UP SI MOCK TEST - 42 (SOLUTION)

81. (A) For the number to be divisible by 10^{n}, it must contain the same powers for 2 and 5 Power of $2=2^{5+2.8+7+3.12+6+2.14+11}=$ $2^{5+16+7+36+6+28+11}=2^{109}$
Power of $5=5^{3+6+12+14+2.15}=5^{65}$
$\Rightarrow n=65$
82. (A) Let total number of boys $=x$

Let total number of girls $=70 \%$ of $x=$ $0.7 x$
Total $=x+0.7 x$
$85=1.7 x$
$\Rightarrow x=50$
Number of boys $=50$
Number of girls $=0.7 \times 50=35$
Number of boys playing only badminton
$=50 \%$ of $50=25$
No. of children playing Table Tennis only $=40 \%$ of $85=34$
No. of children playing both $=12$
No. of girls playing only Badminton $=$ Total students - Boys playing only
Badminton -Children playing both games - Children playing only Table Tennis
$=85-25-12-34=14$
83. (A) For similar triangles,

Area of triangle 1 /Area of triangle 2
$=\frac{(\text { side })^{2}}{(\text { side })^{2}}$
$\Rightarrow \frac{7-4 \sqrt{3}}{1+4 \sqrt{3}}=\left(\frac{l_{1}}{l_{2}}\right)^{2}$
$\Rightarrow \frac{l_{1}}{l_{2}}=\sqrt{\frac{7-4 \sqrt{3}}{7+4 \sqrt{3}} \times \frac{7-4 \sqrt{3}}{7+4 \sqrt{3}}}$
$\Rightarrow \frac{l_{1}}{l_{2}}=\sqrt{\frac{(7-4 \sqrt{3})^{2}}{49-48}}$ [after rationalisation]
$\Rightarrow \frac{l_{1}}{l_{2}}=7-4 \sqrt{3}$
84. (A) $\sqrt{\frac{(0.1)^{2}+(0.01)^{2}+(0.009)^{2}}{(0.01)^{2}+(0.001)^{2}+(0.0009)^{2}}}$
$=\sqrt{\frac{(0.1)^{2}+(0.01)^{2}+(0.009)^{2}}{0.01+\left[(0.001)^{2}+(0.0009)^{2}\right]}}$
$=\sqrt{\frac{1}{0.01}}=\sqrt{100}$
$=10$
85. (B) Let d_{1}, d_{2} and d_{3} be $20 \mathrm{~km}, 10 \mathrm{~km}$ and 30 km and $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ be $40 \mathrm{~km} / \mathrm{h}, 10$ km / h and $40 \mathrm{~km} / \mathrm{h}$.
Hence, $\mathrm{T}_{1}=\frac{d_{1}}{S_{1}}=\frac{20}{40}=\frac{1}{2} \mathrm{hr}$.
$\mathrm{T}_{2}=\frac{d_{2}}{S_{2}}=\frac{10}{10}=1 \mathrm{hr}$.
$\mathrm{T}_{3}=\frac{d_{3}}{S_{3}}=\frac{30}{40}=\frac{3}{4} \mathrm{hr}$.
Total distance $=20+10+30=60 \mathrm{~km}$
Total time $=\frac{1}{2}+1+\frac{3}{4}$
$=\frac{2+4+3}{4}=\frac{9}{4} \mathrm{hr}$.
Speed $=\frac{60}{9} \times 4=26.67 \mathrm{kmph}$
86. (D) Let 'F' for father, 'M' for mother, 'A' for Sonu, 'B' for Savita \& 'C' for Sonia (for present ages)
$\mathrm{F}+\mathrm{M}+\mathrm{A}+\mathrm{B}+\mathrm{C}=96$
When Sonu was born:
$\Rightarrow(\mathrm{F}-\mathrm{A})+(\mathrm{M}-\mathrm{A})+(\mathrm{A}-\mathrm{A})+(\mathrm{B}-\mathrm{A})+(\mathrm{C}-\mathrm{A})=66$
$\Rightarrow \mathrm{F}+\mathrm{M}+\mathrm{A}+\mathrm{B}+\mathrm{C}-5 \mathrm{~A}=66$
$\Rightarrow 96-5 A=66$
$\Rightarrow 5 A=96-66$
$\Rightarrow \mathrm{A}=30 / 5=6$
Also, $F=6 A=6 \times 6=36$ years
After 12 years
Father's age $=\mathrm{F}+12=36+12=48$ years
87. (B) Let the price of one lemon juice bottle $=₹ x$
So, the price of one orange juice bottle $=₹ 2 x$
So, the price of one orange and 4 lemon juice bottle will be $=2 x+4 x=6 x$
Z' share in this will be $=6 x / 3=2 x=50$
Therefore $2 x=$ price of orange juice bottle $=₹ 50$
88. (D) $5^{18}+5^{19}+5^{20}$
$=5^{17}\left(1+5+5^{2}+5^{3}\right)$
$=5^{17}(156)$
156 is divisible by 13.
89. (C) $\left(a^{2}-1\right) / a=5$
$a-1 / a=5$
Cube both the sides
$a^{3}-1 / a^{3}-3 \times a \times 1 / a \times(a-1 / a)=125$
$a^{3}-1 / a^{3}-3 \times 5=125$ (using equation (i))
$a^{3}-1 / a^{3}=140$
or, $\left(a^{6}-1\right) / a^{3}=140$
90. (C) $10 \mathrm{~W} \times 12=8 \times 5 \mathrm{M}$
$\mathrm{M}=3 \mathrm{~W}$
Let total days required to complete the complete work by 6 women and 3 men be ' y '.
$(6 \mathrm{~W}+3 \mathrm{M}) y=10 \mathrm{~W} \times 12$
($10 \mathrm{~W} \times 12$ is equal to the total work)
$\Rightarrow(6 \mathrm{~W}+9 \mathrm{~W}) y=10 \mathrm{~W} \times 12$
$\Rightarrow 15 \mathrm{~W} y=10 \mathrm{~W} \times 12$
$\Rightarrow y=8$ days
91. (A) Let the length of train A be ' l_{1} ' and the length of train B be ' l_{2} '. Let their respective speeds be 'U ${ }_{a}^{\prime} \&{ }^{\prime} \mathrm{U}_{b}$ '
A.T.Q.,
$3\left\{\left(l_{1}+l_{2}\right) /\left(\mathrm{U}_{a}+\mathrm{U}_{b}\right)\right\}=\left(l_{1}+l_{2}\right) / \mathrm{U}_{a}-\mathrm{U}_{b}$
On solving the above equation,
$\Rightarrow 2 \mathrm{U}_{a}=4 \mathrm{U}_{b}$
$\Rightarrow \mathrm{U}_{a} / \mathrm{U}_{b}=2 / 1$
92. (C) Let the annual income $=x$
A.T.Q.,
$\Rightarrow(x \times 1 \times 4 / 100)-(x \times 1 \times 3.75 / 100)=$ 64
$\Rightarrow x / 100 \times(4-3.75)=64$
$\Rightarrow x=64 \times 100 / .25$
$\Rightarrow x=₹ 25600$
93. (C) Let the number of mangoes the fruit seller has originally be $100 x$
5% of total mangoes are rotten i.e. $5 x$ mangoes are rotten, remaining mangoes $=95 x$
Seller sells 75\% mangoes of remaining
i.e. $95 x \times \frac{75}{100}$

Remaining mangoes $=95 x-71.25 x=$ 95
$\Rightarrow x=4$
Seller has initially $100 x$ mangoes $=100$ $\times 4=400$ mangoes
94. (D) As, square root of $2222=47.13$, so, 2222 is not a perfect square.
Square root of $11664=108$, so, 11664 is a perfect square.
Square root of $343343=585.95$, so, 343343 is not a perfect square.
Square root of $220347=469.41$, so, 220347 is not a perfect square.
Thus, 1, 3 and 4 are not a perfect square.
95. (D) Given that the ratio of the number of boys in the first and the second standards is $2: 3$ and the ratio The number of boys in the second and third standards is $4: 5$
Now, we calculate a common ratio for all the three standards $2: 3$ and 4 : 5 will be $2 \times 4: 3 \times 4=8: 12$ and 4×3 : 5×3 = 12: 15

Therefore, the common ratio for all the three standards $8: 12: 15$
Sum of the ratio parts $=8+12+15=35$
Numbers of the boys in the first
standard $=\frac{8}{35} \times 350=80$
Number of boys in third standard
$=\frac{15}{35} \times 350=150$
Total number of boys in the both standards $=80+150=230$
96. (B) Let us assume the capacity of the tab is 100 L .
It is given that a tap can fill 100L in 10 hrs.
This means, in 1 hr . a tap can fill only 10L.
Therefore, in 7 hrs a tap can fill only 70 L .
This means in 5 hrs a tap fills only 30L but actually the tap should fill 50L in 5 hrs.
This means that there is a leakage of 20L which has duration of 5 hrs .
If 20 L of water is leaked in 5 hrs , then
1 L water is leaked om $\frac{5}{20}=\frac{1}{4} \mathrm{hrs}$
This means 100 L water is leaked in $\frac{1}{4} \times 100=25 \mathrm{hrs}$.
97. (D)

Let the radii of frustum of a cone be 'R' and r

Given that, $\frac{R}{1}=\frac{2}{1}$
Let angle $\mathrm{AC}^{\prime} \mathrm{O}=$ angle $\mathrm{ACO}=\theta$
Now, in triangle AC ' O ':
$\tan \theta=\frac{h}{r}=\frac{h}{k}$ [As, $\frac{\mathrm{R}}{2}=\frac{\mathrm{r}}{1}=\mathrm{k}$]
In triangle ACO,
$\tan \theta=\frac{h+x}{\mathrm{R}}=\frac{h+x}{2 \mathrm{k}}$
From (ii) and (iii), we get

$K D$
 Campus

KD Campus Pvt. Ltd

$\frac{h}{k}=\frac{h+x}{2 \mathrm{k}}$
$\Rightarrow h=\frac{h+x}{2}$
$\Rightarrow 2 h=h+x$
$\Rightarrow h=x$
Therefore, $\mathrm{H}=h+x=h+h=2 h$
$\Rightarrow \frac{\mathrm{H}}{\mathrm{h}}=\frac{2}{1}$
Now, volume of frustum of cone
$=\frac{\pi h}{3}\left(\mathrm{R}^{2}+\mathrm{R} r+r^{2}\right)$
and volume of cone $=\frac{1}{3} \pi r^{2} \mathrm{H}$
Required ratio $=\frac{\mathrm{R}^{2}+\mathrm{Rr}+r^{2}}{2 r^{2}}=\frac{7}{8}=7: 8$
98. (C) $\frac{(443+547)^{2}+(443-547)^{2}}{(443 \times 443)+(547 \times 547)}$

Let $a=443, b=547$
Then,
$\frac{(a+b)^{2}+(a-b)^{2}}{a^{2}+b^{2}}$
$\frac{a^{2}+b^{2}+2 a b+a^{2}+a^{2}+b^{2}-2 a b}{a^{2}+b^{2}}$
$=\frac{2 a^{2}+2 b^{2}}{a^{2}+b^{2}}$
$=\frac{2\left(a^{2}+b^{2}\right)}{\left(a^{2}+b^{2}\right)}$
$=2 \times 1=2$
99. (A) Ratio of weights of broken diamond $=$ 1: 2: 3: 4
Net weight $=x+2 x+3 x+4 x=10 x$
Price $=100 x^{2}$
Price $=x^{2}+4 x^{2}+9 x^{2}+16 x^{2}=30 x^{2}$
Net loss $=100 x^{2}-30 x^{2}=70 x^{2}$
Now,
$70 x^{2}=70000$
$\Rightarrow x^{2}=1000$
Price of original diamond $=100 x$
$=100 \times 1000$
$=100000$
100. (C) Let male $=\frac{5 x}{9}$

Female $=\frac{4 x}{9}$

Unmarried females $=\frac{4 x}{9}-\frac{5 x}{9} \times \frac{30}{100}$
$=\frac{4 x}{9}-\frac{x}{6}$
$=\frac{8 x-3 x}{10}$
$=\frac{5 x}{10}$
$\%$ of unmarried females $=\frac{\frac{5 x}{18} \times 100}{\frac{5 x}{9}+\frac{4 x}{9}}$
$=\frac{5 x \times 100}{18} \times \frac{9}{9 x}$
$=27 \frac{7}{9}$
101. (D) As Lead Tin

X:- $1: 2$
Y:- $2: 3$
Lead in $25 \mathrm{~kg}=\frac{25}{1+2}+\frac{25}{3}$
Tin in $25 \mathrm{~kg}=\frac{25 \times 2}{1+2}=\frac{50}{3}$
Now,
Lead in $125 \mathrm{~kg}=\frac{125 \times 2}{2+3}=50$
Tin in $125-50=75$
Lead in mixture $=50+\frac{25}{3}=\frac{175}{3}$
Tine in mixture $=75+\frac{50}{3}=\frac{275}{3}$
Ratio of lead: Tin
$=\frac{175}{3}: \frac{275}{3}$
$=7: 11$
102. (A)

Let D is diameter of each circle
Thus, side of square $=D$
Diagonal of square $=\sqrt{D^{2}+D^{2}}=D \sqrt{2}$
Diameter of shaded circle
$=\mathrm{D} \sqrt{2}-\mathrm{D}=\mathrm{D}(\sqrt{2}-1)$

Campus

KD Campus Pvt. Ltd

103. (A) $\frac{6^{2}+7^{2}+8^{2}+9^{2}+10^{2}}{\sqrt{7+4 \sqrt{3}}-\sqrt{4+2 \sqrt{3}}}$
$=\frac{36+49+64+81+100}{\sqrt{4+3+4 \sqrt{3}}-\sqrt{1+3+2 \sqrt{3}}}$
$=\frac{330}{\sqrt{2^{2}+(\sqrt{3})^{2}+2 \times 2 \times \sqrt{3}}-\sqrt{1^{2}+(\sqrt{3})^{2}+2 \times 1 \times \sqrt{3}}}$
$=\frac{330}{\sqrt{(2+\sqrt{3})^{2}-\sqrt{(1+\sqrt{3})^{2}}}}$
$=\frac{330}{\sqrt{2+\sqrt{3}-1-\sqrt{3}}}$
$=\frac{330}{1}=330$
104. (B) Let the number be x
A.T.Q.,
$8 x-\frac{x}{8}=2016$
$\Rightarrow \frac{64 x-x}{8}=2016$
$\Rightarrow 63 x=2016 \times 8$
$\Rightarrow x=256$
105. (D) Let speed of boat and stream be x and y.
A.T.Q.,
$x+y=\frac{20}{2}=10$
$x-y=\frac{4}{2}=2$
Adding (i) and (ii) we get
$2 x=12$
$\Rightarrow x=6$
$y=10-x=10-6=4$
Thus, speed of stream be $4 \mathrm{~km} / \mathrm{hr}$
106. (D) Given, cost of 2.5 kg rice $=₹ 125$

Cost of 9 kg rice $=₹ \frac{125}{2.5} \times 9$
$=$ cost of 4 kg pulses
Cost of 14 kg pulses $=\frac{125 \times 5}{2.5 \times 4} \times 14=$ cost of 1.5 kg tea

Cost of 2 kg tea $=\frac{125 \times 9 \times 14 \times 2}{2.5 \times 4 \times 1.5}=\mathrm{cost}$ of 5 kg nuts
Cost of 11 kg nuts $=\frac{125 \times 9 \times 14 \times 2 \times 11}{2.5 \times 4 \times 1.5 \times 5}$
$=\frac{125 \times 9 \times 14 \times 2 \times 11}{2.5 \times 4 \times 15 \times 5} \times 100$
= ₹ 4620
107. (B) Let original speed be 100 then increased
speed be 120 time taken in original speed be t
Then time taken in increase speed be ($t-20$)
As, distance in the both cases will be same
So, $100 t=120(t-20)$
$\Rightarrow 5 t=6(t-20)$
$\Rightarrow 5 t=6 t-120$
$\Rightarrow 6 t-5 t=120$
$\Rightarrow t=120$ minutes
108
$\frac{(4444)^{4444}}{9}$
$=\frac{(7)^{4444}}{9} \quad[$ When 4444 is divided by 9]
$=\frac{\left(-2^{4}\right)^{1111}}{9}$ [Remainder will be 7]
$=\frac{(16)^{1111}}{9} \quad[\operatorname{Or}(-2)$ negative remainder $]$
$=\frac{(-2)^{1110} \times(-2)}{9}[-2$ nagative remainder $]$
$=\frac{\left(-2^{6}\right)^{185} \times(-2)}{9}$
$=\frac{(64)^{185} \times(-2)}{9}$
$=\frac{(1)^{185} \times(-2)}{9}$
$=\frac{1 \times(-2)}{9}=\frac{7}{9}$
Hence remainder be 7
109. (D) As,

Mean of 300 number $=60$
$\Rightarrow \frac{\text { Sum of number }}{300}=60$
\Rightarrow Sum of 300 numbers $=300 \times 60=$ 18000
Sum of top 100 numbers + sum of last 100 numbers $=$ sum of
remaining numbers $=18000$
Sum of remaining 100 numbers +800
$+500=18000$
\Rightarrow Sum of remaining 100 numbers
$=18000-13000=5000$
Mean of remaining 100 numbers $=$ $\frac{5000}{100}=50$
110. (B) Let sum invested at rate 5% be P_{1}, at rate 6% be P_{2} then at rate $9 \%=17200-$ $\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)$
A.T.Q.,
$\mathrm{P}_{1} \times 5 \times 2 / 100=\mathrm{P}_{2} \times 6 \times 2 / 100$ or $\mathrm{P}_{1}=(6 / 5) \mathrm{P}_{2}$ Also, $\mathrm{P}_{2} \times 6 \times 2 / 100=\left[17200-\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)\right] \times 9 \times 2 / 100$ $\Rightarrow 2 \mathrm{P}_{2}=\left[17200-(11 / 5) \mathrm{P}_{2}\right] \times 3$
$\Rightarrow(2+33 / 5) \mathrm{P}_{2}=17200 \times 3$
$P_{2}=17200 \times 3 \times 5 / 43=6000$
$\Rightarrow P_{1}=6 / 5 P_{2}=7200$
\Rightarrow Sum invested at rate $9 \%=17200$ $(6000+7200)=₹ 4000$
111. (C) $(4 a+7 b)(4 c-7 d)=(4 a-7 b)(4 c+7 d)$ $(4 a+7 b) /(4 a-7 b)=(4 c+7 d) /(4 c-7 d)$ Using componendo and dividendo $(4 a+7 b)+(4 a-7 b) /(4 a+7 b)-(4 a-$ $7 b)=(4 c+7 d)+(4 c-7 d) /(4 c+7 d)-$ ($4 c-7 d$)
Or $8 a / 14 b=8 c / 14 d$
Or $a / b=c / d$
112. (B) Let A takes days to finish work $=x$

Let B takes days to finish work $=x+10$
As A is thrice more efficient, hence B will take 3 times the time taken by A.
$x+10=3 x$
Solving, we get: $x=5$
Time taken by $\mathrm{B}=x+10=15$ days
113. (C) As XY235 is divisible by 3,
$\mathrm{X}+\mathrm{Y}+2+3+5$ is divisible by 3
$\mathrm{X}+\mathrm{Y}+10$ is divisible by 3
Also, $\mathrm{X}+\mathrm{Y}<=5$,
Hence ($\mathrm{X}+\mathrm{Y}$) can be 2 or 5 (as both 12 \& 15 are divisible by 3)
For $X+Y=2$, solution $(1,1),(2,0)$
For $X+Y=5$, solution $(5,0),(4,1),(3$, 2), $(2,3),(1,4)$

Hence, there are 7 possible pairs.
114. (B) C.P. $=\frac{680}{12+5} \times 100$
$=₹ 4000$
S P. $=4000 \times \frac{140}{100}$
$=₹ 5600$
115. (C) Net price $=\frac{10 \times 279}{(100-10) \times 6.2}=₹ 5 / \mathrm{kg}$

Mark price $=\frac{10 \times 279}{100 \times 6.2}=₹ 4.5 / \mathrm{kg}$
Difference $=5-4.5=0.50$
116. (D) Required ratio $=\frac{(75+65)}{(85+95)}=\frac{140}{180}=\frac{7}{9}$
117. (C) Required percentage
$=\left[\frac{(70+80)}{(95+110)} \times 100\right] \%$
$=\left[\frac{150}{205} \times 100\right] \%$
= 73.17%
118. (D) Average sales (in thousands number) of branches B1, B3 and B6 in 200
$=\frac{1}{3} \times(80+95+70)=\left(\frac{245}{3}\right)$
Average sales (in thousands number) of branches B1, B2 and B3 in 2001
$=\frac{1}{3} \times(105+65+110)=\left(\frac{280}{3}\right)$
\therefore Required percentage $=\left[\frac{\frac{245}{3}}{\frac{280}{3}} \times 100\right] \%$
$=\left(\frac{245}{280} \times 100\right) \%=87.5 \%$
119. (B) Average sales of all the six branches (in thousands numbers) for the year 2000
$=\frac{1}{6} \times[80+75+95+75+70]$
$=80$
120. (D) Total sales of branches B1, B3 and B5 for both the years (in thousands numbers)
$=(80+105)+(95+110)+(75+95)$
$=560$
121. (D) ज्निप्र का रबिहा र का प्र \dagger^{\prime} कर्म से नदी है उ से प्र क्र र पश्चिम बं गा ल का प्र ${ }^{\prime}$ कद्या मा दर नदी है
 दक्षित प अफ्री का का मु रैद्र 'ड़ै ।
123. (C) $\mathrm{Z}+\mathrm{Y}-\mathrm{Z}=26$, उ से प्र का $\mathrm{X}+\mathrm{P}-\mathrm{X}=16$.
124. (C) जि्सप्र का र, $(7)^{2}-7=42$

उ से प्र का $(11)^{2}-11=\mathbf{1 1 0}$
125. (A) बी जापि त, जय मितितथ T अं कगतीप्तितका $\mathcal{I} T$ ग है
126. (B) जि्मप का र,
$(11)^{2}+4=125$
$(20)^{2}+4=404$
$(16)^{2}+4=260$
उ से प्र का र,
$(14)^{2}+4=200$

$K D$
 Campus

KD Campus Pvt. Ltd

128. (C) जिसप्र का र,
$\begin{aligned} 33+7 & =40 \\ 5+2 & =7 \\ 10+3 & =13 \\ 6+3 & =9\end{aligned} \longrightarrow \frac{40}{7}=\mathbf{5}$ शे षा ष
उ से प्र का र,
$\begin{gathered}33+4=37 \\ 8+9=17\end{gathered} \longrightarrow \frac{37}{17}=\mathbf{3}$ \$े षा ष
129. (B) जिस्प का र, $\mathrm{T}=20+4=24$
$V=22+4=26$
$\mathrm{L}=12+4=16$
उ से प्र का रू $=19+4=\mathbf{2 3}$

131. (A) जिसम का र,
$7 \times 3=$ 'U' $=21$
$5 \times 3=$ 'O' $=15$
$6 \times 4=$ 'X' $=24$
$9 \times 2=$ 'R' $=18$
उ से प्र का र,
$9 \times 1=$ 'I' = 9
132. (B) aanan
133. (B)

अब, वह आ रमि $\mathcal{F} T$ कस थT T सक्ष्ष्त्र प दिश्र में है।
134. (C)
135. (A) 10V12M42L6S4
$=10-12+42 \div 6 \times 4$
$=10-12+7 \times 4$
$=10-12+28=\mathbf{2 6}$
136. (A) जिसप्र का र,

B	E	A	U T T I	F	U		
\downarrow	\downarrow						
C	\downarrow						
C	D	O	G	H	\downarrow	\downarrow	K

उ से प्र का र,
L E A F
\downarrow
\downarrow
\mathbf{N}
D
O K
137. (B) प्र झा नु सा र,
$(n-2) \times 12$
$=\left(\begin{array}{ll}3 & 2\end{array}\right) \times 12$
$=12$
138. (A)
139. (A)

140. (C)
142. (A)
143. (A) प्र झा नु सा र,
$\mathrm{C}>\mathrm{A}>\mathrm{A}=\mathrm{D}>\mathrm{E}$
अत: \mathbf{D}, \mathbf{A} से छा' टा है।
144. (B)

अत: मा ह,नसं दी पका दा दा है ।
145. (A) यहाँ $\mathrm{t}=3$ बजे $(\mathrm{t}=1)=4$ बजे, $x=7$ मिनट

सुラ T के अनु सर,
t बज्सर $(5 \mathrm{t} \pm x) \times 12$
मिनट पहा ड . १ की दाॅ नर्टेमिनुसइबीँ दू री पहा
समय $=3$ बज्कर $\left(\frac{5 \times 3 \times 7}{11}\right) \times 12$ मिनट
$=3$ बज्ञम 24 मिनट.
146. (D)

147. (D) $36-6+3 \times 5 \div 3$
$=36 \times 6 \div 3+5-3$
$=36 \times 2+2$
$=72+2$
$=74$
148. (B) मा ना किप्ति की वर्त मा न $\neq \mathrm{C}_{\mathrm{C}}$ वण T^{\wedge}

प्र स से ,
$x+5=3(y+5)$
$x-3 y=10$
पु न: प्र स से,$~ व ष{ }^{〔}$ पले
$x-5=7(y-5)$
$\Rightarrow x-7 y=-30$
सी करण (i) तथT T(ii) का हल करने पर
$x-3 y=10$
$x-7 y=-30$
$\frac{-+\quad+}{4 y=40}$
$y=10$
सी . (i) मे y का मा न रख ने पर
$x-3 \times 10=10$
$\Rightarrow x=40$
\therefore पिता की वर्त मा न आड्यु40 वणा

