2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
IBPS CLERK SPECIAL PHASE - I - 214 (SOLUTION)

REASONING

(1-6) :

1. (4)
2. (5)
3. (3)
4. (4)
5. (1)
6. (5)
7. (4) Given statements:
$\mathrm{W}>\mathrm{S} \geq \mathrm{T}<\mathrm{U}$
$\mathrm{V}>\mathrm{T}>\mathrm{X}$
Combining both statement,
$\mathrm{S} \geq \mathrm{T}<\mathrm{V}$
I. V $>\mathrm{S} \rightarrow$ False
$\mathrm{V}>\mathrm{T}<\mathrm{U}$
II. $\mathrm{U}>\mathrm{V} \rightarrow$ False

Hence, Neither conclusion I nor II is true.
8. (5) Given statements:
$\mathrm{P}=\mathrm{Q} \geq \mathrm{R}<\mathrm{S}$
$\mathrm{R} \geq \mathrm{T}$
Combining both statement,
$\mathrm{T} \leq \mathrm{R}<\mathrm{S}$
I. $\mathrm{S}>\mathrm{T} \rightarrow$ True
$\mathrm{P}=\mathrm{Q} \geq \mathrm{R} \geq \mathrm{T}$
II. $\mathrm{P} \geq \mathrm{T} \rightarrow$ True

Hence, Both conclusion I and II are true.
9. (4) Given statements:
$\mathrm{M}>\mathrm{N} \geq \mathrm{O}<\mathrm{P}$
$\mathrm{Q}<\mathrm{O} \leq \mathrm{R}$
Combining both statement,
$\mathrm{R} \geq \mathrm{O}<\mathrm{P}$
I. $\mathrm{R}>\mathrm{P} \rightarrow$ False
$\mathrm{R} \geq \mathrm{O} \leq \mathrm{N}$
II. $\mathrm{R} \geq \mathrm{N} \rightarrow$ False

Hence, Neither conclusion I nor II is true.
10. (4) Given statements:
$\mathrm{A}=\mathrm{B} \leq \mathrm{C}>\mathrm{D}$
$\mathrm{C} \geq \mathrm{E}$
Combining both statement,
$\mathrm{A}=\mathrm{B} \leq \mathrm{C} \geq \mathrm{E}$
I. A $\geq \mathrm{E} \rightarrow$ False

E $\leq \mathrm{C}>\mathrm{D}$
II. E > D \rightarrow False

Hence, Neither conclusion I nor II is true.
(11-15) :

Person	Floor	Game
H	7	Badminton
R	6	Polo
N	5	Chess
L	4	Hockey
M	3	Rugby
O	2	Cricket
K	1	Ludo

11. (2)
12. (3)
13. (4)
14. (1)
15. (4)
(16-20) :

16. (2)
17. (3)
18. (1)
19. (3)
20. (1)
21. (4) $9^{\text {th }}$ to the left of $18^{\text {th }}$ from the left $=(18-$ $9=19^{\text {th }}$ from the left $=S$

$$
\text { 22.(2) } \quad 9
$$

23.(5) $27968 \underline{4} 35$
24.(3) * and ©
25.(2) In all others, the second element comes three positions. After the first in the given arrangement.
(26-29) :

26. (3) 27. (4) 28. (5)
29. (2)
30. (5)
(31-32) :

Campus
 KD Campus

31. (4) 32. (4) 33. (5)
32. (3)
33. (5) After changing the series becomes as follows.
EFGHABCDMNOPIJKLUVWX QRSTZY
Now, the required element is (19-7 =) 12th element from right.

Maths

36.(2) Male population who did not visit park A
$=\frac{20}{100} \times \frac{60}{100} \times 400=48$
Male population who visited in park A
$=400-(150+48)=202$
Required $\%=\frac{202}{500} \times 100=40.4 \%$
37.(4) Male population in park B, C \& D $=(500-$ $200)+(700-350)+(800-450)=1000$
Required average $=\frac{1000}{3}=333.33$
38.(5) Male population in park $\mathrm{E}=900-500$
$=400$
Required $\%=\frac{450-400}{400} \times 100=12.5 \%$
39.(1) Male population in park A \& D $=400-150$ $+800-450=600$
Required ratio $=600:(200+500)=6: 7$
40.(3) Total female population $=150+200+350$ $+450+500=1650$
Female population above 80 years age
$=30 \times 5=150$
Required average $=\frac{1650-150}{5}=300$
41.(2) Let present age of A \& B be x \& y years respectively

$$
\frac{x-4}{y-4}=\frac{5}{3}
$$

$3 \mathrm{x}-12=5 \mathrm{y}-20$
$3 x=5 y-8$
Let present age of C be z years
$x+y+z=80$
$x+y=z$
$x+y=40$
On solving (i) \& (ii)
$x=24$ years
Present age of $\mathrm{A}=24$ years
42.(4) Let speed of boat in still water \& stream be 8 x kmph \& x kmph respectively
ATQ,
$\frac{54}{8 x+x}+\frac{42}{8 x-x}=4$
$\frac{6}{x}+\frac{6}{x}=4$
$\mathrm{x}=3$
Downstream speed $=8 \mathrm{x}+\mathrm{x}=27 \mathrm{kmph}$
43.(1) Let salary of Manoj be Rs 100x

Amount given to wife $=\frac{60}{100} \times 100 \mathrm{x}$
$=$ Rs. 60 x
ATQ, $60 \mathrm{x} \times \frac{50}{100}=18000$
$x=600$
Salary of Manoj = 100x = Rs. 60000
44.(3) Let length \& breadth of rectangle be 4 x cm \& 7x cm
ATQ, $2(4 \mathrm{x}+7 \mathrm{x})=88$
$\mathrm{x}=4$
Area of rectangle $=4 \mathrm{x} \times 7 \mathrm{x}=448 \mathrm{~cm}^{2}$
45.(2) Radius of second circle $=1.5 \times 14=21 \mathrm{~cm}$

Required area of circle $=\pi r^{2}=\frac{22}{7} \times 21 \times 21$
$=1386 \mathrm{~cm}^{2}$
46.(5) I. $x^{2}-7 x+12=0$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}-3 \mathrm{x}+12=0$
$\Rightarrow(\mathrm{x}-4)(\mathrm{x}-3)=0$
$\Rightarrow \mathrm{x}=3,4$
II. $y^{2}-8 y+12=0$
$\Rightarrow y^{2}-6 y-2 y+12=0$
$\Rightarrow(y-6)(y-2)=0$
$\Rightarrow \mathrm{y}=2,6$
No relation can be established
47.(4) I. $2 \mathrm{x}^{2}+\mathrm{x}-28=0$
$\Rightarrow 2 \mathrm{x}^{2}+8 \mathrm{x}-7 \mathrm{x}-28=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}+4)-7(\mathrm{x}+4)=0$
$\Rightarrow(2 \mathrm{x}-7)(\mathrm{x}+4)=0$
$\Rightarrow \mathrm{x}=-4, \frac{7}{2}$
II. $2 \mathrm{y}^{2}-23 \mathrm{y}+56=0$
$\Rightarrow 2 \mathrm{y}^{2}-16 \mathrm{y}-7 \mathrm{y}+56=0$
$\Rightarrow 2 y(y-8)-7(y-8)=0$
$\Rightarrow(2 y-7)(y-8)=0$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow \mathrm{y}=\frac{7}{2}, 8$
$\Rightarrow \mathrm{y} \geq \mathrm{x}$
48.(5) I. $2 x^{2}-7 x-60=0$
$\Rightarrow 2 \mathrm{x}^{2}-15 \mathrm{x}+8 \mathrm{x}-60=0$
$\Rightarrow \mathrm{x}(2 \mathrm{x}-15)+4(2 \mathrm{x}-15)=0$
$\Rightarrow(x+4)(2 x-15)=0$
$\Rightarrow \mathrm{x}=-4, \frac{15}{2}$
II. $3 y^{2}+13 y+4=0$
$\Rightarrow 3 y^{2}+12 y+y+4=0$
$\Rightarrow 3 y(y+4)+1(y+4)=0$
$\Rightarrow(3 y+1)(y+4)=0$
$\Rightarrow \mathrm{y}=-\frac{1}{3},-4$
No relation between x and y
49.(5) I. $x^{2}-17 x-84=0$
$\Rightarrow \mathrm{x}^{2}+4 \mathrm{x}-21 \mathrm{x}-84=0$
$\Rightarrow(x+4)(x-21)=0$
$\Rightarrow \mathrm{x}=-4,21$
II. $y^{2}+4 y-117=0$
$\Rightarrow \mathrm{y}^{2}-9 \mathrm{y}+13 \mathrm{y}-117=0$
$\Rightarrow(y-9)(y+13)=0$
$\Rightarrow \mathrm{y}=9,-13$
No relation between x and y
50.(4) I. $\mathrm{X}^{2}=81$
$\Rightarrow x= \pm 9$
II. $(x-9)^{2}=0$
$x=9$
Clearly, $\mathrm{x} \leq \mathrm{y}$
51.(4) Total population of city $\mathrm{A}=300+400=700$

Total population of city $\mathrm{D}=450+550=1000$
Required $\%=\frac{1000-700}{1000} \times 100=30 \%$ less
52.(1) Total graduate population $=\frac{70}{100} \times(300+$ $400)=490$

Female graduate population $=\frac{4}{7} \times 490$
$=280$
Female population who is not graduate
$=400-280=120$
53.(5) Required average
$=\frac{300+550+500+450+350}{5}$

$$
=\frac{2150}{5}=430
$$

54.(2) Required $\%=\frac{350}{400} \times 100=87.5 \%$
55.(4) Postgraduate population in city $B=300+$ $400=700$

Postgraduate population in city $\mathrm{C}=\frac{8}{7} \times 700$
$=800$
Required ratio $=(1000-700):(900-800)$
$=300: 100=3: 1$
56.(2) When X liter milk is taken out

Quantity of milk left $=(240-X)$ lit
Quantity of water $=\mathrm{X}$ lit
When 20% of mixture taken out
Remaining quantity of milk $=\frac{80}{100} \times(240-$
$\mathrm{X})=(192-0.8 \mathrm{X})$ lit
Remaining quantity of water $=\frac{80}{100} \times \mathrm{X}+$
$\frac{20}{100} \times 240=(0.8 \mathrm{X}+48) 1$ lit
ATQ,
$(192-0.8 \mathrm{X})-(0.8 \mathrm{X}+48)=128$
$16=1.6 \mathrm{X}$
$\mathrm{X}=10$
57.(3)

	Time (days)	Work (Units)	Efficiency (units/day)
A	36		4
B	48	144	3

Work completed by A and B in mentioned
days $=\frac{1}{3} \times 144=48$ units
ATQ, $4 x+3(x+2)=48$
$x=6$
58.(1) let cost price be Rs. 100x

Marked price $=\frac{140}{100} \times 100 \mathrm{x}=$ Rs. $=140 \mathrm{x}$
Selling price $=$ Rs. $(140 x-224)$
Selling price after tax $=\frac{110}{100} \times(140 \mathrm{x}-224)$
$=$ Rs.(154x-246.4)
ATQ, $100 x+158.6=154 x-246.4$
$\mathrm{x}=7.5$
Cost price of article $=100 \mathrm{x}=$ Rs. 750

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

59.(2) Let period of investment of Pinki and Rinki be $2 x$ and $3 x$ units respectively
Ratio of profit share

Pinki		Rinki
$6000 \times 2 \mathrm{x}$	$:$	$9000 \times 3 \mathrm{x}$
4	$:$	9

Profit share of Pinki = Rs. 20,000
60.(3) ATQ,
$\frac{x}{40}-\frac{x+20}{60}$
$\mathrm{x}=280 \mathrm{~km}$
Required time $=\frac{320}{40}=8$ hours
61.(3) $111.01+41.23+(4.96)^{2}+(2.09)^{2}=$? $111+41+5^{2}+2^{2}=?$
? $=152+25+4=181$
62.(1) $109.07 \sqrt{?}-\frac{61}{21.02} \times ? 47.96 \sqrt{ }$?
$\Rightarrow 109 \sqrt{?}-48 \sqrt{?} \approx \frac{61}{21} \times ?$
$\Rightarrow 61 \sqrt{?}=\frac{61}{21}=$?
\Rightarrow ? $=441$
63.(4) $1332.89+171.928+17.01+?^{2}=1690.87$
$\Rightarrow 1333+172+17-1691-?^{2}$
$\Rightarrow ?^{2}=169$
\Rightarrow ? $=13$
64.(2) 150.09% of $20+\frac{322.9}{17.02}+\sqrt{?}=(8.96)^{2}$
$\Rightarrow 30+19+\sqrt{?}=81$
\Rightarrow ? $=1024$
65.(2) 56.08% of 149.92

$$
\begin{aligned}
& +\sqrt{28.02 \times 6.98}-11 \frac{1}{9} \% \text { of } 998.9=? \\
& \Rightarrow 56 \% \text { of } 150+\sqrt{28 \times 7}-\frac{1}{9} \times 999 \approx ? \\
& \Rightarrow 84+14-111=-13
\end{aligned}
$$

Solutions (66-70) :
Let number of girls in hostel $\mathrm{B}=100 \mathrm{x}$
Then number of boys in hostel $B=200 x$
Number of girls in hostel A = 130x

Number of boys in hostel C = 120 + 100 = 220
Number of girls in hostel C = 1000-220
$=780$
Total number of girls in hostel A and that of in hostel D = 446
Number of girls in hostel $D=(446-130 x)$
Number of boys in hostel D = 302
ATQ,
$200 \mathrm{x}-302=98$
$\mathrm{x}=2$

Hostels	Boys	Girls
A	120	260
B	400	200
C	220	780
D	302	186

66.(2) Required percent $=\frac{(302-186)}{(400-200)} \times 100$ = 58%
67.(1) Required difference $=(302+186)-(120+$
260) $=108$
68.(1) Required ratio $=\frac{600}{1000}=\frac{3}{5}$
69.(4) Required average
$=\frac{100+380+200+282}{4}=240.5$
70.(2) Total number of boys in hostel A and that of girls in hostel C $=900$

Required $\%=\frac{900-400}{400} \times 100=125 \%$

ENGLISH LANGUAGE

(91-95) : (CGDBFEA)
91. (2)
92. (1)
93. (3)
94. (4)
95. (2)
(96-100) :
96. (4) Replace 'with' by 'about'.
97. (3) Replace 'yet' by 'but'.
98. (1) Replace 'deliberately’ by ‘deliberate’.
99. (1) Replace 'based' by 'having'.
100. (5) No error.

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS CLERK SPECIAL PHASE - I - 214 (ANSWER KEY)

1. (4)
2. (3)
3. (5)
4. (3)
5. (4)
6. (1)
7. (5)
8. (4)
9. (5)
10. (4)
11. (4)
12. (2)
13. (3)
14. (4)
15. (1)
16. (4)
17. (2)
18. (3)
19. (1)
20. (3)
21. (1)
22. (4)
23. (2)
24. (5)
25. (3)
26. (2)

-

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- Whatapp with Mock Test No. and Question No. at 7053606571 for any of te doubts. Join the group and you may also share your suggestions and experience of sunday Mock Test.

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

