1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

UP SI MOCK TEST - 45 (SOLUTION)

81. (B)

$A B$ is complete pillar and $B C$ is increased height
$\angle \mathrm{ADB}=45^{\circ}$ and $\angle \mathrm{ADC}=60^{\circ}$
$\therefore \quad \tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{AD}}$
$\therefore \quad 1=\frac{\mathrm{AB}}{100} \Rightarrow \mathrm{AB}=100 \mathrm{~m}$
In $\angle \mathrm{ACD}, \tan 60^{\circ}=\frac{\mathrm{AC}}{\mathrm{AD}}$
$\therefore \quad \frac{\sqrt{3}}{1}=\frac{B C+100}{100}=\mathrm{BC}+100=100 \sqrt{3}$
$\therefore \quad B C=100 \sqrt{3}-100=100(\sqrt{3}-1) \mathrm{m}$
82. (D) For minimum value of $x^{2}+\frac{1}{x^{2}+1}-3$ $x^{2}+\frac{1}{x^{2}+1}$ would be 0 , for this $x=0$
$\therefore \quad$ minimum value of $x^{2}+\frac{1}{x^{2}+1}-3$
$=0+\frac{1}{0+1}-3$
$=0+1-3$

$$
=-2
$$

83. (C)

$\therefore \quad$ C got $=42 \%$
Diff. between B and C's votes $=6 \%$
\therefore Total no. of votes $=\frac{1200}{6} \times 100=20,000$
84. (A)

$\because \quad \angle \mathrm{CZY}=\angle \mathrm{CBY}=30^{\circ}$
$\therefore \quad \angle \mathrm{ABC}=2 \times 30=60^{\circ}$
In $\triangle \mathrm{ABC}=\angle \mathrm{BCA}+60^{\circ}+50^{\circ}=180^{\circ}$
$\therefore \quad \angle \mathrm{BCA}=180^{\circ}-110^{\circ}=70^{\circ}$
$\therefore \quad \angle \mathrm{BCZ}=\frac{70}{2}=35^{\circ}$
$\because \quad \angle \mathrm{BYZ}=\angle \mathrm{BCZ}$
$\therefore \quad \angle \mathrm{BYZ}=\mathrm{BCZ}=35^{\circ}$
85. (A) The area of lawn $=30 \times 16=480 \mathrm{~m}^{2}$

The area with path $=34 \times 20=680 \mathrm{~m}^{2}$
\therefore The area of path $=680-480=200 \mathrm{~m}^{2}$
86. (A) \mathbf{A}

So,

	CP	SP
A $\quad 100$	115	
B $\quad 100$	125	
10 units $=4800$		
100 units $=48000$		
CP of each cycle $=₹ 48,000$		

87. (C) From question $: \Delta \mathrm{s} \propto \sqrt{n}$
$\Rightarrow \Delta \mathrm{s}=k \sqrt{n}$
where $\Delta \mathrm{s} \rightarrow$ reduction in speed, $\mathrm{n} \rightarrow$ no. of wagons, $\Delta \mathrm{s}=(36-30)=6 \mathrm{~km} / \mathrm{h}$, $\mathrm{n}=9$, put values in equ. (i)
$6=k \sqrt{9} \Rightarrow k=2$
for maximum wagons $\Rightarrow \Delta \mathrm{s}=36 \mathrm{~km} / \mathrm{h}$ $36=2 \sqrt{n}, n=324$
maximum wagons $=324-1=323$ $n=323$
88. (D) Let the rate of interest allowed by the bank is R
$\therefore \quad$ interest after 3 years $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
$=\frac{12000 \times \mathrm{R} \times 3}{100}=₹ 360 \mathrm{R}$
and interest after 5 years $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

$=\frac{12000 \times 10 \times 5}{100}=₹ 6000$
$\therefore 6000-360 \mathrm{R}=3320$
$\mathrm{R}=\frac{2680}{360}=7 \frac{4}{9} \%$
89. (B) Let the time taken by the faster pipe (A) $=x$ hours

Total capacity of the tank

Then time taken by the slower pipe (B) $=(x+5)$ hours
ATQ,
$\frac{x(x+5)}{x+(x+5)}=6$
$\Rightarrow x^{2}+5 x=12 x+30$
$\Rightarrow x^{2}-7 x-30=0$
$\Rightarrow x^{2}-10 x+3 x-30=0$
$\Rightarrow x(x-10)+3(x-10)=0$
$\Rightarrow(x-10)(x+3)=0$
$x=10$ hours
90. (A) TSA of the remaining solid
$=2 \pi r h+\pi r^{2}+\pi r l$
$\because l=\sqrt{h^{2}+r^{2}}$
$=2 \times \pi \times 3 \times 4+\pi \times 9+\pi \times 3 \times 5$
$=\pi[24+9+15]$
$=\pi[48] \mathrm{cm}^{2}$
91. (B) $\cot 18^{\circ}\left[\cot 72 \cdot \cos ^{2} 22^{\circ}+\frac{1}{\tan 72^{\circ} \sec ^{2} 68^{\circ}}\right]$ $=\tan 72^{\circ}\left[\frac{\cos ^{2} 22^{\circ}}{\tan 72^{\circ}}+\frac{\cos ^{2} 68^{\circ}}{\tan 72^{\circ}}\right]$
$\Rightarrow \tan 72^{\circ} \times \frac{1}{\tan 72^{\circ}}\left[\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}\right]$
$\Rightarrow 1 \times 1=1$
92. (C) In 5 years 2 times
$\therefore 8$ times $=2^{3}$ times
$\therefore \quad n=5 \times 3=15$ years
93. (B) $\angle \mathrm{OCX}=45^{\circ} \quad(\mathrm{ABCD}$ is a square $\& \mathrm{AC}$ bisects $\angle B C D$)

$$
\begin{aligned}
& \angle \mathrm{COD}+\angle \mathrm{COX}=180^{\circ} \\
\Rightarrow & \angle \mathrm{COX}=180^{\circ}-\angle \mathrm{COD}=180^{\circ}-105^{\circ}=75^{\circ} \\
& \text { In } \triangle \mathrm{OCX} \\
& \angle \mathrm{OCX}+\angle \mathrm{COX}+\angle \mathrm{OXC}=180^{\circ} \\
\Rightarrow & 45^{\circ}+75^{\circ}+\angle \mathrm{OXC}=180^{\circ} \\
\Rightarrow & \angle \mathrm{OXC}=180^{\circ}-120^{\circ}=60^{\circ} \\
\Rightarrow & x=60^{\circ}
\end{aligned}
$$

94. (B) The quadrant $P O Q$ of the circle is folded in such a way that the arc PQ form the base of the cone. Radii OP and OQ form slant height of the cone and they wil coincide.

$\operatorname{ArcPQ}=\left(\frac{1}{4}\right) 2 \pi \mathrm{r}$
$=\frac{1}{4} \times 2 \times \frac{22}{7} \times 14 \mathrm{~cm}=22 \mathrm{~cm}$
Circumference of the base of the cone $=\mathrm{Arc} \mathrm{PQ}$. or, $2 \pi r^{\prime}=22$ (where $r^{\prime}=$ radius of the base of the cone)
or, $\mathrm{r}^{\prime}=\frac{22}{2 \pi}=\frac{22}{2 \times \frac{22}{7}}=\frac{7}{2} \mathrm{~cm}$
Slant height of the cone,
$\mathrm{OP}=$ radius of the circle
or, $l=14 \mathrm{~cm}$
Height of the cone,
$h=\sqrt{(l)^{2}-\left(r^{\prime}\right)^{2}}$
or, $h=\sqrt{(14)^{2}-\left(\frac{7}{2}\right)^{2}}=\sqrt{\frac{735}{4}} \mathrm{~cm}$
$=\frac{1}{2} \sqrt{735} \mathrm{~cm}$
Volume of the cone $=\frac{1}{3} \pi\left(r^{\prime}\right)^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times \frac{\sqrt{735}}{2} \mathrm{~cm}^{3}$
$=\frac{77}{12} \sqrt{735} \mathrm{~cm}^{3}=174 \mathrm{~cm}^{3}$ (Approx.)
95. (A) The digit in unit's place $=$ unit's digit in the product $1 \times 2 \times 3 \times \ldots \times 9=0$
96. (D) $246=\mathrm{P}\left[\left(1+\frac{5}{100}\right)^{2}-1\right]$
$\Rightarrow 246-\mathrm{P}\left[\left(\frac{21}{20}\right)^{2}-1\right]$
$\Rightarrow 246=\mathrm{P}\left(\frac{441-400}{400}\right)$
$\Rightarrow 246=\frac{41 \mathrm{P}}{400}=\mathrm{P}=\frac{246 \times 400}{41}$
\Rightarrow ₹ 2400
$\therefore \quad$ S.I $=\frac{\mathrm{P} \times \mathrm{T} \times \mathrm{R}}{100} \Rightarrow \frac{2400 \times 3 \times 6}{100} \Rightarrow ₹ 432$

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

97. (A) $\frac{x}{y}+\frac{y}{x}=-2 \Rightarrow \frac{x^{2}+y^{2}}{x y}=-2$
$\Rightarrow x^{2}+y^{2}=-2 x y$
$\Rightarrow x^{2}+y^{2}+2 x y=0$
$\Rightarrow \quad(x+y)^{2}=0$
$\Rightarrow x+y=0$
$\therefore x^{3}+y^{3}+3 x y(x+y)=(x+y)^{3}=0$
98. (D)

Speed: Time
$\left.\begin{array}{rll}\text { Actual } & \rightarrow & 5 \\ \text { New } & 4 & 4 \\ 5\end{array}\right)+1$
1 unit $=15 \mathrm{~min}$
Actual time $=60 \mathrm{~min}$
99. (A) Let the length of the side of the chess board be $x \mathrm{~cm}$. Then
Area of 64 equal squares $=(x-4)^{2}$
$\therefore \quad(x-4)^{2}=64 \times 6.25$
$\Rightarrow x^{2}-8 x+16=400$
$\Rightarrow x^{2}-8 x-384=0$
$\Rightarrow x^{2}-24 x+16 x-384=0$
$\Rightarrow(x-24)(x+16)=0 \Rightarrow x=24 \mathrm{~cm}$
Hence option (A) is true.
100. (D) $x: y: z$
$3 \times 3: 4 \times 3$

$3 \times 4: 4 \times 4$
$9: 12: 16$

$\therefore \quad \frac{x+y+z}{3 z}=\frac{9+12+16}{3 \times 16}=\frac{37}{48}$
101. (B) C.P of article be

$\therefore \quad$ Profit $\%=\frac{200}{900}=22 \frac{2}{9} \%$
102. (C) $\frac{x+\frac{1}{x}}{2}=V$
$\Rightarrow x+\frac{1}{x}=2 \mathrm{~V}$
Required average
$=\frac{x^{2}+\frac{1}{x^{2}}}{2}=\frac{\left(x+\frac{1}{x}\right)^{2}-2}{2}$
$=\frac{4 \mathrm{~V}^{2}-2}{2}=2 \mathrm{~V}^{2}-1$
103. (A)

A
Efficiency $\rightarrow 2 \quad: \quad 1$
according to the question,
Both A and B take 4 days to complete the work
then, Total work $=(2+1) \times 4=12$ units
Time taken by $B=\frac{12}{1}=12$ days
104. (C) Water : Milk
$\operatorname{same}\left(\begin{array}{ccc}30 & : & 170 \\ 1 \times 30 & : & 7 \times 30\end{array}{ }^{\longrightarrow} 2400\right.$

* $87.5 \% \rightarrow \frac{7}{8}$

Additional milk required $=(210-170) l$

$$
=40 l .
$$

105. (A)

Total area of park $=60 \times 40=2400 \mathrm{~m}^{2}$ and area of lawn $=2109 \mathrm{~m}^{2}$ (given)
area of the cross roads $=2400-2109$
$=291 \mathrm{~m}^{2}$
$\Rightarrow x(60+40-x)=291$
$\Rightarrow x^{2}-100 x+291=0$
$\Rightarrow(x-97)(x-3)=0$
$\Rightarrow \quad x=3$ or 97
$\Rightarrow x=3[\because x=97$ is not possible $]$
106. (B) maximum value of $(2 \sin \theta+3 \cos \theta)$
$=\sqrt{a^{2}+b^{2}}$
$=\sqrt{4+9}=\sqrt{13}$
107. (C) Let the required distance
$=\operatorname{LCM}$ of $(10,12)=60 \mathrm{kms}$

\therefore Difference in time $=6-5=1$ hour

$$
=60 \text { minutes }
$$

given difference in time
$=6+6=12$ minutes
$\therefore 60 \rightarrow 12$
Hence, the required distance
$=12 \mathrm{~km}$
108. (C)

In $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}$
$\triangle \mathrm{BAC} \sim \triangle \mathrm{ADC}$
\therefore The Ratio of area of two similar triangles $=$ Ratio of square of their corresponding sides
Hence, $\frac{\operatorname{ar}(\mathrm{BAC})}{\operatorname{ar}(\mathrm{ADC})}=\frac{B C^{2}}{A C^{2}}=\frac{64}{36}$
$=\frac{16}{9}=16: 9$
109. (D) $\sqrt{24010000}=4900$
again $\sqrt{4900}=70$
$\therefore \quad \sqrt[4]{24010000}=70$
110. (B) $\cos \theta=\frac{15}{17}$
$\Rightarrow \sec \theta=\frac{1}{\cos \theta}=\frac{17}{15}$
$\therefore \cot (90-\theta)=\tan \theta$
$=\sqrt{\sec ^{2} \theta-1}$
$=\sqrt{\left(\frac{17}{15}\right)^{2}-1}=\sqrt{\frac{289}{225}-1}$
$=\sqrt{\frac{289-225}{225}}=\sqrt{\frac{64}{225}}=\frac{8}{15}$
111. (B) $\angle \mathrm{ACD}=\angle \mathrm{ADC}=x$
$\because \quad \angle \mathrm{CAD}=\left(180^{\circ}-2 x\right)$
$\angle \mathrm{ABC}=\angle \mathrm{BAC}=\frac{x}{2}$
$(\therefore \angle \mathrm{ABC}+\angle \mathrm{BAC}=\angle \mathrm{ACD}=x)$
$\therefore \quad \angle \mathrm{BAC}+\angle \mathrm{CAD}+81^{\circ}=180^{\circ}$
$\therefore \quad \frac{x}{2}+\left(180^{\circ}-2 x\right)+81^{\circ}=180^{\circ}$
$\therefore \quad \frac{3}{2} \mathrm{X}=81^{\circ} \Rightarrow \mathrm{X}=54^{\circ}$
112. (D) Ratio of capitals of A, B and C for 1 year
$=(40500 \times 12+4500 \times 6):(45000 \times 12)$
$:(60000 \times 6+45000 \times 6)$
$=513: 540: 630$
= 57: 60:70
Sum of the ratios $=57+60+70=187$
Required difference $=\frac{70-57}{187} \times 56100$
$=\frac{13}{187} \times 56100=₹ 3900$
113. (C) Let the present ages of A and B be $5 x$ and $3 x$ years respectively.
Then, $\frac{5 x-4}{3 x+4}=\frac{1}{1}$
$\Rightarrow 5 x-4=3 x+4$
$\Rightarrow 2 x=8$
$\Rightarrow x=4$
$\therefore \quad$ Required ratio $=(5 x+4):(3 x-4)$
$=24: 8=3: 1$
114. (B) $(64)^{x+1}=\frac{64}{4^{x}} \Rightarrow\left(4^{3}\right)^{x+1} \times 4^{x}=64$
$\Rightarrow 4^{3 x+3+x}=4^{3} \Rightarrow 4^{4 x+3}=4^{3}$
$\Rightarrow 4 x+3=3 \Rightarrow x=0$
115. (D) $\sin ^{113} \theta \cdot \cos ^{113} \theta$
$=\frac{1}{2^{113}}(2 \sin \theta \cdot \cos \theta)^{113}$
$=\left(\frac{1}{2}\right)^{113}(\sin 2 \theta)^{113} \leq\left(\frac{1}{2}\right)^{113}$
$(\because-1 \leq \sin 2 \theta \leq 1)$
Hence, the greatest value of
$\sin ^{113} \theta \cdot \cos ^{113} \theta=\left(\frac{1}{2}\right)^{113}$
116. (A) Quantity of Guava at shop A
$=1200 \times \frac{10}{100}=120 \mathrm{~kg}$
Quantity of Guava at shop B
$=1000 \times \frac{16}{100}=160 \mathrm{~kg}$
So, required difference $=160-120=$ 40 kg
117. (B) Cost of Mango at shop A
$=30 \times 1200 \times \frac{24}{100}=₹ 8640$
Cost of apple $=40 \times 1200 \times \frac{16}{100}=₹ 7680$
Cost of orange $=20 \times 1200 \times \frac{20}{100}=₹ 4800$
So, required ratio $=8640: 7680: 4800$

$$
=9: 8: 5
$$

118. (C) Quantity of Mango at shop B
$=1000 \times \frac{24}{100}=240 \mathrm{~kg}$
Quantity of Mango at shop B
$=1200 \times \frac{24}{100}=288 \mathrm{~kg}$
So, required $\%=288 \times \frac{100}{240}=120 \%$ of
the quantity of Mango at shop A
119. (D) Cost of total fruits at shop $\mathrm{A}=$ Cost of Mango + Cost of Apple + Cost of Guava + Cost of Orange + Cost of other fruits
$1200 \times \frac{24}{100} \times 30+1200 \times \frac{16}{100} \times 40+$
$1200 \times \frac{10}{100} \times 18+1200 \times \frac{20}{100} \times 20+$
$\left.1200 \times \frac{30}{100} \times 15\right)$
$=8640+7680+2160+4800+5400$
= ₹ 28680
Cost of total fruits at shop B
$=\left(1000 \times \frac{24}{100} \times 30+1000 \times \frac{14}{100} \times 40\right.$
$+1000 \times \frac{16}{100} \times 18+1000 \times \frac{20}{100} \times 20$
$\left.+1000 \times \frac{26}{100} \times 15\right)$
$=7200+5600+2880+4000+3900$
= ₹ 23580
So, required difference
$=28680-23580=₹ 5100$
120. (D) Quantity of Orange at shop A
$=1200 \times \frac{20}{100}=240 \mathrm{~kg}$
Quantity of Apple at shop B
$=1000 \times \frac{14}{100}=140 \mathrm{~kg}$
So, required $\%=240 \times \frac{100}{140}=171.42 \%$ more than the quantity of Apple at shop B.
121. (A) As, $335-216=119$

Similarly, $987-868=119$
122. (A)

123. (B) If skirmish is not controlled, it will give rise to war and if disease is not controlled, it will give rise to epidemic.
124. (B) As, $16: 56=2: 7$ Similarly, $32: 112=2: 7$
125. (B) All except Chandelas were associated with ancient kingdoms in southern India, While Chandelas formed a kingdom in north India.
126. (C) $35 \Rightarrow(3-1) \times(5-1)=2 \times 4=08 \Rightarrow 35-08$
$57 \Rightarrow(5-1) \times(7-1)=4 \times 6=24 \Rightarrow 57-24$
$59 \Rightarrow(5-1) \times(9-1)=4 \times 8=32 \neq 34 \Rightarrow 59-34$
$79 \Rightarrow(7-1) \times(9-1)=6 \times 8=48 \Rightarrow 79-48$
127. (A)

128. (D) $9-5=4 ; 4 \times 2=8$
$17-11=6 ; 6 \times 2=12$
$26-19=7 ; 7 \times 2=14$
129. (A) $4+3=7 ; 7^{3}=343$ $4+4=8 ; 8^{3}=512$
$\therefore \quad 4+5=9 ; 9^{3}=729$
130. (B) $\frac{4 / 12 / 11}{\frac{1 / 1 / 12}{~+28 ~ d a y s ~} \frac{29 / 1 / 12}{L+28 \text { days }}+28 \text { days } \frac{26 / 2 / 12}{L+28 \text { days }} \quad \frac{25 / 3 / 12}{L}}$
131. (A) The pattern is -
$-1, \times 10+1,-1, \times 10+1,-1, \times 10+1$,

So, missing term $=10 \times 10+1=\mathbf{1 0 1}$
132. (B) The sequence is

133. (C)

134. (B) 1.12 .1991 is the first Sunday of December 1991. So, 3.12.1991 is the first Tuesday of the month.
Clearly, 10.12.1991, 17.12.1991, 24.12.1991 and 31.12.1991 are also Tuesdays.
So, 24.12.1991 is the fourth Tuesday.
135. (A) Given:- $9 \div 8 \times 7+5-10$

After replacing the signs as per the given details.
$9-8 \div 7 \times 5+10$
$=9-\frac{8}{7} \times 5+10$
$=9-\frac{40}{7}+10$
$=19-\frac{40}{7}=\frac{133-40}{7}=\frac{93}{7}=\mathbf{1 3 . 3}$
136. (B) $25+20=45$
137. (D) The figure may be markred as shown below

The quadrilaterals in the figure are ABCD, ABDE, ABDF, ABDH, CDHA, CDEA, CDFA, DEAG, DEFA, FAGD and AGDH.
\therefore The number of quadrilaterals in the figure is $\mathbf{1 1}$.
138. (A)
139. (A) Clearly, Conclusion I directly follows from the given statement. Also, it is mentioned that old ideas are replaced by new ones, as thinking changes with the progress in time. So, Conclusion II does not follow.
140. (B) The sitting arrangement is as follows:

$$
\begin{array}{llllll}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\mathrm{P} & \mathrm{X} & \mathrm{~S} & \mathrm{Z} & \mathrm{R} & \mathrm{~A}
\end{array}
$$

Therefore, right of P is X.
141. (B) The figure is given below:

142 (D) Given: D is the brother of B.
From statement 1, we can see that D is son of C (son of D is the grandson of C).
From statement 2, we can see that B is
'Female' (sister of D).
So, we can say that both the statement 1 and 2 are required.
143. (B)
I. False
II. True

144. (D) Daughter of Abhijit's brother \rightarrow The niece of Abhijit.
Thus, the granddaughter of the woman is Abhijit's niece. Hence, the woman is the mother of Abhijit.
145. (B) At 5 o'clock, the hands are 25 minutes apart.
To be at right angles and that too between 5:30 and 6, the minute hand has to gain $(25+15)=40 \mathrm{~min}$ spaces.
$\because 55 \mathrm{~min}$ spaces are gained in 60 min .
$\therefore 40$ min spaces are gained in $\left(\frac{60}{55} \times 40\right) \min =43 \frac{7}{11} \mathrm{~min}$.
\therefore Required time $=43 \frac{7}{11} \mathrm{~min}$ past 5.
146. (D)

147. (A) Here the common faces with number 3 , are in same positions. Hence 6 is opposite to 2 and 5 is opposite to 1 . Therefore 4 is opposite to 3 .
148. (C)

Similarly,

149. (B) The series is abb/aaabbbb/aaaabbbbb/a.
150. (A) $\frac{\text { Member }}{(3)} \rightarrow \frac{\text { Family }}{(1)} \rightarrow \frac{\text { Locality }}{(4)} \rightarrow \frac{\text { City }}{(2)} \rightarrow \frac{\text { Country }}{(5)}$
151. (C)
152. (C)

153. (A) $\mathrm{P} @ \mathrm{Q} \rightarrow \mathrm{P}$ is the wife of Q
$\mathrm{Q} \$ \mathrm{~T} \rightarrow \mathrm{Q}$ is the brother of $\mathrm{T} \ldots(2)$
$T \# U \rightarrow T$ is the daughter of U
$\Rightarrow Q$ is the son of U
$\mathrm{U} * \mathrm{~W} \rightarrow \mathrm{U}$ is the father of W .
From (1) and (3),
We can conclude that U is the father-inlaw of P.
154. (C) Since each pole at the corner of the plot is common to its two sides.
Therefore total number of poles needed $=27 \times 4-4=104$.

