NDA MATHS MOCK TEST - 186 (SOLUTION)

1. (D) $\frac{\sin ^{3} \mathrm{~A}+\sin 3 \mathrm{~A}}{\sin \mathrm{~A}}+\frac{\cos ^{3} \mathrm{~A}-\cos 3 \mathrm{~A}}{\cos \mathrm{~A}}$

$$
\begin{aligned}
& \Rightarrow \frac{\sin ^{3} A+3 \sin A-4 \sin ^{3} A}{\sin A} \\
& \quad+\frac{\cos ^{3} A-4 \cos ^{3} A+3 \cos A}{\cos A} \\
& \Rightarrow \frac{3 \sin A-3 \sin ^{3} A}{\sin A}+\frac{-3 \cos ^{3} A+3 \cos A}{\cos A} \\
& =\left(3-3 \sin ^{2} A\right)+\left(-3 \cos ^{2} A+3\right) \\
& =6-3\left(\sin ^{2} A+\cos ^{2} A\right)=6-3(1)=3
\end{aligned}
$$

2. (B) $\sin ^{2} 66 \frac{1^{\circ}}{2}-\sin ^{2} 23 \frac{1^{\circ}}{2}$
$\Rightarrow\left[\sin \left(90^{\circ}-23 \frac{1^{\circ}}{2}\right)\right]^{2}-\sin ^{2} 23 \frac{1^{\circ}}{2}$
$\Rightarrow \cos ^{2} 23 \frac{1^{\circ}}{2}-\sin ^{2} 23 \frac{1^{\circ}}{2}$
$\Rightarrow \cos 2\left(23 \frac{1^{\circ}}{2}\right)$
$\left[\because \cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}\right]$
$\Rightarrow \cos \left[2 \times\left(\frac{47}{2}\right)^{\circ}\right]=\cos 47^{\circ}$
3. (D) Given that, $\tan \mathrm{A}=x+1$ and $\tan \mathrm{B}=x-1$

Now, $x^{2} \tan (\mathrm{~A}-\mathrm{B}) \Rightarrow x^{2}\left(\frac{\tan \mathrm{~A}-\tan \mathrm{B}}{1+\tan \mathrm{A} \cdot \tan \mathrm{B}}\right)$
$\Rightarrow x^{2}\left\{\frac{(x+1)-(x-1)}{1+(x+1) \cdot(x-1)}\right\}$
$\Rightarrow x^{2}\left\{\frac{2}{1+x^{2}-1}\right\} \Rightarrow x^{2} \cdot \frac{2}{x^{2}}=2$
4. (D) $\left(\sin ^{4} \theta-\cos ^{4} \theta+1\right) \cdot \operatorname{cosec}^{2} \theta$
$\Rightarrow\left\{\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+1\right\} \cdot \operatorname{cosec}^{2} \theta$
$\Rightarrow\left\{\left(\sin ^{2} \theta-\cos ^{2} \theta\right) \cdot 1+1\right\} \cdot \operatorname{cosec}^{2} \theta$
$\Rightarrow\left\{\left(\sin ^{2} \theta-\cos ^{2} \theta\right)+1\right\} \cdot \operatorname{cosec}^{2} \theta$
$\Rightarrow\left(2 \sin ^{2} \theta\right) \cdot \frac{1}{\sin ^{2} \theta}=2$
5. (C) $\because \sec \alpha=\frac{13}{5} \Rightarrow \cos \alpha=\frac{5}{13}$

Now, $\sin \alpha \Rightarrow \sqrt{1-\cos ^{2} \alpha} \Rightarrow \sqrt{1-\frac{25}{169}}$
$\Rightarrow \sqrt{\frac{144}{169}}=-\frac{12}{13}$
$\left[\because 270<\alpha<360^{\circ}\right]$
6.
(B) $\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}$
$\Rightarrow \frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\mathrm{K}$
$\Rightarrow a=4 \mathrm{~K}, b=5 \mathrm{~K}, c=6 \mathrm{~K}$
Now, $\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\Rightarrow \cos \mathrm{A}=\frac{25 \mathrm{~K}^{2}+36 \mathrm{~K}^{2}-16 \mathrm{~K}^{2}}{60 \mathrm{~K}^{2}}=\frac{3}{4}$
and $\cos \mathrm{B}=\frac{a^{2}+c^{2}-b^{2}}{2 a b}$
$\Rightarrow \operatorname{cosB}=\frac{15 \mathrm{~K}^{2}+36 \mathrm{~K}^{2}-25 \mathrm{~K}^{2}}{48 \mathrm{~K}^{2}}=\frac{9}{16}$
and $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \cos C=\frac{16 \mathrm{~K}^{2}+25 \mathrm{~K}^{2}-36 \mathrm{~K}^{2}}{40 \mathrm{~K}^{2}}=\frac{1}{8}$
$\therefore \cos \mathrm{A}: \cos \mathrm{B}: \cos \mathrm{C}=\frac{3}{4}: \frac{9}{16}: \frac{1}{8}$
$=12: 9: 2$
7. (A) $\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}$ (true)
$\frac{\cos \mathrm{A}}{a}=\frac{\cos \mathrm{B}}{b}=\frac{\cos \mathrm{C}}{c}$ (given)
$\therefore \tan A=\tan B=\tan C$
$\therefore \triangle \mathrm{ABC}$ is equilateral and so each of its angles is 60°.
$\therefore \Delta=\frac{1}{2} a \times a \times \sin 60^{\circ}$
$\Rightarrow \Delta=\frac{1}{2} \times 2 \times 2 \times \frac{\sqrt{3}}{2}=\sqrt{3}$
8. (A) $r=4 \mathrm{R} \sin \frac{\mathrm{A}}{2} \sin \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}$

Here $\mathrm{A}=\mathrm{B}=\mathrm{C}=60^{\circ}$
$\therefore r=4 \mathrm{R} \sin 30^{\circ} \times \sin 30^{\circ} \times \sin 30^{\circ}$
$r=\frac{\mathrm{R}}{2}$
$\Rightarrow \frac{3+x}{1-3 x}=8 \Rightarrow x=\frac{1}{5}$
13. (C) $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{\pi}{2}-\cos ^{-1} x\right)+\left(\frac{\pi}{2}-\cos ^{-1} y\right)=\frac{2 \pi}{3} \\
& \Rightarrow \cos ^{-1} x+\cos ^{-1} y=\left(\pi-\frac{2 \pi}{3}\right)=\frac{\pi}{3}
\end{aligned}
$$

14. (B)

Let $\mathrm{BC}=x, \mathrm{AB}=h$
In $\triangle A C B$:-
$\tan 60^{\circ}=\frac{h}{x}$
$\Rightarrow \sqrt{3}=\frac{h}{x} \Rightarrow x=\frac{h}{\sqrt{3}} m$
In $\triangle \mathrm{ADB}$:-
$\tan 30^{\circ}=\frac{h}{x+50}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+50} \Rightarrow \sqrt{3} h=x+50$
$\Rightarrow \sqrt{3} h=\frac{h}{\sqrt{3}}+50$
[from Eq. (i)]
$\Rightarrow\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) h=50 \Rightarrow 2 h=50 \sqrt{3}$
$\Rightarrow h=25 \sqrt{3} m$
15. (C) Let the angle of elevation $=\theta$

In $\triangle \mathrm{BAC}$,
$\tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{15}{15}=1$
$\Rightarrow \tan \theta=\tan 45^{\circ} \Rightarrow \theta=45^{\circ}$
$\therefore \mathrm{B}^{-1}=\frac{\operatorname{adj}(\mathrm{B})}{|\mathrm{B}|}=1 \cdot\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right] \Rightarrow \mathrm{B}^{-1}=\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]$
$\therefore \mathrm{B}^{-1} \mathrm{~A}^{-1}=\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$
$=\left[\begin{array}{cc}-2+1 & 4-1 \\ 1+0 & -2+0\end{array}\right]$
$=\left[\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right]$
20. (B) $\therefore A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$

Now, $A^{2}=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$
$\Rightarrow \mathrm{A}^{2}=\left[\begin{array}{cc}\alpha \times \alpha & 0 \\ 1 \times \alpha+1 & 0+1\end{array}\right]=\left[\begin{array}{cc}\alpha^{2} & 0 \\ \alpha+1 & 1\end{array}\right]$
But $\mathrm{A}^{2}=\mathrm{B}$

$$
\Rightarrow\left[\begin{array}{cc}
\alpha^{2} & 0 \\
\alpha+1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

On comparing, $\alpha^{2}=1$ and $\alpha+1=2$
$\therefore \alpha=1$
21. (C) $\left(\operatorname{adj} A^{T}\right)=(\operatorname{adj} A)^{T} \Rightarrow\left(\operatorname{adj} A^{T}\right)-(\operatorname{adj} A)^{T}$
$=$ null matrix
22. (B)
$\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|=0$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$\Rightarrow\left|\begin{array}{lll}3 a-x & a-x & a-x \\ 3 a-x & a+x & a-x \\ 3 a-x & a-x & a+x\end{array}\right|=0$
$\Rightarrow(3 a-x)\left|\begin{array}{lll}1 & a-x & a-x \\ 1 & a+x & a-x \\ 1 & a-x & a+x\end{array}\right|=0$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\Rightarrow(3 a-x)\left|\begin{array}{ccc}1 & a-x & a-x \\ 0 & 2 x & 0 \\ 0 & 0 & 2 x\end{array}\right|=0$
$\Rightarrow(3 a-x)\left(4 x^{2}\right)=0$
$\therefore x=3 a, x=0$
\therefore Solution set $=\{3 a, 0\}$
23. (C) $\left|\begin{array}{ccc}3 & \omega & \omega^{2} \\ \omega & 2+\omega^{2} & 1 \\ \omega^{2} & 1 & 2+\omega\end{array}\right|$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$\Rightarrow\left|\begin{array}{ccc}2+\left(1+\omega+\omega^{2}\right) & \omega & \omega^{2} \\ 2+\left(1+\omega+\omega^{2}\right) & 2+\omega^{2} & 1 \\ 2+\left(1+\omega+\omega^{2}\right) & 1 & 2+\omega\end{array}\right|$
$\Rightarrow\left|\begin{array}{ccc}2 & \omega & \omega^{2} \\ 2 & 2+\omega^{2} & 1 \\ 2 & 1 & 2+\omega\end{array}\right|\left[\because 1+\omega+\omega^{2}=0\right]$
$\Rightarrow 2\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ 1 & 2+\omega^{2} & 1 \\ 1 & 1 & 2+\omega\end{array}\right|$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$

$$
\Rightarrow 2\left|\begin{array}{ccc}
1 & \omega & \omega^{2} \\
0 & 2+\omega^{2}-\omega & 1-\omega^{2} \\
0 & 1-\omega & 2+\omega-\omega^{2}
\end{array}\right|
$$

$$
\Rightarrow 2\left|\begin{array}{ccc}
1 & \omega & \omega^{2} \\
0 & 1-2 \omega & 1-\omega^{2} \\
0 & 1-\omega & 1-2 \omega^{2}
\end{array}\right|
$$

$$
\Rightarrow 2\left[1 .\left\{(1-2 \omega)\left(1-2 \omega^{2}\right)-(1-\omega)\left(1-\omega^{2}\right)\right\}\right]
$$

$$
\Rightarrow 2\left[\left(1-2 \omega-2 \omega^{2}+4\right)-\left(1-\omega-\omega^{2}+1\right)\right]
$$

$$
\Rightarrow 2[5+2(1)-(2+1)]=8
$$

24. (A)
$\left|\begin{array}{lll}a & a^{2} & a^{3}+1 \\ b & b^{2} & b^{3}+1 \\ c & c^{2} & c^{3}+1\end{array}\right|=0$
$\Rightarrow\left[\begin{array}{lll}a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3}\end{array}\right]+\left[\begin{array}{lll}a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1\end{array}\right]=0$
$\Rightarrow(a b c)\left[\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right]+\left[\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right]=0$
$\Rightarrow(1+a b c) \cdot\left[\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right]=0$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\Rightarrow(1+a b c) \cdot\left[\begin{array}{ccc}1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2}\end{array}\right]=0$
$\Rightarrow(1+a b c)(b-a)(c-a) \cdot\left[\begin{array}{ccc}1 & a & a^{2} \\ 0 & 1 & b+a \\ 0 & 1 & c+a\end{array}\right]=0$
$\Rightarrow(1+a b c)(b-a)(c-a)(c-b)=0$
$\Rightarrow a b c=-1(\because a \neq b \neq c)$
25. (A) Given that a, b, c and d are in AP.
$\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ and $\frac{1}{d}$ are in HP.
$\Rightarrow b c d, a c d, a b d$ and $a b c$ are in HP.
Hence, $a b c, a b d, a c d$ and $b c d$ are in HP.
26. (C) Given that, $\frac{1}{4}, \frac{1}{x}$ and $\frac{1}{10}$ are in HP.
$4, x$ and 10 are in AP.
\therefore Arithmetic mean, $x=\frac{4+10}{2}=\frac{14}{2}=7$
27. (D) $S=\frac{a}{1-r}$, where $r<1$
$\therefore \frac{a}{1-r}=6 \Rightarrow a=6(1-r)$
and $a+a r=\frac{9}{2}$
[given]

$$
\begin{aligned}
& \Rightarrow 6(1-r)+6 r(1-r)=\frac{9}{2} \\
& \Rightarrow 12-12 r+12 r-12 r^{2}=9 \\
& \Rightarrow r^{2}=\frac{3}{12}=\frac{1}{4} \Rightarrow r=\frac{1}{2} \text { or }-\frac{1}{2} \Rightarrow a=3 \text { or } 9
\end{aligned}
$$

28. (C) $\log _{y}(x)^{5} \cdot \log _{x}(y)^{2} \cdot \log _{z}(z)^{3}$

$$
\begin{aligned}
& \Rightarrow 5 \log _{y} x \cdot 2 \log _{x} y \cdot 3 \log _{z} z{ }_{\left[\because \log _{a} b^{n}=n \log _{a} b\right]} \\
& \Rightarrow 5 \log _{y} x \cdot 2 \log _{x} y \cdot 3.1 \quad\left[\because \log _{a} a=1\right] \\
& \Rightarrow 5 \cdot \frac{\log x}{\log y} \cdot 2 \cdot \frac{\log y}{\log x} \cdot 3 \quad\left[\because \log _{a} b=\frac{\log b}{\log a}\right] \\
& \Rightarrow 5.2 .3=30
\end{aligned}
$$

29. (D) $\log _{9} x-\log _{9}\left(\frac{x}{10}+\frac{1}{9}\right)=\log _{9} 9$

$$
\begin{aligned}
& \Rightarrow \log _{9} \frac{x}{\left(\frac{x}{10}+\frac{1}{9}\right)}=\log _{9} 9 \\
& \Rightarrow \frac{x}{\left(\frac{x}{10}+\frac{1}{9}\right)}=9 \Rightarrow x=\frac{9 x}{10}+1 \Rightarrow x=10
\end{aligned}
$$

30. (D) $\left(a^{4}-2 a^{2} b^{2}+b^{4}\right)^{x-1}=(a-b)^{2 x} \cdot(a+b)^{-2}$
$\Rightarrow\left[\left(a^{2}-b^{2}\right)^{2}\right]^{(x-1)}=(a-b)^{2 x} \cdot(a+b)^{-2}$
$\Rightarrow\left(a^{2}-b^{2}\right)^{2(x-1)}=(a-b)^{2 x} \cdot(a+b)^{-2}$
$\Rightarrow(a-b)^{(2 x-2)}(a+b)^{(2 x-2)}=(a-b)^{2 x} \cdot(a+b)^{-2}$
$\Rightarrow \frac{(a-b)^{(2 x-2)}}{(a-b)^{2 x}} \cdot \frac{(a+b)^{(2 x-2)}}{(a+b)^{-2}}=1$
$\Rightarrow(a-b)^{-2}(a+b)^{+2 x}=1$
$\Rightarrow-2 \log (a-b)+2 x \cdot \log (a+b)=\log 1$
$\Rightarrow 2 x \log (a+b)=2 \log (a-b)$
$\Rightarrow x=\frac{\log (a-b)}{\log (a+b)}$
31. (D) $\lim _{x \rightarrow 2} \frac{\sin \left(e^{x-2}-1\right)}{\ln (x-1)} \quad\left[\frac{0}{0}\right.$ form $]$
by L' Hospital's rule
$\Rightarrow \lim _{x \rightarrow 2} \frac{\cos \left(e^{x-2}-1\right) \cdot e^{x-2}}{\frac{1}{x-1}}=\frac{1 \times 1}{1}=1$
32. (C) Given that, $f(9)=9$ and $f^{\prime}(9)=4$

Now $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$

$$
\left[\frac{0}{0} \text { form }\right]
$$

by L' Hospital's rule
$\Rightarrow \lim _{x \rightarrow 9} \frac{\frac{1}{2 \sqrt{f(x)}} \cdot f^{\prime}(x)}{\frac{1}{2 \sqrt{x}} \cdot 1}$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 9} \frac{f^{\prime}(x) \times \sqrt{x}}{\sqrt{f(x)}}=\frac{f^{\prime}(9) \times \sqrt{9}}{\sqrt{f(9)}} \\
& \Rightarrow \frac{4 \times 3}{\sqrt{9}} \Rightarrow \frac{4 \times 3}{3}=4
\end{aligned}
$$

33. (D) Now, $\lim _{x \rightarrow \pi / 2}\left(\frac{1-\sin x}{(\pi-2 x)^{2}}\right) \quad\left[\frac{0}{0}\right.$ form $]$ by L'Hospital's rule
$\Rightarrow \lim _{x \rightarrow \pi / 2} \frac{-\cos x}{2(\pi-2 x)(-2)}$
$\Rightarrow \lim _{x \rightarrow \pi / 2} \frac{\cos x}{4(\pi-2 x)}$
$\left[\frac{0}{0}\right.$ form $]$
Again, by L'Hospital's rule
$\Rightarrow \lim _{x \rightarrow \pi / 2} \frac{-\sin x}{4(-2)} \Rightarrow \lim _{x \rightarrow \pi / 2} \frac{\sin x}{8}$

$$
\Rightarrow \frac{1}{8} \cdot \sin \frac{\pi}{2} \Rightarrow \frac{1}{8} \times 1=\frac{1}{8}
$$

34. (A) Let $c_{2}=(h, k)$
$x^{2}+y^{2}-2 x-4 y-20=0$
centre $c_{1}(1,2)$

radius $=\sqrt{(1)^{2}+(2)^{2}-(-20)}=\sqrt{1+4+20}=5$ It is clear that the point M is the mid point of c_{1} and c_{2}.
$\therefore 5=\frac{h+1}{2}, 5=\frac{k+2}{2}$
$\Rightarrow h=9, k=8$
Hence the equation of required circle
$(x-9)_{2}+(y-8)^{2}=25$
35. (B) Line $p x+q y+r=0$
circle $x^{2}+y^{2}=a^{2}$
If equation (i) is the tangent of circle (ii) then perpendicular distance from centre $(0,0)$ to the straight line (i) is equal to radius.
i.e. $\frac{r}{\sqrt{p^{2}+q^{2}}}=a \Rightarrow r^{2}=a^{2}\left(p^{2}+q^{2}\right)$
36. (C) Let the equation of ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
The coordinates of the foci are $(0, \pm 4)$
$\therefore b e=4$ and $e=\frac{4}{5}$
$\Rightarrow b\left(\frac{4}{5}\right)=4 \Rightarrow b=5$
Now, $a^{2}=b^{2}\left(1-e^{2}\right)$
$\Rightarrow a^{2}=(5)^{2}\left(1-\frac{16}{25}\right)$
$\Rightarrow a^{2}=25 \times \frac{9}{25} \Rightarrow a^{2}=9$
from eq(i)
ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
37. (B) The equation of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

The equation of line $l x+m y+n=0$ $m y=-l x-n$
$\Rightarrow y=\left(-\frac{l}{m}\right)+\left(-\frac{n}{m}\right)$
Now we know that the line $y=m x+c$ touches the ellipse (i)
If $c^{2}=a^{2} m^{2}+b^{2}$
So line (ii) touches the ellipse (i) when
$\left(-\frac{n}{m}\right)^{2}=a^{2}\left(\frac{l}{m}\right)^{2}+b^{2}$
$n^{2}=a^{2} l^{2}+b^{2} m^{2}$
38. (A) The equation of ellipse $9 x^{2}+16 y^{2}=144$
$\Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \Rightarrow \frac{x^{2}}{(4)^{2}}+\frac{y^{2}}{(3)^{2}}=1$
The equation of line $y=x+\lambda$
Now we know that line $y=m x+c$ touches
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
if $c^{2}=a^{2} m^{2}+b^{2}$
$\Rightarrow \lambda^{2}=(4)^{2}(1)^{2}+(3)^{2} \Rightarrow \lambda^{2}=16+9$
$\Rightarrow \lambda^{2}=25 \Rightarrow \lambda= \pm 5$
39. (A) Slope of line $x-y+4=0$ is 1

So slope of perpendicular to it $=-1=$ slope of tangent
$\Rightarrow m=-1$
given Hyperbola equation
$x^{2}-4 y^{2}=36$
$\Rightarrow \frac{x^{2}}{36}-\frac{y^{2}}{9}=1$
equation of tangent
$y=m x \pm \sqrt{a^{2} m^{2}-b^{2}} \Rightarrow y=-x \pm \sqrt{36-9}$
$\Rightarrow y=-x \pm \sqrt{27} \Rightarrow y=-x \pm 3 \sqrt{3}$
40. (A) The hyperbola equation
$\frac{x^{2}}{100}-\frac{y^{2}}{49}=1$
and line equation $y=m x+6$
We know that the line $y=m x+c$ touches the hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{49}=1$
If $c^{2}=a^{2} m^{2}-b^{2}$

Here, $c=6, a=10, b=7$
$\Rightarrow(6)^{2}=(10)^{2} m^{2}-(7)^{2}$
$\Rightarrow 100 m^{2}=85$
$\Rightarrow m^{2}=\frac{85}{100} \Rightarrow m=\sqrt{\frac{17}{20}}$
41. (A) Let $\mathrm{I}=\int e^{x \log a} \cdot e^{x} d x$
$\mathrm{I}=\int e^{\log a^{x}} \cdot e^{x} d x$
$\mathrm{I}=\int a^{x} \cdot e^{x} d x=\int(a e)^{x} \cdot d x=\frac{(a e)^{x}}{\log (a e)}+\mathrm{C}$
42. (B) $\mathrm{I}=\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{3 / 4}}$
$\Rightarrow \mathrm{I}=\int \frac{d x}{x^{2} \cdot\left(x^{4}\right)^{3 / 4}\left(1+\frac{1}{x^{4}}\right)^{3 / 4}}$
$\Rightarrow \int \frac{d x}{x^{5}\left(1+\frac{1}{x^{4}}\right)^{3 / 4}}$
Let $1+\frac{1}{x^{4}}=t \Rightarrow \frac{-4}{x^{5}} d x=d t \Rightarrow \frac{d x}{x^{5}}=-\frac{1}{4} d t$
$\Rightarrow \mathrm{I}=\int \frac{-d t}{4 t^{3 / 4}} \Rightarrow-\frac{1}{4} \int t^{-3 / 4} d t$
$\Rightarrow-\frac{1}{4}\left[\frac{t^{\frac{-3}{4}+1}}{\left(-\frac{3}{4}+1\right)}\right]+C \Rightarrow t^{1 / 4}+C$
$\Rightarrow-\left(1+\frac{1}{x^{4}}\right)^{1 / 4}+\mathrm{C}$
43. (A) Let $\mathrm{I}=\int \cos ^{3} x \cdot e^{\log (\sin x)} \cdot d x$
$I=\int \cos ^{3} x \cdot \sin x d x$
Let $\cos x=t \Rightarrow-\sin x d x=d t$
$\mathrm{I}=\int-t^{3} d t$
$I=\frac{-t^{4}}{4}+C=-\frac{1}{4} \cos ^{4} x+C$
44. (B) $(x-1)^{3}+8=0$
$\Rightarrow(x-1)^{3}=-8=(-2)^{3}$
$\Rightarrow x-1=-2$
or -2ω or $-2 \omega^{2}$
$\Rightarrow x=-1,1-2 \omega, 1-2 \omega^{2}$
$\Rightarrow \frac{1}{4} m^{2}=c-\frac{1}{2} \Rightarrow \mathrm{~m}=2 \sqrt{c-\frac{1}{2}}$
Now for three normals m should be real, therefore $c>\frac{1}{2}$
51. (B) The equation of normal of $y^{2}=4 x$ at point $\left(m^{2},-2 m\right)$ is $y=m x-2 m-m^{3}$
If the normal makes equal angles with
the coordinate axes, then $m=\tan \frac{\pi}{4}=1$
\therefore The required point $\left(\mathrm{m}^{2},-2 \mathrm{~m}\right)$ i.e. $(1,-2)$
52. (A) Parabola equation $x^{2}+2 y=8 x-7$
$\Rightarrow x^{2}-8 x=-2 y-7$
$\Rightarrow x^{2}-8 x+16=-2 y+9$
$\Rightarrow(x-4)^{2}=-2\left(y-\frac{9}{2}\right)$
\therefore coordinate of vertex $=\left(4, \frac{9}{2}\right)$
53. (A) Curve $y=2 x^{2}-x+1$
$\frac{d y}{d x}=4 x-1$
line equation $y=3 x+9$
Slope = 3
If tangent is parallel to the line (ii) then slope is equal i.e.
$4 x-1=3$
$x=1$
The value put in equation of curve (i)
$y=2-1+1=2$
Hence the required point $(1,2)$
54. (B) Curve $x=t^{2}+3 t-8$ and $y=2 t^{2}-2 t-5$

At point $(2,-1)$ we have $2=t^{2}+3 t-8$
$\Rightarrow t^{2}+3 t-10=0 \Rightarrow(t-2)(t+5)=0$
$\Rightarrow t=2,-5$
and $-1=2 t^{2}-2 t-5$
$\Rightarrow 2 t^{2}-2 t-4=0$
$\Rightarrow 2(t-2)(t+1)=0 \Rightarrow t=2,-1$
So $t=2$ for point $(2,-1)$
Now $\frac{d x}{d t}=2 t+3$ and $\frac{d y}{d t}=4 t-2$
Slope, $\frac{d y}{d t}=\frac{d y / d t}{d x / d t}=\frac{4 t-2}{2 t+3}=\frac{6}{7}$

Now let us consider $c-\frac{1}{2}-\frac{1}{4} m^{2}=0$
55. (A) Curve $x^{2}+y^{2}-2 x-3=0$ diff. w.r.t x
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}-2=0 \Rightarrow \frac{d y}{d x}=\frac{1-x}{y}$
Since tangent is parallel to x-axis so $\frac{d y}{d x}=$
$0 \Rightarrow \frac{1-x}{y}=0 \Rightarrow x=1$
from eq(i)
$1+y^{2}-2-3=0$
$\Rightarrow y^{2}=4 \Rightarrow y= \pm 2$
So required $(1, \pm 2)$
56. (A) Equation $(b-c) x^{2}+(c-a) x+(a-b)=0$ one root = 1

Let other root $=\alpha$
A.T.Q,
$1+\alpha=\frac{-(c-a)}{b-c}$
and 1. $\alpha=\frac{a-b}{b-c}$
$\Rightarrow \alpha=\frac{a-b}{b-c}$
57. (C) Equation $x^{2}+3 x+2=0$

Roots are $\alpha=-1, \beta=-2[\therefore \alpha>\beta]$
Now, $\left[\begin{array}{ll}1 & \alpha \\ \beta & \beta\end{array}\right]\left[\begin{array}{ll}\alpha & \alpha \\ 1 & \beta\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -1 \\ -2 & -2\end{array}\right]\left[\begin{array}{cc}-1 & -1 \\ 1 & -2\end{array}\right] \downarrow$
$\Rightarrow\left[\begin{array}{cc}1 \times(-1)+(-1) \times 1 & 1 \times(-1)+(-1) \times(-2) \\ (-2) \times(-1)+(-2) \times 1 & (-2) \times(-1)+(-2) \times(-2)\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}-2 & 1 \\ 0 & 6\end{array}\right]$
58. (D) Work done $\overrightarrow{\mathrm{W}}=\overrightarrow{\mathrm{F}} \cdot(\overrightarrow{\mathrm{AB}})=\overrightarrow{\mathrm{F}} \cdot(\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}})$
$\overrightarrow{\mathrm{W}}=(2 \hat{i}+4 \hat{j}+5 \hat{k}) \cdot(-5 \hat{i}+\hat{j}+2 \hat{k})$
$\overrightarrow{\mathrm{W}}=2 \times(-5)+4 \times 1+5 \times 2$
$\overrightarrow{\mathrm{W}}=-10+4+10=4$ units
59. (B) We know that
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$

Statement 1

$\Rightarrow 2 \cos ^{2} \alpha+2 \cos ^{2} \beta+2 \cos ^{2} \gamma=2$
$\Rightarrow 2 \cos ^{2} \alpha-1+2 \cos ^{2} \beta-1+2 \cos ^{2} \gamma-1=2-3$
$\Rightarrow \cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$
Statement 1 is correct.

Statement 2

from eq(i)
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta=1-\cos ^{2} \gamma$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta=\sin ^{2} \gamma$
Statement 2 is correct.

Statement 3

$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow 1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma=1$
$\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$
Statement 3 is incorrect.
\therefore Statements 1 and 2 are correct.
60. (B) Ellipse $3 x^{2}+4 y^{2}=54$

Now, $3(3)^{2}+4(-2)^{2}$
$\Rightarrow 27+16=43<54$
\therefore point $(3,-2)$ ellipse inside the ellipse but not at the focus.
61.
(C) $y=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\operatorname{cosec}^{-1}\left(\frac{x+1}{x-1}\right)$
$\Rightarrow y=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$
$\Rightarrow y=\frac{\pi}{2} \quad\left[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right]$
On differentiating both sides
$\Rightarrow \frac{d y}{d x}=0$
62. (D)
63. (C)

Area of $\triangle \mathrm{AOB}=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
The required area $=4 \times \frac{1}{8}=\frac{1}{2}$ sq. unit
64. (C) Given that $f(x)=\frac{2 x+x^{2}}{1+2 x^{3}}$ and $\mathrm{g}(\mathrm{x})=\ln \left(\frac{1+x}{1-x}\right)$

Now, $f 0 g\left(\frac{e-1}{e+1}\right) \Rightarrow f\left[g\left(\frac{e-1}{e+1}\right)\right]$
$\Rightarrow f\left[\ln \left(\frac{1+\frac{e-1}{e+1}}{1-\frac{e-1}{e+1}}\right)\right] \Rightarrow f[\ln e]$
$\Rightarrow f(1)=\frac{2 \times 1+1^{2}}{1+2 \times 1^{3}}=1$
65. (C) No. of two-digit numbers $=5 \times 4=20$

No. of three-digit numbers $=5 \times 4 \times 3=60$
The required numbers $=20+60=80$
(66-68)

Total students $=300$
66. (B) No. of students who are good in Physics and Mathematics but not in Chemistry $=15$
67. (C) No. of students who are in either Mathematics or Chemistry but not in Physics $=86+22+60=168$
68. (C) No. of students who are good in Physics and Chemistry but not in Mathematics $=300-(74+15+86+21+22+60)$ $=300-278=22$
69. (B) $\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{6}$
$\Rightarrow \tan ^{-1}\left[\frac{(1+x)+(1-x)}{1-(1+x)(1-x)}\right]=\frac{\pi}{6}$
$\Rightarrow \tan ^{-1}\left[\frac{2}{1-\left(1-x^{2}\right)}\right]=\frac{\pi}{6}$
$\Rightarrow \frac{2}{x^{2}}=\tan \frac{\pi}{6}$
$\Rightarrow \frac{2}{x^{2}}=\frac{1}{\sqrt{3}} \Rightarrow x^{2}=2 \sqrt{3}$
70. (C) $\left(1+x+x^{2}+x^{3}+\ldots+\infty\right)^{2}$
$\Rightarrow\left(\frac{1}{1-x}\right)^{2}=(1-x)^{-2} \quad\left(\because \mathrm{~S}_{\infty}=\frac{a}{1-r}\right)$
$\Rightarrow 1+2 x+3 x^{2}+\ldots+(n+1) x^{n}+\ldots \infty$
Hence coefficient of $x^{n}=(n+1)$
71. (A) $(998)^{1 / 3} \Rightarrow(1000-2)^{1 / 3}$
$\Rightarrow(1000)^{1 / 3}\left[1-\frac{2}{1000}\right]^{1 / 3}$
$\Rightarrow 10\left[1-\frac{2}{1000}\right]^{1 / 3}$
$\Rightarrow 10\left[1-\frac{1}{3(500)}+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2!}\left(\frac{1}{500}\right)^{2}+\ldots.\right]$
$\Rightarrow 10\left[1-\frac{1}{1500}-\frac{1}{9 \times 250000}\right]$
$\Rightarrow 10\left[\frac{2250000-1500-1}{2250000}\right]$
$\Rightarrow \frac{22484990}{2250000}=9.99$
72. (C) $\because r_{x y}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \cdot \sigma_{y}} \Rightarrow 0.6=\frac{16}{4 . \sigma_{y}}$
$\Rightarrow \sigma_{y}=\frac{16}{4 \times 0.6}=\frac{20}{3}$
73. (B) Equation is $a x^{2}-12 x+15=0$

One root is $2+i$, then other root is $2-i$.
Now, $2+i+2-i=\frac{12}{a}$
$\Rightarrow 4=\frac{12}{a} \Rightarrow a=3$
74. (A) If a, b, c, d are in HP, then
$b=\frac{2 a c}{a+c}$ and $c=\frac{2 b d}{b+d}$
Now, $b c=\frac{4 a b c d}{(a+c)(b+d)}$
$\Rightarrow b c=\frac{4 a b c d}{a b+a d+b c+c d}$
$\Rightarrow a b+a d+b c+c d=4 a d$
$\Rightarrow a b+b c+c d=3 a d$
75. (A) The shaded region is $(A \cap B) \cup(A \cap C)$
76. (A)

$n(T \cup C)=64, n(T-C)=26, n(T)=34$
Now, $n(T)=n(T-C)+n(T \cap C)$
$\Rightarrow 34=26+n(T \cap C) \Rightarrow n(T \cap C)=8$
Again, we have
$n(T \cup C)=n(T)+n(C)-n(T \cap C)$
$\Rightarrow 64=34+n(C)-8$
$\Rightarrow 64=26+n(C) \Rightarrow n(C)=38$
Now, $n(C)=n(C-T)+n(T \cap C)$
$\Rightarrow 38=n(C-T)+8 \Rightarrow n(C-T)=30$
77. (C) $f(x)=x^{3}+3 x^{2}-4$
$f^{\prime}(x)=3 x^{2}+6 x$
For increasing function $f^{\prime}(x)>0$
$\Rightarrow 3 x^{2}+6 x>0$
$\Rightarrow 3 x(x+2)>0$
$\Rightarrow x<-2$ or $x>0$
So, $f(x)$ is increasing at $x>0$ or $x<-2$.
78. (B)

Required area $=$ Area LOL'
Area $=2 \times$ (Area of LOS)
Area $=2 \times \int_{0}^{a} y d x$
Area $=2 \times \int_{0}^{a} \sqrt{4 a x} d x$
Area $=2 \times 2 \sqrt{a} \int_{0}^{a} \sqrt{x} d x$
Area $=4 \sqrt{a}\left(\frac{x^{3 / 2}}{3 / 2}\right)_{0}^{a}$
Area $=4 \sqrt{a} \times \frac{2}{3}\left[a^{3 / 2}-0\right]$

Area $=\frac{8}{3} \sqrt{a} \times(a)^{3 / 2}=\frac{8}{3} a^{2}$
79. (B) $\sin ^{-1} \cos \left(\sin ^{-1} x\right)+\cos ^{-1} \sin \left(\cos ^{-1} x\right)$
$\Rightarrow \sin ^{-1} \cos \left\{\cos ^{-1} \sqrt{1-x^{2}}\right\}+\cos ^{-1} \sin \left\{\sin ^{-1} \sqrt{1-x^{2}}\right\}$
$\Rightarrow \sin ^{-1} \sqrt{1-x^{2}}+\cos ^{-1} \sqrt{1-x^{2}}=\frac{\pi}{2}$

$$
\left(\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right)
$$

80. (C) In the parabola $y^{2}=4 a x$, the smallest focal chord is $4 a$.
81. (B) $|\vec{a} \times \vec{b}|-\sqrt{3}|\vec{a} \cdot \vec{b}|=0$
$\Rightarrow|\vec{a}||\vec{b}| \sin \theta-\sqrt{3}|\vec{a}||\vec{b}| \cos \theta=0$
$\Rightarrow|\vec{a}||\vec{b}|[\sin \theta-\sqrt{3} \cos \theta]=0$
$\Rightarrow|\vec{a}||\vec{b}| \neq 0$, so $\sin \theta=\sqrt{3} \cos \theta$
$\Rightarrow \tan \theta=\sqrt{3} \Rightarrow \theta=\frac{\pi}{3}$
82. (B) $f(x)=\left\{\begin{array}{rr}x+2, & \text { when } x \leq 1 \\ 4 x-1, & \text { when } x>1\end{array}\right.$
L.H.L. $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)$

$$
=\lim _{h \rightarrow 0}(1-h+2)
$$

$$
=3-h=3
$$

R.H.L. $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)$

$$
=\lim _{h \rightarrow 0} 4(1+h)-1
$$

$$
=3
$$

So, $\lim _{x \rightarrow 1} f(x)=3$
83. (D) $y=f(x)=\left(\frac{1}{x}\right)^{2 x}$

On taking log
$\Rightarrow \log y=2 x \cdot \log \left(\frac{1}{x}\right)$
$\Rightarrow \log y=-2 x \cdot \log x$
On differentiating both sides w.r.t. ' x
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=-2\left[x \times \frac{1}{x}+\log x \times 1\right]$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=-2[1+\log x]$
$\Rightarrow \frac{d y}{d x}=-2 y(1+\log x)=-2\left(\frac{1}{x}\right)^{2 x}[1+\log x]$
Again, differentiating
$\frac{d^{2} y}{d x^{2}}=-2\left[\frac{d y}{d x}(1+\log x)+y \times \frac{1}{x}\right]$
$\frac{d^{2} y}{d x^{2}}=-2\left[-2\left(\frac{1}{x}\right)^{2 x}(1+\log x)^{2}+\left(\frac{1}{x}\right)^{2 x} \times \frac{1}{x}\right]$
for maxima and minima
$\frac{d y}{d x}=0$
$\Rightarrow-2\left(\frac{1}{x}\right)^{2 x}[1+\log x]=0$
$\Rightarrow 1+\log x=0 \Rightarrow x=\frac{1}{e}$
Now, $\frac{d^{2} y}{d x^{2}}\left(\right.$ at $\left.x=\frac{1}{e}\right)$
$\Rightarrow-2 e^{2 / e}\left[-2\left(1+\log \frac{1}{e}\right)^{2}+e\right]$
$\Rightarrow-2 e^{2 / e}\left[-2(1-\log e)^{2}+e\right]$
$\Rightarrow-2 e \times e^{2 / e}$ (maxima)
Maximum value $=f(1 / e)=e^{2 / e}$
84. (A) Word "MOTHER"

The required arrangements $={ }^{5} \mathrm{C}_{3} \times 4$!
$=\frac{5!}{2!3!} \times 4!=\frac{5 \times 4 \times 24}{2}=240$
85. (A) $\mathrm{I}=\int_{-\pi / 2}^{\pi / 2} \frac{\sin x}{1+\cos x} d x=0$

We know that

$$
\int_{-a}^{a} f(x) d x=\left\{\begin{array}{c}
0, \text { function is odd } \\
2 \int_{0}^{a} f(x) d x, \text { function is even }
\end{array}\right\}
$$

86. (B)

equation of directix
$x=8$
87. (C) Direction ratios of lines are $(-1,2,-4)$ and $(-2, x,-3)$.
A.T.Q.,
$\cos \frac{\pi}{2}=\frac{-1 \times(-2)+2 \times x+(-4) \times(-3)}{\sqrt{(-1)^{2}+2^{2}+(-4)^{2}} \sqrt{(-2)^{2}+x^{2}+(-3)^{2}}}$
$\Rightarrow 0=\frac{2+2 x+12}{\sqrt{21} \sqrt{x^{2}+13}}$
$\Rightarrow 0=2 x+14 \Rightarrow x=-7$
88. (B) $y=\tan ^{-1}\left[\frac{x^{1 / 2}\left(x^{1 / 2}-1\right)}{1+x^{3 / 2}}\right]$
$y=\tan ^{-1}\left[\frac{x-x^{1 / 2}}{1+x \cdot x^{1 / 2}}\right]$
Let $x=\tan \mathrm{A}$ and $x^{1 / 2}=\tan \mathrm{B}$
$y=\tan ^{-1}\left[\frac{\tan \mathrm{~A}-\tan \mathrm{B}}{1+\tan \mathrm{A} \tan \mathrm{B}}\right]$
$y=\tan ^{-1}[\tan (\mathrm{~A}-\mathrm{B})]$
$y=\mathrm{A}-\mathrm{B}$
$y=\tan ^{-1} x-\tan ^{-1}\left(x^{1 / 2}\right)$
On differetiating both side w.r.t. ' x '
$\frac{d y}{d x}=\frac{1}{1+x^{2}}-\frac{1}{1+x} \times \frac{1}{2 \sqrt{x}}$
$\frac{d y}{d x}=\frac{1}{1+x^{2}}-\frac{1}{2 \sqrt{x}(1+x)}$
89. (A) We know that
A.M. \geq G.M. \geq H.M.
$\Rightarrow \frac{a+b}{2} \geq \sqrt{a b} \geq \frac{2 a b}{a+b}$
$\Rightarrow \frac{2 a b}{a+b} \leq \sqrt{a b} \leq \frac{a+b}{2}$
90. (C) A.T.Q.,

Mean $=\frac{a^{n-9}+b^{n-9}}{a^{n-10}+b^{n-10}}$
$\Rightarrow \frac{a+b}{2}=\frac{a^{n-9}+b^{n-9}}{a^{n-10}+b^{n-10}}$
On comparing
$n-9=1 \Rightarrow n=10$
91. (B) The required remainder $=4$
92. (D) $\mathrm{S}=3+6+9+$ \qquad $+99$
$\mathrm{S}=3(1+2+3+\ldots . .+33)$
$\mathrm{S}=3 \times \frac{33 \times 34}{2}$
$\mathrm{S}=33 \times 51=1683$
93. (C) Let $a+i b=\sqrt{1+2 \sqrt{2} i}$

On squaring both sides
$\Rightarrow\left(a^{2}-b^{2}\right)^{2}+2 a b i=1+2 \sqrt{2} i$
On comparing
$\Rightarrow a^{2}-b^{2}=1$ and $2 a b=2 \sqrt{2}$
Now, $\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}$
$\Rightarrow\left(a^{2}+b^{2}\right)^{2}=1+8$
$\Rightarrow a^{2}+b^{2}=3$
from eq(i) and eq(ii)
$\Rightarrow 2 a^{2}=4$ and $2 b^{2}=2$
$\Rightarrow a= \pm \sqrt{2}, b= \pm 1$
Hence $\sqrt{1+2 \sqrt{2} i}= \pm(\sqrt{2}+i)$
94. (B)

Let the $x=0$ divides the line joining the points $(3,-4)$ and $(4,-6)$ in the ratio $m: 1$,
then $\frac{4 m-3}{m+1}=0 \Rightarrow m=\frac{3}{4}$
The required ratio $=3: 4$
95. (C) $(3 x+4 y-5)+\lambda(5 x-y+11)=0$
$\Rightarrow(3+5 \lambda) x+(4-\lambda) y-5+11 \lambda=0$
$\Rightarrow y=\frac{-(3+5 \lambda)}{(4-\lambda)} x+\frac{5-11 \lambda}{4-\lambda}$
Slope $m=\frac{-(3+5 \lambda)}{4-\lambda}$
Given straight line parallel to x-axis i.e $\theta=0 \Rightarrow m=0$
then $\frac{-(3+5 \lambda)}{4-\lambda}=0 \Rightarrow \lambda=\frac{-3}{5}$
96. (A) $A=\left[\begin{array}{ll}2 & 4 \\ 4 & 4\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}20 & 24 \\ 24 & 32\end{array}\right]$

From option A
$A^{2}-6 A-8 I=\left[\begin{array}{ll}20 & 24 \\ 24 & 32\end{array}\right]-6\left[\begin{array}{ll}2 & 4 \\ 4 & 4\end{array}\right]-8\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$A^{2}-6 A-8 I=\left[\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right]-\left[\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right]$
$A^{2}-6 A-8 I=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$A^{2}-6 A-8 I=0$
97. (D) $\left|\begin{array}{ccc}1 & \omega & 3 \omega^{2} \\ 3 & 3 \omega^{2} & 9 \omega^{3} \\ 2 & 2 \omega^{3} & 6 \omega^{4}\end{array}\right| \Rightarrow\left|\begin{array}{ccc}1 & \omega & 3 \omega^{2} \\ 3 & 3 \omega^{2} & 9 \\ 2 & 2 & 6 \omega\end{array}\right|$
$\Rightarrow 1\left(18 \omega^{3}-18\right)-\omega(18 \omega-18)+3 \omega^{2}\left(6-6 \omega^{2}\right)$
$\Rightarrow 1(18-18)-18 \omega^{2}+18 \omega+18 \omega^{2}-18 \omega^{4}$
$\Rightarrow 0+18 \omega-18 \omega=0$
98. (B) $z=1+\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}$
$z=2 \cos ^{2} \frac{\pi}{24}+i \times 2 \sin \frac{\pi}{24} \times \cos \frac{\pi}{24}$
$z=2 \cos \frac{\pi}{24}\left[\cos \frac{\pi}{24}+i \sin \frac{\pi}{24}\right]$
Hence $|z|=2 \cos \frac{\pi}{24}$
99.
(C) $\left[\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right]^{3} \Rightarrow\left[\frac{(1+\sqrt{3} i)(1+\sqrt{3} i)}{(1-\sqrt{3} i)(1+\sqrt{3} i)}\right]^{3}$
$\Rightarrow\left[\frac{1+3 i^{2}+2 \sqrt{3} i}{1-3 i^{2}}\right]^{3} \Rightarrow\left[\frac{-2+2 \sqrt{3} i}{4}\right]^{3}$
$\Rightarrow\left[\frac{-1+\sqrt{3} i}{2}\right]^{3} \Rightarrow \omega^{3}=1$
100. (B) Sum of n terms
$\mathrm{S}_{n}=n^{2}+3 n$
and $\mathrm{S}_{n-1}=(n-1)^{2}+3(n-1)$
$\Rightarrow \mathrm{S}_{n-1}=n^{2}+n-2$
$n^{\text {th }}$ term of the series
$\mathrm{T}_{n}=\mathrm{S}_{n}-\mathrm{S}_{n-1}$
$\Rightarrow \mathrm{T}_{n}=\left(n^{2}+3 n\right)-\left(n^{2}+n-2\right)$
$\Rightarrow \mathrm{T}_{n}=2 n+2$
101. (B) $\sqrt{(4-\sqrt{5})} \Rightarrow \sqrt{\frac{8-2 \sqrt{15}}{2}} \Rightarrow \sqrt{\frac{(\sqrt{5}-\sqrt{3})^{2}}{2}}$
$\Rightarrow \frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \Rightarrow \frac{\sqrt{10}-\sqrt{6}}{2}$
102. (D) $\lim _{x \rightarrow 0} \frac{\sin x+\cos x-1}{\tan x} \quad\left[\frac{0}{0}\right]$ from
by L-Hospital's Rule
$\Rightarrow \lim _{x \rightarrow 0} \frac{\cos x-\sin x}{\sec ^{2} x} \Rightarrow \frac{\cos 0-\sin 0}{\sec ^{2} 0}$
$\Rightarrow \frac{1-0}{1}=1$
103. (C) Ratio of angles $=8: 5: 2$

Let Angles $=8 x, 5 x, 2 x$
Now, $8 x+5 x+2 x=180$
$\Rightarrow 15 x=180 \Rightarrow x=12$
Angles = 96, 60, 24
Now, $\cos 96+\cos 60+\cos 24$
$\Rightarrow \cos 96+\cos 24+\cos 60$
$\Rightarrow 2 \cos \frac{96+24}{2} . \cos \frac{96-24}{2}+\frac{1}{2}$
$\Rightarrow 2 \cos 60 \cdot \cos 36+\frac{1}{2}$
$\Rightarrow 2 \times \frac{1}{2} \cos 36+\frac{1}{2}$
$\Rightarrow \frac{\sqrt{5}+1}{4}+\frac{1}{2}=\frac{\sqrt{5}+3}{4}$
104. (C) $\frac{\cot \theta}{1+\sin \theta}-\frac{\tan \theta}{1+\cos \theta}$
$\Rightarrow \frac{\cot \theta(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}-\frac{\tan \theta(1-\cos \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$\Rightarrow \frac{\cos \theta(1-\sin \theta)}{\sin \theta \times \cos ^{2} \theta}-\frac{\sin \theta(1-\cos \theta)}{\cos \theta \times \sin ^{2} \theta}$
$\Rightarrow \frac{1-\sin \theta}{\sin \theta \cdot \cos \theta}-\frac{1-\cos \theta}{\sin \theta \cdot \cos ^{2} \theta}$
$\Rightarrow \frac{1-\sin \theta-1+\cos \theta}{\sin \theta \cdot \cos \theta}$
$\Rightarrow \frac{\cos \theta-\sin \theta}{\sin \theta \cdot \cos \theta}=\operatorname{cosec} \theta-\sec \theta$
105. (C) Equations $2 x+y+2 z=4,4 x+y+2 z=6$ and $5 x-3 y-z=11$
Using elementary method
$[\mathrm{A} / \mathrm{B}]=\left[\begin{array}{ccc|c}2 & 1 & 2 & 4 \\ 4 & 1 & 2 & 6 \\ 5 & -3 & -1 & 11\end{array}\right]$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\frac{5}{2} \mathrm{R}_{1}$
$[A / B]=\left[\begin{array}{cccc}2 & 1 & 2 & 4 \\ 0 & -1 & -2 & -2 \\ 0 & \frac{-11}{2} & -6 & 1\end{array}\right]$
$\mathrm{R}_{3} \rightarrow 2 \mathrm{R}_{3}$
$[A / B]=\left[\begin{array}{ccc|c}2 & 1 & 2 & 4 \\ 0 & -1 & -2 & -2 \\ 0 & -11 & -12 & 2\end{array}\right]$
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-11 \mathrm{R}_{2}$
$[A / B]=\left[\begin{array}{ccc|c}2 & 1 & 2 & 4 \\ 0 & -1 & -2 & -2 \\ 0 & 0 & 10 & 24\end{array}\right]$
Rank A = 3 and $\operatorname{Rank}[\mathrm{A} / \mathrm{B}]=3$
Hence solution is consistent with an unique solution.
106. (B) Number of elements in set $B=4$

Number of subsets of a set $B=2^{4}=16$
Number of subsets of set $A=16+48$

$$
=64=2^{6}
$$

Hence no. of elements in set $A=6$
107. (A) Statement I

In a leap year $=366$ days

$$
=52 \text { weeks and } 2 \text { days }
$$

The probability $=\frac{2}{7}$
In a normal year $=365$ days $=52$ weeks and 1 days

The probability $=\frac{1}{7}$
Statement I is correct.

Statement II

In month of October $=31$ days $=28+3$
The probability $=\frac{3}{7}$
In month of September $=30$ days $=28+2$
The probability $=\frac{2}{7}$
Statement II is incorrect.
108. (C) $4 \sin x \cdot \sin \left(\frac{\pi}{3}+x\right) \cdot \sin \left(\frac{\pi}{3}-x\right)$
$\Rightarrow 2 \sin x \cdot\left[2 \sin \left(\frac{\pi}{3}+x\right) \cdot \sin \left(\frac{\pi}{3}-x\right)\right]$
$\Rightarrow 2 \sin x\left[\cos \left(\frac{\pi}{3}+x-\frac{\pi}{3}+x\right) \cdot \cos \left(\frac{\pi}{3}+x+\frac{\pi}{3}-x\right)\right]$
$\Rightarrow 2 \sin x\left[\cos 2 x-\cos \frac{2 \pi}{3}\right]$
$\Rightarrow 2 \sin x \cdot \cos 2 x-2 \sin x \cdot \cos \frac{2 \pi}{3}$
$\Rightarrow \sin (x+2 x)+\sin (x-2 x)-2 \sin x\left(\frac{-1}{2}\right)$
$\Rightarrow \sin 3 x-\sin x+\sin x=\sin 3 x$
109. (D) $\mathrm{I}=\int \frac{\sin x}{\cos (x+a)} d x$

Let $x+a=t \Rightarrow x=t-a \Rightarrow d x=d t$
$\mathrm{I}=\int \frac{\sin (t-a)}{\cos t} d t$
$\mathrm{I}=\int \frac{\sin t \cdot \cos a-\cos t \cdot \sin a}{\cos t} d t$
$\mathrm{I}=\cos a \int \tan t d t-\sin a \int 1 d t$
$\mathrm{I}=\cos a \cdot \log \sec (x+a)-\sin a \cdot(x+a)+c$
$\mathrm{I}=\cos a \cdot \log \sec (x+a)-x \sin a-a \cdot \sin a+c$
$\mathrm{I}=\cos a \cdot \operatorname{logsec}(x+a)-x \sin a+c$
110. (A) $\mathrm{A}=\left\{x . \in \mathrm{R}: x^{2}+4 x+3<0\right\}$
$\mathrm{A}=\{x \in \mathrm{R}:-3<x<-1\}$
$\mathrm{B}=\left\{x \in \mathrm{R}: x^{2}-7 x+12>0\right\}$
$\mathrm{B}=\{x \in \mathrm{R}:-\infty<x<3$ and $4<x<\infty\}$
Statement 1
$\mathrm{A} \cap \mathrm{B}=\{x \in \mathrm{R}:-3<x<-1\}$
Statement 1 is correct.

Statement 2

A $-\mathrm{B}=\{\phi\}$
Statement 2 is incorrect.
111. (B) $\sqrt{\frac{\omega}{1+\omega^{2}}} \Rightarrow \sqrt{\frac{\omega}{-\omega}}$
$\left[\because 1+\omega+\omega^{2}=0\right]$
$\Rightarrow \sqrt{\frac{1}{-1}}=\sqrt{-1}=i$
112. (D) We know that

$$
\tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}
$$

On putting $\mathrm{A}=22 \frac{1}{2}$
$\Rightarrow \tan 45=\frac{2 \tan 22 \frac{1}{2}}{1-\tan ^{2} 22 \frac{1}{2}}$

$\Rightarrow \tan ^{2} 22 \frac{1}{2}+2 \tan 22 \frac{1}{2}-1=0$
$\Rightarrow \tan 22 \frac{1}{2}=\frac{-2 \pm \sqrt{(-2)^{2}-4 \times 1 \times(-1)}}{2 \times 1}$
$\Rightarrow \tan 22 \frac{1}{2}=\frac{-2 \pm 2 \sqrt{2}}{2}$
$\Rightarrow \tan 22 \frac{1}{2}=-1 \pm \sqrt{2}$
Hence $\tan 22 \frac{1}{2}=\sqrt{2}-1$
113. (B) $\frac{d y}{d x}+y \cdot \tan x=\sec x$

On comparing with general equation
$\mathrm{P}=\tan x$ and $\mathrm{Q}=\sec x$
I.F. $=e^{\int \mathrm{P} d x}$
I.F. $=e^{\int \tan x d x}$
I.F. $=e^{\log \sec x}=\sec x$

Solution of the differential equation $y \times$ I.F. $=$ Q \times I.F. $d x$
$\Rightarrow y \times \sec x=\int \sec x \cdot \sec x d x$
$\Rightarrow y \sec x=\tan x+c$
$\Rightarrow \frac{y}{\cos x}=\frac{\sin x}{\cos x}+c$
$\Rightarrow y=\sin x+c \cdot \cos x$
114. (C)

Mid-point of line joining the points
$=\left(\frac{1+3}{2}, \frac{-3-4}{2}\right)=\left(2, \frac{-7}{2}\right)$
Slope of line AB $\left(m_{1}\right)=\frac{-4+3}{3-1}=\frac{-1}{2}$
Slope of line PQ $\left(m_{2}\right)=\frac{\frac{-1}{\frac{-1}{2}}=22102}{}$
equation of line $P Q$
$y+\frac{7}{2}=2(x-2) \Rightarrow 4 x-2 y=11$
115. (C)

Curve
$y_{1} \Rightarrow y=2 \sqrt{x}, y_{2} \Rightarrow y=\frac{x^{2}}{4}$

The required Area $(\mathrm{A})=\int_{0}^{4}\left(y_{1}-y_{2}\right) d x$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{4}\left(2 \sqrt{x}-\frac{x^{2}}{4}\right) d x \\
& \Rightarrow\left[2 \times \frac{x^{3 / 2}}{\frac{3}{2}}-\frac{x^{3}}{4 \times 3}\right]_{0}^{4} \\
& \Rightarrow\left[\frac{4}{3} \times(4)^{3 / 2}-\frac{1}{12}(4)^{3}-0-0\right] \\
& \Rightarrow \frac{32}{3}-\frac{16}{3}=\frac{16}{3} \text { sq. unit }
\end{aligned}
$$

116. (A)
$\int \frac{1}{\sqrt{1-\sin x}} d x \Rightarrow \frac{1}{\sqrt{1-\cos \left(\frac{\pi}{2}-x\right)}} d x$
$\Rightarrow \frac{1}{\sqrt{2 \sin ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)}} d x$
$\Rightarrow \frac{1}{\sqrt{2}} \int \operatorname{cosec}\left(\frac{\pi}{4}-\frac{x}{2}\right) d x$

$\Rightarrow \sqrt{2} \log \left|\operatorname{cosec}\left(\frac{\pi}{4}-\frac{x}{2}\right)+\cot \left(\frac{\pi}{4}-\frac{x}{2}\right)\right|+c$
117. (B)

Class	x	f	$f \times x$	$d=\|x-\mathrm{A}\|$	$f \times d$
0-10	5	11	55	30	330
10-20	15	14	210	20	250
20-30	25	15	375	5	75
30-40	35	16	560	5	80
40-50	45	12	540	20	240
50-60	55	32	1760	30	960
$\sum f=100$			$\sum f \times x=3500$		$\sum f \times d=1965$

Mean $\mathrm{A}=\frac{\sum f \times x}{\sum f} \Rightarrow \frac{3500}{100}=35$
Mean-Deviation $=\frac{\sum f \times d}{\sum f}$

$$
\Rightarrow \frac{1965}{100}=19.65
$$

118. (A) In the expansion of $\left(4 \sqrt{x}+\frac{1}{2 x}\right)^{9}$
$\mathrm{T}_{r+1}={ }^{9} \mathrm{C}_{r}(4 \sqrt{x})^{9-r}\left(\frac{1}{2 x}\right)^{r}$
$\mathrm{T}_{r+1}={ }^{9} \mathrm{C}_{r} 2^{18-3 r} x^{\frac{9-3 r}{2}}$
Here, $\frac{9-3 r}{2}=0 \Rightarrow r=3$
The value of constant term $={ }^{9} \mathrm{C}_{3} \times 2^{9}$
119. (C) $\int \frac{2^{x}}{\sqrt{4^{x}-1}} d x \Rightarrow \int \frac{2^{x}}{\sqrt{\left(2^{x}\right)^{2}-1}} d x$

Let $2^{x}=t$
$2^{x} \log 2 d x=d t \Rightarrow 2^{x} d x=\frac{1}{\log 2} d t$
$\Rightarrow \frac{1}{\log 2} \int \frac{d t}{\sqrt{t^{2}-1}}$
$\Rightarrow \frac{1}{\log 2} \log \left[t+\sqrt{t^{2}-1}\right]+c$
$\Rightarrow \frac{1}{\log 2} \log \left[2^{x}+\sqrt{4^{x}-1}\right]+c$
120. (B) Statement I
$\tan ^{-1} 1+\tan ^{-1}(2+\sqrt{3})=\tan ^{-1}\left(\frac{1+2+\sqrt{3}}{1-1(2+\sqrt{3})}\right)$
$\Rightarrow \tan ^{-1} 1+\tan ^{-1}(2+\sqrt{3})=\tan ^{-1}\left(\frac{3+\sqrt{3}}{-1-\sqrt{3}}\right)$
$\Rightarrow \tan ^{-1} 1+\tan ^{-1}(2+\sqrt{3})=\tan ^{-1}\left(\frac{\sqrt{3}(\sqrt{3}+1)}{-1(\sqrt{3}+1)}\right)$
$\Rightarrow \tan ^{-1} 1+\tan ^{-1}(2+\sqrt{3})=\tan ^{-1}(-\sqrt{3})$
Statement I is incorrect.

Statement II

$\sin ^{-1} \frac{7}{25}+\sin ^{-1} \frac{24}{25}=\sin ^{-1} \frac{7}{25}+\cos ^{-1} \frac{7}{25}$
$\Rightarrow \sin ^{-1} \frac{7}{25}+\sin ^{-1} \frac{24}{25}=\frac{\pi}{2}$
Statement II is correct.

NDA (MATHS) MOCK TEST - 186 (Answer Key)

1. (D)	21. (C)	41. (A)	61. (C)	81. (B)	101. (B)
2. (B)	22. (B)	42. (B)	62. (D)	82. (B)	102. (D)
3. (D)	23. (C)	43. (A)	63. (C)	83. (D)	103. (C)
4. (D)	24. (A)	44. (B)	64. (C)	84. (A)	104. (C)
5. (C)	25. (A)	45. (D)	65. (C)	85. (A)	105. (C)
6. (B)	26. (C)	46. (A)	66. (B)	86. (B)	106. (B)
7. (A)	27. (D)	47. (C)	67. (C)	87. (C)	107. (A)
8. (A)	28. (C)	48. (B)	68. (C)	88. (B)	108. (C)
9. (A)	29. (D)	49. (C)	69. (B)	89. (A)	109. (D)
10. (A)	30. (D)	50. (C)	70. (C)	90. (C)	110. (A)
11. (B)	31. (D)	51. (B)	71. (A)	91. (B)	111. (B)
12. (C)	32. (C)	52. (A)	72. (C)	92. (D)	112. (D)
13. (C)	33. (D)	53. (A)	73. (B)	93. (C)	113. (B)
14. (B)	34. (A)	54. (B)	74. (A)	94. (B)	114. (C)
15. (C)	35. (B)	55. (A)	75. (A)	95. (C)	115. (C)
16. (C)	36. (C)	56. (A)	76. (A)	96. (A)	116. (A)
17. (D)	37. (B)	57. (C)	77. (C)	97. (D)	117. (B)
18. (B)	38. (A)	58. (D)	78. (B)	98. (B)	118. (A)
19. (B)	39. (A)	59. (B)	79. (B)	99. (C)	119. (C)
20. (B)	40. (A)	60. (B)	80. (C)	100. (B)	120. (B)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

