UP SI MOCK TEST - 46 (SOLUTION)

81. (B)

Total percentage of male computer literate $=20 \%$
total percentage of female computer literate $=62 \%-20 \%=42 \%$
Hence no. of female literates
$=\frac{42}{100} \times 1600=672$
82. (A) Ist person $\rightarrow 6$ 4
IInd person $\rightarrow 8 \rightarrow 24-3$
I + II + child $\rightarrow 3$

Share of child $=\frac{200}{8} \times 1=₹ 25$
83. (A)

circumference of circular track $=2 \pi \mathrm{R}$
$=2 \times \frac{22}{7} \times 63=396 \mathrm{~m}$
Speed of B against $A=(30+25)=55 \mathrm{~m} / \mathrm{min}$
Speed of C against A $=(30+14)=44 \mathrm{~m} / \mathrm{min}$
(i) Time taken to meet together first time
$=\frac{\text { Distance }}{\mathrm{HCF}(\text { speed })}$
$\mathrm{t}_{1}=\frac{396}{\operatorname{HCF}(55,44)}=\frac{396}{11}$
$\mathrm{t}_{1}=36 \mathrm{~min}$
84. (B) Ratio of values of 50 paise, 25 paise and 10 paise coins
$=\frac{2}{2}: \frac{3}{4}: \frac{5}{10}=1: \frac{3}{4}: \frac{1}{2}$
$=4: 3: 2$
Sum of the ratios $=4+3+2=9$

Value of 25 paise coins $=\frac{3}{9} \times 90=₹ 30$
Number of 25 paise coins $=30 \times 4=120$
85. (A) A $15 \rightarrow 4$ bricks/hour

Together $(\mathrm{A}+\mathrm{B})$ can add $(4+3)$
$=7$ bricks/hour
ATQ,
They build the wall in 12 hours
\therefore per hour work $=\frac{60}{12}=5$ bricks $/$ hour
$(7-5)$ units $\rightarrow 280$ bricks
2 units $\rightarrow 280$ bricks
1 unit $\rightarrow \frac{280}{2}=140$ bricks
60 units $\rightarrow 140 \times 60=8400$ bricks
86. (A) That month will have 5 sundays.
\therefore Required average
$=\frac{5 \times 510+25 \times 240}{30}=\frac{2550+6000}{30}$
$=\frac{8550}{30}=285$
87. (C) CP : SP
$(100-12.5):(100+5)$
87.5 : 105
$35 \begin{array}{r}: \\ \times\end{array}$

Required percentage $=\frac{7}{35} \times 100=20 \%$
88. (A) $42 \mathrm{~km} / \mathrm{hr}$

\therefore Difference in time $=6-5=1$ hour
= 60 minutes
But the given difference $=15+5=20 \mathrm{~min}$
i.e 60 \qquad $\longrightarrow 20$

KD Campus Pvt. Ltd

$\therefore 210 \longrightarrow \frac{20}{60} \times 210=70 \mathrm{kms}$
Hence, the required distance $=70 \mathrm{kms}$
89. (A) Let the rate of interest be $\mathrm{r} \%$ per annum,
ATQ,
$4840=\mathrm{P}\left(1+\frac{r}{100}\right)^{2}$
and $5324=\mathrm{P}\left(1+\frac{r}{100}\right)^{3}$
On dividing equation (ii) by equation (i), we have,
$1+\frac{r}{100}=\frac{5324}{4840}=1+\frac{484}{4840}$
$\Rightarrow \frac{r}{100}=\frac{484}{4840}$
$\Rightarrow r=10 \%$
90. (A) Let the two numbers be A and B .

Then, $A+B=22$
and $A^{2}+B^{2}=404$
We know that
$(A+B)^{2}=A^{2}+B^{2}+2 A B$
or $(22)^{2}=404+2 \mathrm{AB}$
or $484=404+2 \mathrm{AB}$
or $2 \mathrm{AB}=80$
or $\mathrm{AB}=40$
\therefore The product of the two numbers $=$ 40
91. (D) $\frac{\sqrt{24}+\sqrt{216}}{\sqrt{96}}=\frac{2 \sqrt{6}+6 \sqrt{6}}{4 \sqrt{6}}=\frac{8 \sqrt{6}}{4 \sqrt{6}}=2$
92. (A) Downstream speed $(u)=\frac{D}{T}=\frac{7}{35} \times 60$

$$
=12 \mathrm{~km} / \mathrm{h}
$$

upstream speed $(v)=\frac{D}{T}=\frac{2}{30} \times 60$

$$
=4 \mathrm{~km} / \mathrm{h}
$$

Speed of boat in still water $=\frac{1}{2}(u+v)$
$=\frac{1}{2}(12+4)=8 \mathrm{~km} / \mathrm{h}$
Speed of stream $=\frac{1}{2}(u-v)=\frac{1}{2}(12-4)$

$$
=4 \mathrm{~km} / \mathrm{h}
$$

93. (D) Let the rate of interest per annum be r\%
According to the question,
$\frac{10000 \times 2 \times r}{100}+\frac{6000 \times 4 \times r}{100}=4400$
$\Rightarrow 200 r+240 r=4400$
$\Rightarrow 440 r=4400$
$\Rightarrow r=\frac{4400}{440}=10 \%$
94. (B)

$\mathrm{AB}=$ pole $=12$ metre
Shadow $=B C=4 \sqrt{3}$ metre
From $\triangle \mathrm{ABC}$,
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{12}{4 \sqrt{3}}=\sqrt{3}$
$\Rightarrow \tan \theta=\tan 60^{\circ}$
$\Rightarrow \theta=60^{\circ}$
95. (B)

$\angle \mathrm{BCE}=102^{\circ}, \mathrm{AB}=\mathrm{CD}=\mathrm{ED}$ (given)
$\therefore \mathrm{CD}=\mathrm{ED}=\mathrm{CE}[\because \mathrm{AB}=\mathrm{CE}]$
$\triangle \mathrm{ECD}$ is an equilateral triangle.
$\therefore \angle \mathrm{ECD}=60^{\circ}$
$\angle \mathrm{BCD}=102^{\circ}+60^{\circ}$
$=162^{\circ}$
96. (D) $4 \pi(r+2)^{2}-4 \pi r^{2}=704$
$\Rightarrow(r+2)^{2}-r^{2}=\frac{704}{4 \pi}$
$\Rightarrow r^{2}+4 r+4-r^{2}$
$=\frac{704 \times 7}{4 \times 22}=56$
$\Rightarrow 4 r=56-4=52$
$\Rightarrow r=13 \mathrm{~m}$
97. (A)

$\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{5}{7.5-5}=\frac{50}{25}=\frac{2}{1}=2: 1$
98. (C) $\left.\begin{array}{r}\text { Leak } \longrightarrow 6 \\ L+\text { Fill } \longrightarrow 8\end{array}>24 \begin{array}{l}4 \\ 3\end{array}\right)$
$\mathrm{F}=1$, Time $=24 \mathrm{hr}$
$1 \mathrm{~min} \rightarrow 4$ litre
\therefore capacity of tank $=4 \times 60 \times 24$
$=5760$ litre
99. (A) If the $\mathrm{HCF}=\mathrm{H}$, then
$\mathrm{LCM}=44 \mathrm{H}$
$\therefore 44 \mathrm{H}+\mathrm{H}=1125$
$\Rightarrow 45 \mathrm{H}=1125$
$\therefore \mathrm{H}=\frac{1125}{45}=25$
$\therefore \mathrm{LCM}=44 \times 25=1100$
Now,
1 st number $\times 2$ nd number $=\mathrm{LCM} \times \mathrm{HCF}$
$\Rightarrow 25 \times 2$ nd number $=1100 \times 25$
\therefore Second number $=\frac{1100 \times 25}{25}=1100$
100. (B) $\sin 7 x=\cos 11 x$
$\Rightarrow \sin 7 x=\sin \left(90^{\circ}-11 x\right)$
$\Rightarrow 7 x=90^{\circ}-11 x$
$\Rightarrow 18 x=90^{\circ}$
$\Rightarrow x=5^{\circ}$
$\therefore \tan 9 x+\cot 9 x$
$=\tan 45^{\circ}+\cot 45^{\circ}$
$=1+1=2$
101. (A)

$$
\begin{array}{clc}
\text { Copper } & : & \text { Zinc } \\
4 & : & 3
\end{array}
$$

Copper $=\frac{4}{7} \times 63=36 \mathrm{~kg}$
Zinc $=\frac{3}{7} \times 63=27 \mathrm{~kg}$
Let $x \mathrm{~kg}$ copper is extracted
Remaining copper $=36-x \mathrm{~kg}$
New ratio $=\frac{10}{9}$
$\Rightarrow \frac{\mathrm{Cu}}{\mathrm{Zn}}=\frac{10}{9}$
$\Rightarrow \frac{36-x}{27}=\frac{10}{9}$
$\frac{36-x}{3}=\frac{10}{1}$
$36-x=30$
$x=6 \mathrm{~kg}$
102. (C) Area of the base $=\frac{1}{2}$ (sum of parallel sides) \times perpendicular distance
$=\frac{1}{2}(14+8) \times 8=88$ sq. cm
\therefore Volume $=$ Area of the base \times height
$\Rightarrow 1056=88 \times h$
$\therefore h=\frac{1056}{88}=12 \mathrm{~cm}$
103. (D) $x^{2}+\frac{1}{x^{2}}=2 \sin \left(\frac{\pi x}{2}\right)$
$\Rightarrow\left(x-\frac{1}{x}\right)^{2}+2=2 \sin \left(\frac{\pi x}{2}\right)$
$\Rightarrow x-\frac{1}{x}=0$
$[\because \sin \theta \leq 1]$
104. (C) $a+b+c=0$
$\Rightarrow a+b=-c ; b+c=-a ; c+a=-b$
$\therefore \frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}$
$=-1-1-1=-3$
$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$
$=-1-1-1=-3$
\therefore Expression $=(-3) \times(-3)=9$
105. (B)

Bigger Smaller cone cone
Ratio of volume
Ratio of height
$\sqrt[3]{64}=$
$\sqrt[3]{1}=$
i.e. 4 unit represent $=40$
$\Rightarrow 4$ unit $=40 \mathrm{~cm}$
$\therefore 1$ unit $=\frac{40}{4}=10 \mathrm{~cm}$
\therefore Required height $=h=40-10$
$=30 \mathrm{~cm}$

Campus

KD Campus Pvt. Ltd

106. (C) $\angle \mathrm{BAC}=\angle \mathrm{BDC}=30^{\circ}$
$(\because$ made by same arc $B C)$
In $\triangle \mathrm{ABC}$,
$\angle x=180^{\circ}-\left(100+30^{\circ}\right)=50^{\circ}$
107.

(C) $\frac{24600}{\frac{20}{21}+\frac{400}{441}}=\frac{24600 \times 441}{820}=₹ 13230$
108. (D) $x^{\frac{1}{3}}=y^{\frac{1}{4}}$
$\Rightarrow\left(x^{\frac{1}{3}}\right)^{12}=\left(y^{\frac{1}{4}}\right)^{12}$
$\Rightarrow x^{4}=y^{3}$
$\Rightarrow\left(x^{4}\right)^{5}=\left(y^{3}\right)^{5}$
$\Rightarrow x^{20}=y^{15}$
109. (C) $7 \times 8: 9 \times y$
(y is the number of months for which B invests)
$\Rightarrow \frac{7 \times 8}{9 \times y}=\frac{8}{9}$
$\Rightarrow \frac{56}{9 y}=\frac{8}{9} \Rightarrow \frac{7}{y}=\frac{1}{1}$
$\therefore y=7$ months
110. (B)

\therefore Speed of the fastest swimmer $=\frac{80}{2}$

$$
=40 \mathrm{~km} / \mathrm{h}
$$

111. (A) Avg. Height $=\frac{6 \times 1.15+8 \times 1.10+6 \times 1.12}{20}$
$=\frac{6.9+8.8+6.72}{20}=\frac{22.42}{20}=1 \mathrm{~m} 12.1 \mathrm{~cm}$
112. (A)

Efficiency of $(P+Q+R)=\frac{2+3+4}{2}$
$=4.5$ units $/ \mathrm{min}$

Efficiency of $P=(4.5-3)=1.5$ units $/ \mathrm{min}$
Efficiency of $Q=(4.5-4)=0.5$ units $/ \mathrm{min}$
Efficiency of $R=(4.5-2)=2.5$ units $/ \mathrm{min}$
Required time for $\mathrm{P}=\frac{180}{1.5}=120 \mathrm{~min}$
Required time for $Q=\frac{180}{0.5}=360 \mathrm{~min}$
Required time for $\mathrm{R}=\frac{180}{2.5}=72 \mathrm{~min}$
113. (A) $\because \frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{y+x}{x y}$
$\Rightarrow(x+y)^{2}=x y$
$\Rightarrow x^{2}+2 x y+y^{2}=x y$
$\Rightarrow x^{2}+x y+y^{2}=0$
$\therefore x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)=0$
114. (C) \because S.P. of house and shop is same.
\therefore loss percent in the transaction
$=\frac{x^{2}}{100}=\frac{(20)^{2}}{100}=4 \%$
$4 \%=\frac{1}{25} \rightarrow$ loss
$\therefore \mathrm{SP}=25-1=24$
Ratio of loss to S.P = 1:24
given SP of both house and shop = 2 lakh
24 units $=2$
1 unit $=\frac{2}{24}=\frac{1}{12}$
\therefore loss $=₹ \frac{1}{12}$ lakh
115. (D) $2 \sin \alpha+15 \cos ^{2} \alpha=7$
or, $2 \sin \alpha+15\left(1-\sin ^{2} \alpha\right)=7$
or, $15 \sin ^{2} \alpha-2 \sin \alpha-8=0$
solving, $\sin \alpha=\frac{4}{5}$
$\therefore \cot \alpha=\frac{3}{4}$
116. (C) Percentage decrease $=\left(\frac{6-5}{6} \times 100\right) \%$
$=\frac{50}{3} \%=16 \frac{2}{3} \%$
117. (B) Required ratio $=2: 6=1: 3$
118. (A) Required Average sell
$=\left(\frac{3+4+10+6+6}{5}\right)$ crore
$=\frac{29}{5}=5.8$ crore
119. (D) Percentage increase
$=\frac{10-4}{4} \times 100=150 \%$
120. (B) Required total sell
$=(10+6+6+5)$ crore
$=27$ crore
121. (A) $7+6=13 \& 7-6=1,13-1=12$
$9+4=13 \& 9-4=5,13-5=8$
122. (A)

123. (C) An oar puts a rowboat into motion. A foot puts a skateboard into motion.
124. (D)

$=144 \times 11=64 \times 7$
125. (B) A branch, leaf, and root are all parts of a tree. The dirt underneath is not a part of the tree.
126. (B) Except (73), all are the sum of squares of continuous natural numbers.
$(3)^{2}+(4)^{2}+(5)^{2}=9+16+25=50$
$(5)^{2}+(6)^{2}+(7)^{2}=25+36+49=110$
$(6)^{2}+(7)^{2}+(8)^{2}=36+49+64=149$
$(4)^{2}+(5)^{2}+(6)^{2}=16+25+36 \neq 73$
127. (C)

128. (C) $(4 \times 7) \div 4=7$
and $(6 \times 2) \div 3=4$
Therefore, $(6 \times 2) \div 2=\mathbf{6}$
129. (D) $(5 \times 6)+2=32$
$(7 \times 6)+2=44$
$(7 \times 5)+2=\mathbf{3 7}$
130. (B)

131. (C)

132. (C)

The simplest triangles are AEI, AIH, BEJ, BJF, CFK, CKG, DGL, DLH, EOJ, FOJ, FOG, LOG, HOL and HOE i.e. 14 in number.
Triangles composed of two components each are EAH, FBE, BEO, EOF, BFO, FCG, GDH, HOD, HOG and GOD i.e. 10 in number.
Triangles composed of three components each are EFH, EHG, FGH and EFG i.e. 4 in number.
Thus, there are $14+10+4=28$ triangles in the given figure.
133. (D)

Q is in South-East of R .
134. (B) When Rahul was born, his brother's age $=6$ yrs
His father's age $=(6+32)$ years $=38$
yrs His mother's age $=(38-3)$ years $=$ 35 yrs
His sister's age $=(35-25)$ years $=10$ yrs.
135. (B) 1, 5, 7 have two similar elements, one inside the other.
2, 4, 8 have one element placed inside a different element.
3, 6,9 have two similar elements, one inside the other and the area between the two elements is shaded.
136. (D)

$\vdots:$	\bullet	$\mathbf{:}$	Top face
\therefore	\cdots	\because	Opposite face

When the given figure is folded to form a cube, then the face bearing six dots will lie opposite the face bearing three dots.
137. (A)

(S)

Therefore the University is in North direction.
138. (B) Given: $2+8 \times 16-4 \div 2$

After interchanging the signs we have,
$=2 \times 8-16 \div 4 \times 2$
$=2 \times 8-4 \times 2$
$=16-8=8$
139. (D)

or

1. \times
2. $\times 3$.
3. \times

Hence, only (3) follows.
140. (A) $\mathrm{P} @ \mathrm{Q} \rightarrow \mathrm{P}$ is the wife of Q
$\mathrm{Q} \$ \mathrm{~T} \rightarrow \mathrm{Q}$ is the brother of T
$\mathrm{T} \# \mathrm{U} \rightarrow \mathrm{T}$ is the daughter of U
Hence, Q is the son of U ...(iii)
$\mathrm{U} * \mathrm{~W} \rightarrow \mathrm{U}$ is the father of W .
From (i) and (iii), we can conclude that U is the father-in-law of P .
141. (C) Father of Kamal's daughter's father \rightarrow Kamal's father.
Hence, the person is the brother of Kamal's father.
Therefore, the person is the uncle of Kamal.
142. (B) Both Mercury and Zinc are metals.
143. (B)

144. (C) After Studying the pattern carefully we can observe that in the first segment, two letters face right and the next two face left. The first letter in the second segment repeats the last letter of the previous segment. The same is true for the third segment. But in the fourth segment it changes again. Here, it is opposite of the first segment, so the last two letters must face right.
145. (D) The situation demands creating awareness among the people about the dangers of drinking polluted water so that they themselves refrain from the same and at the same time taking steps to provide safe drinking water. So, both the courses of action follow.
146. (C)
147. (A)

1	4	$\mathbf{2}$	6	
$\mathbf{1}$	9	$\mathbf{2}$	5	$\mathbf{1}$

148. (B) $\mathrm{J}_{\mathrm{o}}>\mathrm{K}_{\mathrm{i}} \& \mathrm{C}_{\mathrm{a}}$
$\mathrm{K}_{\mathrm{i}}>\mathrm{S}_{\mathrm{a}}$
$\mathrm{K}_{\mathrm{i}}>\mathrm{S}_{\mathrm{a}}>\mathbf{N}_{\mathrm{a}}$
$\mathrm{C}_{\mathrm{a}}>\mathrm{S}_{\mathrm{a}}$
So, Nancy is the shortest among all.
149. (B) The first person shook hands with 11 remaining people, the second person also shook hands with 11 people, but we count 10 , as the hand shake with the first person has already been counted. Similarly add 9 for the third person, 8 for the fourth one \& proceeding in this fashion we get:
$11+10+9+8+7+6+5+4+3+2+1=66$
So, 66 handshakes took place before the meeting and 66 after the meeting. So, the total no of hand shakes is $\mathbf{1 3 2}$.
Shortcut: Put $\mathrm{N}=12$ and $\mathrm{N}(\mathrm{N}-1)$ is your answer $\Rightarrow 12(12-1)=132$
150. (B)

Word WINTER S U M M ER A U T U M N Position 23914205181921131351812120211314

Given detail 231117241024192316171024122323251820
151. (B)

With the reference of given keypad,

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

after pressing the digit 4 twice we will get ' H ', the digit 3 twice we will get ' E ', the digit 5 thrice we will get ' L ' and so on.
After pressing the code in the given pattern we will get "HELLO FRIENDS".
152. (C) $20 \times 8 \div 8-4+2$

After changing the signs
$\Rightarrow 20+8-8 \div 4 \times 2$
$\Rightarrow 28-2 \times 2=24$
153. (C) The colour of the human blood is 'red'. As it is given that 'red' is called 'yellow'. So, the colour of human blood is 'yellow'.
154. (A) Let the marks in Geography be G and History be H .
Eq 1: G $+\mathrm{H}=160$
Eq 2: G/3 = H/2
By the problem:
$\mathrm{G}=160-\mathrm{H}$
Therefore, putting the value of G in Eq 2 : $(160-H) / 3=H / 2$

$$
\begin{aligned}
& \Rightarrow 320-2 \mathrm{H}=3 \mathrm{H} \\
& \Rightarrow 3 \mathrm{H}+2 \mathrm{H}=320 \\
& \Rightarrow 5 \mathrm{H}=320 \\
& \Rightarrow \mathrm{H}=\mathbf{6 4}
\end{aligned}
$$

155. (A)
156. (B) The antonyms is excite.
laze
unlax
recline
unwind
tranquilize
repose
157. (C) The third figure in each row comprises the parts common to the first two figures.
158. (B) Clearly we can observe that nine days ago, it was Thursday. Therefore today is Saturday.
159. (B)
160. (D) $\frac{\text { Always }}{5} \rightarrow \frac{\text { Generally }}{3} \rightarrow \frac{\text { Sometimes }}{2} \rightarrow \frac{\text { Seldom }}{4} \rightarrow \frac{\text { Never }}{1}$

UP SI ANSWER KEY - 46

1.	(D)	21.		41.	(C)	61.		81.		101. (A)	121. (A)	141. (C)
2.	(C)	22.	(C)	42.	(B)	62.	(A)	82.	(A)	102. (C)	122. (A)	142. (B)
3.	(C)	23.	(A)	43.	(D)	63.	(C)	83.	(A)	103. (D)	123. (C)	143. (B)
4.	(D)	24.	(C)	44.	(D)	64.		84.	(B)	104. (C)	124. (D)	144. (C)
5.	(C)	25.	(A)	45.	(A)	65.		85.	(A)	105. (B)	125. (B)	145. (D)
6.	(B)	26.	(B)	46.	(D)	66.	(D)	86.	(A)	106. (C)	126. (B)	146. (C)
7.	(C)	27.	(D)	47.	(B)	67.	(D)	87.	(C)	107. (C)	127. (C)	147. (A)
8.	(D)	28.	(C)	48.	(D)	68.	(C)	88.	(A)	108. (D)	128. (C)	148. (B)
9.	(A)	29.	(B)	49.	(B)	69.	(A)	89.	(A)	109. (C)	129. (D)	149. (B)
10.	(D)	30.	(C)	50.	(D)	70.		90.	(A)	110. (B)	130. (B)	150. (B)
11.	(B)	31.	(D)	51.	(D)	71.		91.	(D)	111. (A)	131. (C)	151. (B)
12.	(C)	32.	(B)	52.	(A)	72.		92.	(A)	112. (A)	132. (C)	152. (C)
13.	(B)	33.	(A)	53.	(D)	73.	(A)	93.	(D)	113. (A)	133. (D)	153. (C)
14.	(B)	34.	(C)	54.	(C)	74.		94.	(B)	114. (C)	134. (B)	154. (A)
15.	(C)	35.	(D)	55.	(C)	75.		95.	(B)	115. (D)	135. (B)	155. (A)
16.	(D)	36.	(D)	56.	(C)	76.		96.	(D)	116. (C)	136. (D)	156. (B)
17.	(B)	37.	(C)	57.	(A)	77.		97.	(A)	117. (B)	137. (A)	157. (C)
18.	(C)	38.	(C)	58.	(B)	78.		98.		118. (A)	138. (B)	158. (B)
19.	(B)	39.	(C)	59.	(C)	79.		99.		119. (D)	139. (D)	159. (B)
20.	(C)	40.	(B)	60.	(A)	80.	(B)	100	(B)	120. (B)	140. (A)	160. (D)
Ph:				09555108888,					09555208888			7

