm{~km}$
90. (C)

$\mathrm{CI}=57876-50000=₹ 7876$

2 Campus
 KD Campus Pvt. Ltd

91. (B) $x+y=1$

Given, $(x y)^{2}-2 x y=12$
$x^{4}+y^{4}=\left(x^{2}+y^{2}\right)-2 x^{2} y^{2}$
$=\left[(x+y)^{2}-2 x y\right]^{2}-2 x^{2} y^{2}$
$=1-4 x y+2 x^{2} y^{2}$
$=1+24=25$
92. (B) EG is angle bisector $\angle \mathrm{DEF}$
$\angle \mathrm{DEG}=55^{\circ}, \angle \mathrm{EFG}=55^{\circ}$
$\angle \mathrm{FAG}=\left(180-\left(55+90^{\circ}\right)\right)=35^{\circ}$
$\angle \mathrm{GAB}=180^{\circ}-(110+35)=35^{\circ}$
93. (A) $\frac{(0.73)^{3}+(0.27)^{3}}{(0.73)^{2}+(0.27)^{2}-(0.73)(0.27)}$

$$
\begin{aligned}
& =\frac{(0.73)+(0.27)\left[(0.73)^{2}+(0.27)^{2}-(0.73) \times(0.27)\right]}{(0.73)^{2}+(0.27)^{2}-(0.73)(0.27)} \\
& =0.73+0.27=1
\end{aligned}
$$

94. (A) a. $\sin 45^{\circ} \cdot \cos 45^{\circ} \cdot \tan 60^{\circ}=\tan ^{2} 45^{\circ}-\cos 60^{\circ}$

$$
\begin{aligned}
& \Rightarrow a \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \sqrt{3}=1-\frac{1}{2} \\
& \Rightarrow a \times \frac{\sqrt{3}}{2}=\frac{1}{2} \Rightarrow a=\frac{1}{\sqrt{3}}
\end{aligned}
$$

95. (C) Required ratio $=\frac{550}{1 \times 60}: \frac{33}{\frac{3}{4}} \times \frac{5}{18}$
$=3: 4$
96. (A)

Given $\angle \mathrm{A}=50^{\circ}, \angle \mathrm{CZY}=30^{\circ}$
Now, $\angle \mathrm{BRC}=90+\frac{\angle A}{2}$

$$
=90+25=115^{\circ}
$$

Then, $\triangle \mathrm{RZY}$
$\angle \mathrm{R}+\angle \mathrm{Z}+\angle \mathrm{Y}=180^{\circ}$
$115+30+\angle \mathrm{Y}=180^{\circ}$
$\angle \mathrm{Y}=35^{\circ}$
97. (C) As we know,
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$(7)^{2}=21+2(a b+b c+c a)$
$\frac{49-21}{2}=a b+b c+c a$
$\Rightarrow a b+b c+c a=\frac{28}{2}=14$
98. (A)

ATQ,
$\sqrt{3}$ units $=60 \mathrm{~m}$
1 unit $=20 \sqrt{3} \mathrm{~m}$
$\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)$ units $=20 \sqrt{3}\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) \mathrm{m}$
$=20 \sqrt{3} \times \frac{2}{\sqrt{3}}=40 \mathrm{~m}$
\therefore Height of Tower $=40 \mathrm{~m}$
99. (B) $x^{2}-4 x+1=0$

$$
\begin{aligned}
& \Rightarrow x-4+\frac{1}{x}=0 \\
& \Rightarrow x+\frac{1}{x}=4
\end{aligned}
$$

and, $\frac{x^{6}+1}{x^{3}}=x^{3}+\frac{1}{x^{3}}=64-12=52$
100. (A) $(a+b+c)=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$(a+b+c)^{2}=20+2 \times 8$
$=36 \Rightarrow a+b+c=6$
$(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=2\left[a^{2}+b^{2}+c^{2}\right.$
$-a b-b c-c a]$
$\left.=\frac{1}{2} \times 6 \times[20-8)\right]$
Required value $=\frac{1}{2} \times 6 \times 2 \times 12=72$
101. (A) Rate $=\frac{280 \times 100}{400 \times 10}=7 \%$
102. (B)

By Ceviaris theorem
$\frac{\mathrm{OE}}{\mathrm{AE}}+\frac{\mathrm{OF}}{\mathrm{BF}}+\frac{\mathrm{OD}}{\mathrm{CD}}=1$
$\frac{4}{11}=\frac{\mathrm{OF}}{\mathrm{BF}}+\frac{3}{8}=1$
$\frac{\mathrm{OF}}{\mathrm{BF}}=1-\frac{65}{88}$
$\frac{\mathrm{BO}}{\mathrm{OF}}=\frac{65}{23}$
103. (D) $l+b+h=24 \quad$ [given]
$l^{2}+b^{2}+h^{2}=225 \quad$ [given]
$\therefore(l+b+h)^{2}=l^{2}+b^{2}+h^{2}+2(l b+b h+h l)$
$\Rightarrow(24)^{2}=225+2(l b+b h+h l)$
$\Rightarrow 2(l b+b h+h l)=576-225$
$=351$ sq. cm.
104. (C) Relative speed $=45-40=5 \mathrm{~km} / \mathrm{hr}$
\therefore Required distance $=\left(5 \times \frac{45}{60}\right) \mathrm{km}$
$=\frac{15}{4} \mathrm{~km}=3 \mathrm{~km} 750$ metre .
105. (B)

In $\triangle \mathrm{AOB}$
$\mathrm{OA}^{2}+\mathrm{OB}^{2}=\mathrm{AB}^{2}$
In $\triangle \mathrm{BOC}$
$\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{BC}^{2}$
In \triangle COD
$\mathrm{OC}^{2}+\mathrm{OD}^{2}=\mathrm{CD}^{2}$
In $\triangle A O D$
$\mathrm{OD}^{2}+\mathrm{OA}^{2}=\mathrm{AD}^{2}$
Equation (i) + (ii) (iv)
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BC}^{2}+\mathrm{AD}^{2}$
106.

107. (C) $\tan \theta=\frac{8}{15}$
$\sin \theta=\frac{8}{\sqrt{15^{2}+8^{2}}}=\frac{8}{17}$
$\therefore \frac{\sqrt{1-\sin \theta}}{\sqrt{1+\sin \theta}}=\frac{\sqrt{1-\frac{8}{17}}}{\sqrt{1+\frac{8}{17}}}=\sqrt{\frac{9}{25}}=\frac{3}{5}$
108. (C) In the mixture of two casks,

Quantity of milk $=\frac{13}{20} \times 48+\frac{18}{35} \times 42$
$=\frac{156}{5}+\frac{108}{5}$
$=\frac{264}{5} \mathrm{~L}$
Quantity of water $=\frac{7}{20} \times 48+\frac{17}{35} \times 42$
$=\frac{84}{5}+\frac{102}{5}=\frac{186}{5} \mathrm{~L}$
When 20 L of water to be added to the mixture.

Quantity of water $=\frac{186}{5}+20$
$=\frac{186+100}{5}=\frac{286}{5} \mathrm{~L}$
Thus, required ratio $=\frac{264}{5}+\frac{286}{5}$
= $12: 13$
109. (D) Let speed of the current be $x \mathrm{~m} / \mathrm{min}$. Then,
$\frac{200}{48-x}-\frac{200}{48+x}=10$
$\Rightarrow 20(48+x-48+x)=(48+x)(48-x)$
$\Rightarrow 20 \times 2 x=2304-x^{2}$
$\Rightarrow x^{2}+40 x-2304=0$
$\Rightarrow x=32 \mathrm{~m} / \mathrm{min}$
110. (A)

Area of square $\mathrm{ABCD}=8^{2}=64$
Area of $\triangle \mathrm{CON}=\frac{1}{8} \times 64=8$
Hence, area of $3 \times \Delta \mathrm{CON}=3 \times 8$

$$
=24 \mathrm{~cm}^{2}
$$

111. (D) Let numbers be $3 x$ and $4 x$

Then, 1 cm of $3 x$ and $4 x=3 \times 4 \times x=12 x$
$\therefore 12 x=120 \Rightarrow x=10$
So, the numbers are $3 x, 4 x$ i.e. 30 and 40 .
112. (D) Let third proportional be x

9:27:x
$\therefore 9 x=27^{2}$

$$
x=81
$$

113. (A) Let radius $=5 x \mathrm{~cm}$ and height $=12 x \mathrm{~cm}$
$\mathrm{V}=\frac{1}{3} \pi \times(5 x)^{2} \times 12 x$
$314=\frac{1}{3} \times 3.14 \times 25 \times 12 \times x^{3}$
$\frac{300}{25 \times 12}=x^{3}$
$x=1$
$l=\sqrt{h^{2}+r^{2}}=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$
114. (C) $\frac{1}{\operatorname{cosec}^{2} 51^{\circ}}+\sin ^{2} 39^{\circ}+\tan ^{2} 51^{\circ}-$

$$
\frac{1}{\sin ^{2} 51^{\circ} \cdot \sec ^{2} 39^{\circ}}
$$

$\sin ^{2} 51^{\circ}+\sin ^{2} 39^{\circ}+\tan ^{2} 51^{\circ}-\frac{\cos ^{2} 39^{\circ}}{\sin ^{2} 51^{\circ}}$
$\sin ^{2} 51^{\circ}+\cos ^{2} 51^{\circ}+\tan ^{2} 51^{\circ}-\frac{\sin ^{2} 51^{\circ}}{\sin ^{2} 51^{\circ}}$
$=1+\tan ^{2} 51^{\circ}-1$
$=\tan ^{2} 51^{\circ}$
$=\cot ^{2} 39^{\circ}$
$=\operatorname{cosec}^{2} 35^{\circ}-1$
$=x^{2}-1$
115. (C) $\frac{(n-2) \times 180^{\circ}}{n}=\frac{5 \times 360^{\circ}}{n}$
$n-2=5 \times 2$
$n=12$
116. (D) Let the radius of bigger and smaller cylinder be r_{1} and r_{2} respectively.
$2 \pi h\left(r_{1}-r_{2}\right)=44$
$\pi h\left(\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right)=99 \quad \mathrm{r}_{1}=$?
From equation (i)
$r_{1}-r_{2}=\frac{44}{2 \pi h}=\frac{44}{2 \times \frac{22}{7} \times 14}=\frac{1}{2}$
Also, $\frac{22}{7} \times 14\left(r_{1}+r_{2}\right)\left(r_{1}-r_{2}\right)=99$
$44\left(r_{1}+r_{2}\right) \frac{1}{2}=99$
$r_{1}+r_{2}=\frac{99}{22}=\frac{9}{2}$
We have, $r_{1}+r_{2}=\frac{9}{2}$
$\mathrm{r}_{1}-\mathrm{r}_{2}=\frac{1}{2}$
$2 r_{1}=10$
$\Rightarrow r_{1}=5 \mathrm{~cm}$
117. (B) Required ratio

$$
\begin{aligned}
& \Rightarrow \frac{(400+400+450+500)}{4}: \\
& \frac{(200+250+300+250)}{4}=7: 4
\end{aligned}
$$

118. (C) Required percentage

$$
=\frac{(700-550)}{550} \times 100=27.27
$$

119. (C) Required percentage $=\frac{450}{1300} \times 100$
120. (D) Required percentage

$$
=\frac{(1450-1200)}{1200}=20.83
$$

121. (D) Liberty is opposite to Slavery and Danger is opposite to safety.
122. (A)

Similarly,

123. (B)

124. (A) Magazine is related to editor and drama is related to director.
125. (A) Only in 232, a digit is repeated.
126. (D)

127. (A) All except mechanic help in building a house.
128. (A)

129.
(C) $9 \times 3 \times 3=81$
$11 \times 4 \times 4=176$
$13 \times 7 \times 5=455$
130. (A)

4	9	16	25	36	49
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2^{2}	3^{2}	4^{2}	5^{2}	6^{2}	7^{2}

131. (C)

132. (C) Total numbers of triangles $=18$
133. (D) As month begins on Saturday, so $2^{\text {nd }}$, $9^{\text {th }}, 16^{\text {th }}, 23^{\text {rd }}, 30^{\text {th }}$ days will be Sundays. While $8^{\text {th }}$ and $22^{\text {nd }}$ days are second Saturdays. Thus, there are 7 holidays in all.
Hence, no. of working days $=30-7=23$
134. (C)
135. (C) From position I and III common face with $\%$ is in the same position. Hence according to rule (3) opposite is X .
136. (D)

2 Campus
 KD Campus Pvt. Ltd

137. (C) $\mathrm{B}<\mathrm{A}<\mathrm{C}$

A $<$ D $<$ E
$\mathrm{B}<\mathrm{A}<\mathrm{C}<\mathrm{D}<\mathrm{E}$
\therefore Highest marks was obtained by E
138. (A)

I.
II. \times
\therefore Only Conclusion I follows.
139. (B) (10 C 4) A $(4 \mathrm{C} 4) \mathrm{B} 6$

After taking the signs as per the given details,
$(10 \times 4)+(4 \times 4)-6$
$=40+16-6=50$
140. (D) Required position $=15-3-8+1$
= $16-11$
$=5^{\text {th }}$
141. (A)

142. (D)

I. \checkmark
II. \checkmark
143. (A) defd/eefd/eeef
144. (B)

145. (A) 1, 4 and 7 are quadrilaterals.

2 , 5 and 8 are three-dimensional figures.
3, 6 and 9 are triangles.
146. (A)

The movements of the girl are as shown in Fig.
(A to B, B to C, C to D, D to A).
Clearly, she is finally moving in the direction DA i.e. North east.
147. (B) As, $2+4+6 \Rightarrow 6 \times 4 \times 2=48$
$3+2+8 \Rightarrow 8 \times 2 \times 3=48$
Similarly, $2+5+7 \Rightarrow 7 \times 5 \times 2=\mathbf{7 0}$
148. (C) The letters at the third and sixth places are repeated thrice alternately to code BOMBAY as MYMYMY. Similarly, the letters at the third and sixth places are repeated thrice alternately to code DISPUR as SRSRSR.
149. (C)
150. (A) Write the letters in four rows for example:
A E N D F N D
F N N I R D E \Rightarrow A FRIEND IN NEED
$\begin{array}{lllllllll} \\ \text { R } & \text { D } & \text { E } & \text { S } & \text { I } & \text { I } & \text { E } & \text { IS A FRIEND IN DEED } \\ \text { I } & \text { I } & \text { E } & \text { A } & \text { E } & \mathrm{N} & \mathrm{D}\end{array}$
151. (B) Let the Present age of son $=x$

Then, the present age of father
$=4 x$
A.T.Q.,
$4 x-4=8(x-4)$
$\Rightarrow 4 x-4=8 x-32$
$\Rightarrow 4 x=28$
$\Rightarrow x=7$
\therefore Present age of son $=7$ years
152. (A) $20-4+6 \div 9 \times 4=25$

After changing the signs as per the given details,
$20 \div 4 \times 6-9+4=25$
$\Rightarrow 5 \times 6-9+4=25$
$\Rightarrow 30-9+4=25$
$\Rightarrow 25=25$
\therefore Option (1) is the right answer.
153. (D) GA
154. (C) Wednesday
155. (C)
156. (D) ORANGE

Direction (157-160): Answer

$\mathrm{R}_{(+)}[$Lawyer $] \longleftrightarrow \mathrm{J}_{(-)}$
$\mathrm{V}_{(+)}[$Scientist $] \longleftrightarrow \mathrm{T}_{(-)}$
$\mathrm{Q}_{(+)}$[Lecturer $] \longleftrightarrow \mathrm{U}_{(-)}$
$\mathrm{S}_{(+)}$[Doctor] $\longleftrightarrow \mathrm{P}_{(-)}$
157. (D) 158. (A) 159. (B) 160. (C)

UP SI ANSWER KEY - 51

1.	(C)	21.	(A)	41.	(A)	61.	(A)	81.	(C)	101. (A)	121. (D)	141. (A)
2.	(B)	22.	(C)	42.	(B)	62.	(B)	82.	(C)	102. (B)	122. (A)	142. (D)
3.	(C)	23.	(A)	43.	(A)	63.	(B)	83.	(C)	103. (D)	123. (B)	143. (A)
4.	(C)	24.	(B)	44.	(B)	64.	(C)	84.	(A)	104. (C)	124. (A)	144. (B)
5.	(A)	25.	(C)	45.	(A)	65.	(A)	85.	(D)	105. (B)	125. (A)	145. (A)
6.	(A)	26.	(A)	46.	(A)	66.	(C)	86.	(B)	106. (C)	126. (D)	146. (A)
7.	(C)	27.	(C)	47.	(D)	67.	(C)	87.	(A)	107. (C)	127. (A)	147. (B)
8.	(C)	28.	(A)	48.	(B)	68.	(C)	88.	(C)	108. (C)	128. (A)	148. (C)
9.	(A)	29.	(D)	49.	(A)	69.	(A)	89.	(C)	109. (D)	129. (C)	149. (C)
10.	(D)	30.	(B)	50.	(C)	70.	(D)	90.	(C)	110. (A)	130. (A)	150. (A)
11.	(C)	31.	(D)	51.	(B)	71.	(D)	91.	(B)	111. (D)	131. (C)	151. (B)
12.	(D)	32.	(B)	52.	(D)	72.	(B)	92.	(B)	112. (D)	132. (C)	152. (A)
13.	(D)	33.	(D)	53.	(D)	73.	(B)	93.	(A)	113. (A)	133. (D)	153. (D)
14.	(C)	34.	(B)	54.	(A)	74.	(B)	94.	(A)	114. (C)	134. (C)	154. (C)
15.	(C)	35.	(D)	55.	(B)	75.	(A)	95.	(C)	115. (C)	135. (C)	155. (C)
16.	(C)	36.	(C)	56.	(A)	76.	(D)	96.	(A)	116. (D)	136. (D)	156. (D)
17.	(B)	37.	(D)	57.	(D)	77.	(A)	97.	(C)	117. (B)	137. (C)	157. (D)
18.	(A)	38.	(C)	58.	(C)	78.	(A)	98.	(A)	118. (C)	138. (A)	158. (A)
19.	(D)	39.	(B)	59.	(A)	79.		99.		119. (C)	139. (B)	159. (B)
20.	(C)	40.	(C)	60.	(C)	80.	(A)	100	(A)	120. (D)	140. (D)	160. (C)

