NDA MATHS MOCK TEST - 176 (SOLUTION)

1. (A) $\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}=\frac{\sqrt{a_{1}}-\sqrt{a_{2}}}{a_{1}-a_{2}}$
$=\frac{\sqrt{a_{1}}-\sqrt{a_{2}}}{-d}$
Now,
$-\frac{1}{d}\left[\sqrt{a_{1}}-\sqrt{a_{2}}+\sqrt{a_{2}}-\sqrt{a_{3}}+\sqrt{a_{3}}-\sqrt{a_{4}}+\ldots . \sqrt{a_{n-1}}-\sqrt{a_{n}}\right]$
$\Rightarrow-\frac{1}{d}\left[\sqrt{a_{1}}-\sqrt{a_{n}}\right]$
$\Rightarrow-\frac{1}{d}\left[\frac{\left(\sqrt{a_{1}}-\sqrt{a_{n}}\right)}{\sqrt{a_{1}}+\sqrt{a_{n}}}\left(\sqrt{a_{1}}+\sqrt{a_{n}}\right)\right]$
$\Rightarrow-\frac{1}{d}\left[\frac{a_{1}-a_{n}}{\sqrt{a_{1}}+\sqrt{a_{n}}}\right]=\frac{1}{d}\left[\frac{a_{n}-a_{1}}{\sqrt{a_{1}}+\sqrt{a_{n}}}\right]$
from equestion $a_{1}, a_{2}, a_{3} \ldots$. an in A.P.
$a_{n}=a_{1}+(n-1) d$
$a_{n}-a_{1}=(n-1) d$
Now,
$\frac{1}{d}\left[\frac{(n-1) d}{\sqrt{a_{1}}+\sqrt{a_{n}}}\right]=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
2. (B) A.T.Q,
$100<13 \mathrm{k}+2<8000$
$98<13 \mathrm{k}<7998$
$7.8<\mathrm{k}<615.2$
Now,
$\mathrm{k}=8,9,10,11, \ldots \ldots, 615$
Now, Number are $=13 \mathrm{k}+2$
$=106,119,132 \ldots .7997$

$$
a=106, d=13
$$

$\mathrm{T}_{n}=a+(n-1) d$
$\Rightarrow 7997=106+(n-1) 13$
$\Rightarrow n=608$
$\mathrm{S}_{n}=\frac{n}{2}[2 a+(n+1) d]$
$=\frac{608}{2}[212+607 \times 13]$
$=304[212+7891]$
$=2463312$
3. (D) Let α be the common root of the two equations.
Then $a \alpha^{2}+b \alpha+c=0$
and, $b \alpha^{2}+c \alpha+a=0$
after solving eq ${ }^{n}$ (i) and (ii), we get
$\frac{\alpha^{2}}{a b-c^{2}}=\frac{\alpha}{b c-a^{2}}=\frac{1}{a c-b^{2}}$
$\Rightarrow \alpha^{2}=\frac{a b-c^{2}}{a c-b^{2}}$ and $\alpha=\frac{b c-a^{2}}{a c-b^{2}}$
$\Rightarrow\left(\frac{b c-a^{2}}{a c-b^{2}}\right)^{2}=\left(\frac{a b-c^{2}}{a c-b^{2}}\right) \quad\left[\because \alpha^{2}=(\alpha)^{2}\right]$
$\Rightarrow\left(a b-c^{2}\right)\left(a c-b^{2}\right)=\left(b c-a^{2}\right)^{2}$
$\Rightarrow a\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=0$
$\Rightarrow a^{3}+b^{3}+c^{3}-3 a b c=0 \quad[\because a \neq 0$
$\Rightarrow a^{3}+b^{3}+c^{3}=3 a b c$
4. (B) Let $f(x)=(x-a)^{3}+(x-b)^{3}+(x-c)^{3}=0$ Now, differentiate w.r.t x
$f(x)=3\left[(x-a)^{2}+(x-b)^{2}+(x-c)^{2}\right]$
clearly,
$f^{\prime}(x)>0 \forall x$.
So, $f^{\prime}(x)=0$ has no real roots. so,
$f(x)=0$ has two imaginary roots and one real root.
5. (B) $|x|^{2}+|x|-6=0$
$\Rightarrow(|x|+3)(|x|-2)=0$
$\Rightarrow(|x|+3) \neq 0 \Rightarrow(|x|-2)=0$
$\Rightarrow|x|=2$
$\Rightarrow x= \pm 2$
6. (C) Let first term of AP is ' a ' and common difference is ' d '
$a+(\mathrm{p}-1) d=\mathrm{q}$
$a+(\mathrm{q}-1) d=\mathrm{p}$
after solving $\mathrm{eq}^{\mathrm{n}}(\mathrm{i})$ and (ii), we get
$d=-1 \quad a=\mathrm{q}+\mathrm{p}-1$
Now,
$\mathrm{T}_{r}=a+(\mathrm{r}-1) d$
$\mathrm{T}_{r}=\mathrm{q}+\mathrm{p}-1+(\mathrm{r}-1)(-1)$
$\mathrm{T}_{r}=\mathrm{p}+\mathrm{q}-\mathrm{r}$
7. (D) $\frac{1}{5}, \frac{1}{9}, \frac{1}{13} \ldots .7^{\text {th }}$ term (H.P.)
$5,9,13, \ldots \ldots .$. (A.P.)
$a=5, d=9-5=4$
$\mathrm{T}_{n}=a+(n-1) d$
$\mathrm{T}_{7}=a+6 d$
(A.P.) $\rightarrow \mathrm{T}_{7}=5+6 \times 4=29$
(H.P.) $\rightarrow \mathrm{T}_{7}=\frac{1}{29}$
8. (C) Let $x=\sqrt{-i}$
$x^{2}=-i$
taking $x^{2}+i=0$
Now, by taking option (C), Put $x=$
$\pm \frac{1}{\sqrt{2}}(1-i)$
\Rightarrow eq $^{n}(\mathrm{i})$ is setisfy
\Rightarrow square root of $(-i)= \pm \frac{1}{\sqrt{2}}(1-i)$
9. (B) $\left(3 x^{2}-\frac{1}{3 x}\right)^{9}$
find coefficient of x^{6}
$r=\frac{9 \times 2-6}{2+1}$
$r=4$
We know that
$\left(a x^{p}+\frac{b}{x^{q}}\right)^{n}$
Find coefficient of x^{M}
$r=\frac{n p-\mathrm{M}}{p+q}$
(coefficient of x^{M}) $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} a^{r}$
Coefficient of $x^{6}\left(\mathrm{~T}_{r+1}\right)={ }^{9} \mathrm{C}_{4}(3)^{5}\left(\frac{-1}{3}\right)^{4}$
$=\frac{9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4} \times 3$
$=378$
10. (B) We know that $a \sin \theta+b \cos \theta$
max. value $\sqrt{a^{2}+b^{2}}$
Now, $7 \sin \theta+3 \cos \theta$
max. value $=\sqrt{7^{2}+3^{2}}=\sqrt{49+9}=\sqrt{58}$
11. (C) We know that

$$
\begin{aligned}
\tan \frac{c}{2} & =\sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \\
\text { Now, } s & =\frac{a+b+c}{2}=\frac{5+6+7}{2}=9 \\
\Rightarrow \tan \frac{c}{2} & =\sqrt{\frac{(9-5)(9-6)}{9(9-7)}} \\
& =\sqrt{\frac{4 \times 3}{9 \times 2}}=\sqrt{\frac{2}{3}}
\end{aligned}
$$

12. (B) We know
$|\mathrm{A}|=\left|\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right|$
$=1(1-4)-2(2-4)+2(4-2)$
$=5 \neq 0$
Thus, A is non-singular matrix of order 3.
Therefore $\mathrm{r}(\mathrm{A})=3$
13. (B)
14. (D) We have
$(\mathrm{ABC})^{-1}=[\mathrm{A}(\mathrm{BC})]^{-1}$
$=(\mathrm{BC})^{-1} \mathrm{~A}^{-1}$
$=\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}$
15. (A) Let A be a symmetric matrix.

$\Rightarrow\left(A^{-1}\right)^{T} A^{T}=I \Rightarrow\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$
$\Rightarrow\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}=\mathrm{A}^{-1} \quad\left[\because \mathrm{~A}^{\mathrm{T}}=\mathrm{A}\right]$
$\Rightarrow A^{-1}$ is a symmetric martrix.
16. (B)
17. (A) We have
$(A+B)(A-B)=A^{2}-A B+B A-B^{2}$
So, (A) is not true.
18. (C) Since α, β, γ are the roots of the given eq^{n},
therefore $\alpha+\beta+\gamma=-a$
$\alpha \beta+\beta \gamma+\gamma \alpha=0$
and $\alpha \beta \gamma=-b$
Now,
$\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|=-(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta+\right.$
$\beta \gamma+\gamma \alpha)$
$=-(\alpha+\beta+\gamma)\left\{(\alpha+\beta+\gamma)^{2}-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right\}$
$=-(-a)\left\{\left(a^{2}-0\right)\right\}=a^{3}$
19. (A) Let $\Delta=\left|\begin{array}{lll}b^{2} c^{2} & b c & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right|$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}(a), \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}(b)$ and R_{3} $\rightarrow \mathrm{R}_{3}(c)$,
We get
$\Delta=\frac{1}{a b c}\left|\begin{array}{lll}a b^{2} c^{2} & a b c & a b+a c \\ b c^{2} a^{2} & a b c & b c+b a \\ c a^{2} b^{2} & a b c & a c+b c\end{array}\right|$
$\left[\because \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}\right.$ are multiplied by a, b and c respectively therefore we divide by $a b c$]
$=\frac{1}{a b c}(a b c)^{2}\left|\begin{array}{lll}b c & 1 & a b+a c \\ c a & 1 & b c+b a \\ a b & 1 & a c+b c\end{array}\right|$
$=a b c\left|\begin{array}{lll}b c & 1 & a b+b c+c a \\ c a & 1 & a b+b c+c a \\ a b & 1 & a b+b c+c a\end{array}\right|\left[\begin{array}{l}\text { Appling } \\ \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{1}\end{array}\right]$
$=a b c(a b+b c+c a)\left|\begin{array}{lll}b c & 1 & 1 \\ c a & 1 & 1 \\ a b & 1 & 1\end{array}\right|$
$=a b c(a b+b c+c a) .0$
$\left[\begin{array}{l}\because \mathrm{C}_{2} \text { and } \mathrm{C}_{3} \\ \text { are identitical }\end{array}\right]$
$=0$
20. (B) We have

$$
\begin{aligned}
\left.\sum_{n=1}^{\infty} \frac{2 n}{(2 n}+1\right)! & \sum_{n=1}^{\infty} \frac{2 n+1-1}{(2 n+1)!} \\
& =\sum_{n=1}^{\infty}\left(\frac{1}{(2 n)!}-\frac{1}{(2 n+1)!}\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{(2 n)!}-\sum_{n=1}^{\infty} \frac{1}{(2 n+1)!} \\
& =\left(\frac{e+e^{-1}}{2}-1\right)-\left(\frac{e-e^{-1}}{2}-1\right) \\
& =e^{-1}
\end{aligned}
$$

21. (D) We have $\mathrm{T}_{3}=1000$

$$
\begin{aligned}
& \Rightarrow \mathrm{T}_{2+1}=1000 \Rightarrow{ }^{5} \mathrm{C}_{2}\left(\frac{1}{x}\right)^{5-2}\left(x^{\log _{10} x}\right)^{2}=1000 \\
& \Rightarrow 10 x^{2} \log _{10} x \Rightarrow x^{-3}=1000 \\
& \Rightarrow x^{2} \log _{10} x-3 \\
& \Rightarrow 2 \log _{10} x-3=10^{2} \\
& \Rightarrow 2 \log _{10} x-3=\log _{x} 10^{2} \\
& \Rightarrow 2 \log _{10} x-3=\frac{2}{\log _{10} x} \quad \text { let } y=\log _{10} x \\
& \Rightarrow 2 y-3=\frac{2}{y} \\
& \Rightarrow 2 y^{2}-3 y-2=0 \\
& \Rightarrow(2 y+1)(y-2)=0 \\
& \Rightarrow y=2\left(\because y \neq-\frac{1}{2}\right) \Rightarrow \log _{10} x=2 \\
& \Rightarrow x=10^{2}=100
\end{aligned}
$$

22. (B) Let $(\sqrt{2}+1)^{6}=I+F$,
where I is an integer and $0 \leq \mathrm{F} \leq 1$.
Let $G=(\sqrt{2}-1)^{6}$
then $\mathrm{I}+\mathrm{F}+\mathrm{G}=(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$
$=2\left[{ }^{6} \mathrm{C}_{0}(\sqrt{2})^{6}+\ldots\right]=$ an integer
$\therefore \mathrm{F}+\mathrm{G}=1$

Substituting $F+G=1$ in $\mathrm{eq}^{\mathrm{n}}(\mathrm{i})$, we get
$\mathrm{I}+1=2\left[{ }^{6} \mathrm{C}_{0}(\sqrt{2})^{6}+{ }^{6} \mathrm{C}_{2}(\sqrt{2})^{4}+{ }^{6} \mathrm{C}_{4}(\sqrt{2})^{2}\right.$
$\left.+{ }^{6} \mathrm{C}_{6}(\sqrt{2})\right]$
$I+1=2[8+60+30+1]$
$I+1=198$
$\mathrm{I}=197$
23. (A) ${ }^{n} \mathrm{C}_{15}={ }^{n} \mathrm{C}_{8} \Rightarrow 15+8=23$
$\left[{ }^{n} \mathrm{C}_{x}={ }^{n} \mathrm{C}_{y} \Rightarrow x+y=n\right]$
$\therefore{ }^{n} \mathrm{C}_{21}={ }^{23} \mathrm{C}_{21}$
$=\frac{(23)!}{(21)!(23-21)!}=\frac{(23)!}{(21)!(2)!}$
$=\frac{23 \times 22 \times 21!}{21!\times 2}=23 \times 11$
$=253$
24. (C) We have
${ }^{n} \mathrm{P}_{r}={ }^{n} \mathrm{P}_{r+1}$
$\Rightarrow \frac{n!}{(n-r)!}=\frac{n!}{(n-r-1)!}$
$\Rightarrow \frac{1}{(n-r)(n-r-1)!}=\frac{1}{(n-r-1)!}$
$\Rightarrow n-r=1$
And,
${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{r-1}$
$\Rightarrow \frac{n!}{r!(n-r)!}=\frac{n!}{(r-1)!(n-r+1)!}$
$\Rightarrow \frac{1}{r(r-1)!(n-r)!}=\frac{1}{(r-1)!(n-r+1)(n-r)!}$
$\Rightarrow n-r+1=r$
$n-2 r=-1$
After solving eq ${ }^{\mathrm{n}}$ (i) and (ii) we get $n=3$ and $r=2$
25. (D) Since roots are imaginary, therefore $b^{2}-4 a c<0$
the roots α and β are given by
$\alpha=\frac{-b+i \sqrt{4 a c-b^{2}}}{2 a}$
$\beta=\frac{-b-i \sqrt{4 a c-b^{2}}}{2 a}$
Clearly, $\alpha=\bar{\beta}$, therefore, $|\alpha|=|\beta|$
Furthermore,
$|\alpha|=\sqrt{\frac{b^{2}}{4 a^{2}}+\frac{4 a c-b^{2}}{4 a^{2}}}$
$|\alpha|=\sqrt{\frac{c}{a}}$
$[\because c>a]$
$\Rightarrow|\alpha|>1$

$$
\Rightarrow \int \frac{(x-4)}{(x-2)^{3}} e^{x} d x=e^{x} \frac{1}{(x-2)^{2}}+c
$$

29. (D) Consider, $\int \frac{x^{2}+1}{(x-1)^{2}(x+3)} d x$

Let $\frac{\left(x^{2}+1\right)}{(x-1)^{2}(x+3)}=\frac{\mathrm{A}}{(x-1)}+\frac{\mathrm{B}}{(x-1)^{2}}+\frac{\mathrm{C}}{(x+3)}$

After solving eq ${ }^{4}$ (i) we get
$\mathrm{A}=\frac{3}{8}, \mathrm{~B}=\frac{1}{2}, \mathrm{C}=\frac{5}{8}$
$\therefore \int \frac{x^{2}+1}{(x+3)(x-1)^{2}} d x$
$=\frac{3}{8} \int \frac{1}{(x-1)} d x+\frac{1}{2} \int \frac{1}{(x-1)^{2}} d x+\frac{5}{8} \int \frac{d x}{(x+3)}$
$=\frac{3}{8} \log |x-1|-\frac{1}{2(x+1)}+\frac{5}{8} \log |x+3|+c$
30. (C) We have
$\int 5^{5^{5^{x}}} \cdot 5^{5^{x}} \cdot 5^{x} d x$
Put $5^{5^{5^{x}}}=t$
$5^{5^{5^{x}}} \cdot 5^{5^{x}} \cdot 5^{x}\left(\log _{e} 5\right)^{3} d x=d t$
Now,

$$
\begin{aligned}
\int 5^{5^{5^{x}}} \cdot 5^{5^{x}} \cdot 5^{x} d x & =\int \frac{d t}{\left(\log _{3} 5\right)^{3}} \\
& =\frac{t}{\left(\log _{e} 5\right)^{3}}+c \\
& =\frac{5^{5^{5^{x}}}}{\left(\log _{e} 5\right)^{3}}+c
\end{aligned}
$$

31. (A) Let $\mathrm{I}=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
using property $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
$\Rightarrow \mathrm{I}=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x$
Adding eq ${ }^{\mathrm{n}}$ (i) and (ii)
$\Rightarrow 2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x$
Let $\cos x=t \Rightarrow-\sin x d x=d t$
$x=0 \Rightarrow t=1$
$x=\pi \Rightarrow t=-1$

Campus

KD Campus Pvt. Ltd

1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009
$\Rightarrow 2 \mathrm{I}=-\pi \int_{1}^{-1} \frac{d t}{\left(1+t^{2}\right)}$
$\Rightarrow 2 \mathrm{I}=-\pi\left[\tan ^{-1} t\right]_{1}^{-1}$
$\Rightarrow 2 \mathrm{I}=-\pi\left[\tan ^{-1}(-1)-\tan ^{-1}(1)\right]$
$\Rightarrow 2 \mathrm{I}=-\pi\left[\frac{-\pi}{4}-\frac{\pi}{4}\right]=\frac{\pi^{2}}{2}$
$\Rightarrow I=\frac{\pi^{2}}{4}$
32. (B) Let $\mathrm{I}=\int_{0}^{2 \pi} \frac{1}{1+e^{\sin x}} d x$
using property $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
$\Rightarrow \mathrm{I}=\int_{0}^{2 \pi} \frac{1}{1+e^{\sin (2 \pi-x)}} d x$
$\Rightarrow \mathrm{I}=\int_{0}^{2 \pi} \frac{1}{1+e^{-\sin x}} d x$
$\Rightarrow \mathrm{I}=\int_{0}^{2 \pi} \frac{e^{\sin x}}{e^{\sin x}+1} d x$
Adding eq ${ }^{\mathrm{n}}$ (i) and (ii)
$\Rightarrow 2 \mathrm{I}=\int_{0}^{2 \pi}\left(\frac{1}{1+e^{\sin x}}+\frac{e^{\sin x}}{1+e^{\sin x}}\right) d x$
$\Rightarrow 2 \mathrm{I}=\int_{0}^{2 \pi} \frac{1+e^{\sin x}}{1+e^{\sin x}} d x$
$\Rightarrow 2 \mathrm{I}=[x]_{0}^{2 \pi}=[2 \pi-0]$
$\Rightarrow \mathrm{I}=\pi$
33. (A) $\mathrm{I}=\int_{1}^{4} f(x) d x$

$$
\begin{aligned}
& \text { given } f(x)=\left\{\begin{array}{cc}
2 x+8, & 1 \leq x \leq 2 \\
6 x, & 2 \leq x \leq 4
\end{array}\right. \\
& =\int_{1}^{2}(2 x+8) d x+\int_{2}^{4} 6 x d x \\
& =\left[\frac{2 x^{2}}{2}+8 x\right]_{1}^{2}+\left[\frac{6 x^{2}}{2}\right]_{2}^{4} \\
& =\left[x^{2}+8 x\right]_{1}^{2}+\left[3 x^{2}\right]_{2}^{4} \\
& =[(4+16)-(1+8)]+[48-12] \\
& =47
\end{aligned}
$$

34. (D) $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{a}|}$
$\cos \theta=\frac{1-1-1}{\sqrt{3} \sqrt{3}}=-\frac{1}{3}$
$\theta=\cos ^{-1}\left(-\frac{1}{3}\right)$
Angle bet ${ }^{\mathrm{n}}$ two vectors is $\theta=\cos ^{-1}\left(-\frac{1}{3}\right)$
35. (C) By example :-

Rational No. $\Rightarrow \frac{1}{2}=0.5$ (Terminating)
Rational No. $\Rightarrow \frac{1}{3}=0.3333 \ldots$ (Non terminating, recurring)

Irrational No. $\Rightarrow \sqrt{2}=1.414 \ldots$ (Non terminating, non recurring)
36. (D) $x=\sqrt{3}+\sqrt{2}$

$$
x^{2}=\frac{1}{x^{2}}=\frac{1}{(\sqrt{3}+\sqrt{2})^{2}}=\frac{1}{5+2 \sqrt{6}}=5-2 \sqrt{6}
$$

37. (B) $x^{2}-5|x|+6=0$
$|x|^{2}-5|x|+6=0$

$$
\begin{array}{r}
x^{2}=|x|^{2} \\
\Rightarrow|x|=a \\
x= \pm a
\end{array}
$$

$(|x|-3)(|x|-2)=0$
$|x|=3 \Rightarrow x= \pm 3$
$|x|=2 \Rightarrow x= \pm 2$
$x=3,-3,2,-2$
four real roots
38. (C) $x=y \sqrt{1-y^{2}}$
diff. w.r. to x
$\Rightarrow 1=\frac{d y}{d x} \sqrt{1-y^{2}}+y \frac{1}{2 \sqrt{1-y^{2}}}(-2 y) \frac{d y}{d x}$
$\Rightarrow 1=\frac{d y}{d x}\left[\sqrt{1-y^{2}}-\frac{y^{2}}{\sqrt{1-y^{2}}}\right]$
$\Rightarrow 1=\frac{d y}{d x}\left[\frac{1-2 y^{2}}{\sqrt{1-y^{2}}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\left(1-2 y^{2}\right)}$
39. (C) $x^{m} y^{n}=2(x+y)^{m+n}$
taking log both sides
$\Rightarrow \log \left(x^{m} y^{n}\right)=\log 2(x+y)^{m+n}$
$\Rightarrow m \log x+n \log y=\log 2+(m+n) \log (x+y)$
Now, diff. w.r . to x
$\Rightarrow \frac{m}{x}+\frac{n}{y} \frac{d y}{d x}=0+\frac{(m+n)}{(x+y)}\left[1+\frac{d y}{d x}\right]$
$\Rightarrow \frac{d y}{d x}\left[\frac{(m+n)}{(x+y)}-\frac{n}{y}\right]=\left[\frac{m}{x}-\frac{m+n}{x+y}\right]$
$\Rightarrow \frac{d y}{d x}\left[\frac{m y+n y-n x-n y}{y(x+y)}\right]=\left[\frac{m x+m y-m x+n x}{x(x+y)}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x}$
40. (C) Let $y=\frac{d}{d x}\left[\sin ^{-1}\left(x \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{2}}\right)\right]$

Put $x=\sin \alpha$ and $\sqrt{x}=\sin \beta$
$\therefore y=\frac{d}{d x}\left[\sin ^{-1}\left(\sin \alpha \sqrt{1-\sin ^{2} \beta}-\sin \beta \sqrt{1-\sin ^{2} \alpha}\right)\right]$
$=\frac{d}{d x}\left[\sin ^{-1}[\sin (\alpha-\beta)]\right]$
$=\frac{d}{d x}(\alpha-\beta)$
$=\frac{d}{d x}\left(\sin ^{-1} x-\sin ^{-1} \sqrt{x}\right)$
$=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{2 \sqrt{x} \sqrt{1-x}}$
$=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{2 \sqrt{x(1-x)}}$
41. (B) $f(x-y), f(x) f(y)$ and $f(x+y)$ are in AP $\Rightarrow 2 f(x) f(x)=f(x-y)+f(x+y)$
when $x=0, y=0$
$2 f(0) f(0)=f(0)+f(0)$
$\Rightarrow f(0)=1$
$[\because f(0) \neq 0]$
when $x=0, y=-x$ then from (i)
$2 f(0) f(-x)=f(x)+f(-x)$
$\Rightarrow f(-x)=f(x)$
$\therefore f(x)+f(-x)=0$
Hence $f^{\prime}(2)+f^{\prime}(-2)=0$
$\& f^{\prime}(3)+f^{\prime}(-3)=0$
42. (B) We have
$x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$
$\left[\begin{array}{l}2 x \\ 3 x\end{array}\right]+\left[\begin{array}{c}-y \\ y\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$
$\left[\begin{array}{l}2 x-y \\ 3 x-y\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$
Now,
$2 x-y=10$
$3 x+y=5$
Solving eq ${ }^{\mathrm{n}}$ (i) and (ii) we get
$x=-3, y=-4$
43. (D) $1^{3}, 2^{3}$

Only two factors are perfect cube
44. (C) We know that
$\left[\frac{8}{5}\right]=[1.6]=1$
$\left[\frac{-8}{5}\right]=[-1.6]=-2$
$\left[\frac{-26}{7}\right]=[-3.7]=-4$
Now, A.T.Q.,

$$
1-2+4=3
$$

45. (B) Here $(x-3)$ and $\left(x-\frac{1}{3}\right)$ is factor of $a x^{2}+$
$5 x+b$
$\Rightarrow 3, \frac{1}{3}$ are zeros
We know that
Sum of zeros $=\frac{-B}{A}$
$\Rightarrow 3+\frac{1}{3}=\frac{-5}{a}$
$\Rightarrow a=\frac{-3}{2}$
Product of zeros $=\frac{\mathrm{C}}{\mathrm{A}}$
$\Rightarrow 1=\frac{b}{a}$
$\Rightarrow b=\frac{-3}{2}$
46. (B) We have
$A^{2}=A \Rightarrow A^{3}=A^{2}=A$
Now,
$(\mathrm{A}-\mathrm{I})^{3}+(\mathrm{A}+\mathrm{I})^{3}-7 \mathrm{~A}$
$\Rightarrow A^{3}-I^{3}-3 A^{2} I+3 A I^{2}+A^{3}+\mathrm{I}^{3}+3 \mathrm{AI}^{2}+$ $3 A^{2} I-7 A$
$\Rightarrow \mathrm{A}-\mathrm{I}-3 \mathrm{~A}+3 \mathrm{~A}+\mathrm{A}+\mathrm{I}+3 \mathrm{~A}+3 \mathrm{~A}-7 \mathrm{~A}$
$\Rightarrow \mathrm{A}$
47. (B) We know that
$\sin x_{i} \leq 1$
$\forall i=1,2, \ldots \ldots . n$
$\sin x_{1}+2 \sin x_{2}+\ldots \ldots . n \sin x_{n} \leq 1+2+3 \ldots$ $\ldots .+n$
$\sin x_{1}+2 \sin x_{2}+$ \qquad $n \sin x_{n} \leq \frac{n(n+1)}{2}$
$\operatorname{Max}\left(\sin x_{1}+2 \sin x_{2}+\right.$ \qquad $\left.n \sin x_{n}\right)=$ $\frac{n(n+1)}{2}$
48. (A) We have LHD
$\lim _{h \rightarrow 0} \frac{f(k)-f(k-h)}{h}$
$\lim _{h \rightarrow 0} \frac{k \sin (k \pi)-(k-h) \sin (k-h) \pi}{h}$
$\lim _{h \rightarrow 0} \frac{-(k-1) \sin (k-h) \pi}{h}$
We know
$\sin (k \pi)=0$
$\sin (k \pi-\pi h)=(-1) k-1 \sin h \pi$
$\lim _{h \rightarrow 0} \frac{-(k-1)(-1)^{k-1} \sin h \pi}{h \pi} \times \pi$
$(-1)^{k}(k-1) \pi$
49. (A) Consider, $f(n)=\sin ^{n} \theta+\cos ^{n} \theta$
$\therefore \frac{f(3)-f(5)}{f(5)-f(7)}=\frac{\sin ^{3} \theta+\cos ^{3} \theta-\sin ^{5} \theta-\cos ^{5} \theta}{\sin ^{5} \theta-\sin ^{5} \theta+\cos ^{7} \theta-\cos ^{7}-\theta}$
$=\frac{\sin ^{3} \theta+\cos ^{5} \theta-\sin ^{3} \theta-\cos ^{5} \theta}{\sin ^{5} \theta-\sin ^{7} \theta+\cos ^{5} \theta-\cos ^{7}-\theta}$
$=\frac{\sin ^{3} \theta\left(1-\sin ^{2} \theta\right)+\sin ^{3} \theta\left(1-\cos ^{2} \theta\right)}{\sin ^{5} \theta\left(1-\sin ^{2} \theta+\cos ^{5} \theta\left(1-\cos ^{2}-\theta\right)\right.}$
$=\frac{\sin ^{3} \theta \cos ^{2} \theta+\cos ^{3} \theta \sin ^{2} \theta}{\sin ^{5} \theta \sin ^{2} \theta+\sin ^{5} \theta \sin ^{2}-\theta}$
$=\frac{\sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{3} \theta+\cos \theta\right)}{\sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{3} \theta+\cos ^{3} \theta\right)}$
$=\frac{\sin \theta+\cos \theta}{\sin ^{3} \theta+\cos ^{2} \theta}$
$=\frac{f(1)}{f(3)}$
50. (C) Consider, $\left(1+\tan 1^{\circ}\right)=1+\tan \left(45^{\circ}-44^{\circ}\right)$
$=1+\frac{\tan 45^{\circ}-\tan 44^{\circ}}{1+\tan 45^{\circ} \tan 44^{\circ}}$

$$
\left[\because \tan A-\tan B=\frac{\tan A-\tan B}{1+\tan A \tan B}\right]
$$

$=1+\frac{1-\tan 44^{\circ}}{1+\tan 44^{\circ}}$
$=\frac{1+\tan 44^{\circ}+1-\tan 44^{\circ}}{1+\tan 44^{\circ}}$
$=\frac{2}{1+\tan 44^{\circ}}$
$\therefore\left(\frac{2}{1+\tan 44^{\circ}}\right)\left(\frac{2}{1+\tan 43^{\circ}}\right)\left(\frac{2}{1+\tan 42^{\circ}}\right)$
$\ldots \ldots\left(1+\tan 43^{\circ}\right)\left(1+\tan 44^{\circ}\right) 2=2^{n}$
$\Rightarrow 2 \times 2 \times \ldots \ldots . .23$ times $=2^{n}$
$\Rightarrow 2^{23}=2^{n}$
$\Rightarrow n=23$
51. (A) Consider, $\cos ^{-1} \frac{3}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} k$

$$
\begin{aligned}
& \Rightarrow \cos ^{-1}\left(\frac{3}{5} \times \frac{12}{13}-\sqrt{1-\frac{9}{25}} \sqrt{1-\frac{144}{169}}\right)=\cos ^{-1} k \\
& \quad\left[\because \cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]\right. \\
& \Rightarrow \cos ^{-1}\left(\frac{36}{65}-\sqrt{\frac{16}{25}} \sqrt{\frac{25}{169}}\right)=\cos ^{-1} k \\
& \Rightarrow \cos ^{-1}\left(\frac{36}{65}-\frac{20}{65}\right)=\cos ^{-1} k \\
& \Rightarrow \cos ^{-1} \frac{16}{65}=\cos ^{-1} k \\
& \Rightarrow k=\frac{16}{65}
\end{aligned}
$$

52. (A) Consider, $\sin 2 x+2 \sin x-\cos x-1=0$

$$
\begin{aligned}
& \Rightarrow 2 \sin x \cos x+2 \sin x-\cos x-1=0 \\
& \quad[\because \sin 2 x=2 \sin x \cos x] \\
& \Rightarrow 2 \sin x(\cos x+1)-1(\cos x+1)=0 \\
& \Rightarrow(\cos x+1)(2 \sin x-1)=0 \\
& \Rightarrow \cos x+1=0 \text { or } 2 \sin x-1=0 \\
& \Rightarrow \cos x=-1 \text { or } \sin x=\frac{1}{2} \\
& \Rightarrow \cos x=\cos \pi \text { or } \sin x=\sin \frac{\pi}{6} \text { or } \sin x \\
& =\sin \frac{5 \pi}{6} \\
& x=\pi, \frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

53. (C) Consider, $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$

$$
\Rightarrow\left|\begin{array}{lll}
\sin x+2 \cos x & \cos x & \cos x \\
\sin x+2 \cos x & \sin x & \cos x \\
\sin x+2 \cos x & \cos x & \sin x
\end{array}\right|=0
$$

$$
\left[\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\right]
$$

$$
\begin{aligned}
& \Rightarrow(\sin x+2 \cos x)\left|\begin{array}{lll}
1 & \cos x & \cos x \\
1 & \sin x & \cos x \\
1 & \cos x & \sin x
\end{array}\right|=0 \\
& \Rightarrow(\sin x+2 \cos x)
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
0 & \cos x-\sin x & 0 \\
0 & \sin x-\cos x & \cos x-\sin x \\
1 & \cos x & \sin x
\end{array}\right|=0
$$

$$
\left[\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3}, \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}\right]
$$

$\Rightarrow(\sin x+2 \cos x)(\cos x-\sin x)^{2}=0$
$\Rightarrow \sin x=-2 \cos x$ or $\cos x=\sin x$
$\Rightarrow \tan x=-2$ or $\tan x=1$
$x=\frac{\pi}{4}\left[\because-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\right]$
54. (D) Area of triangle using Heron's formula is given by $\sqrt{s(s-a)(s-b)(s-c)}$ where $s=$ $\frac{a+b+c}{2}$
$\therefore \mathrm{A}=\sqrt{35(35-17)(35-25)(35-28)}$
$\Rightarrow \frac{1}{2} \times 17 \times h=210$
$\Rightarrow h=\frac{420}{17}$
55. (C) Consider, $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=\frac{3}{2}$

We know that, $\cos 60^{\circ}=\frac{1}{2}$
For $A=B=C=60^{\circ}$
$\cos 60^{\circ}+\cos 60^{\circ}+\cos 60^{\circ}=\frac{3}{2}$
56. (B) Taking an example of an equilateral triangle, we have
$\Delta=\frac{a^{2} \sqrt{3}}{4}$
$\Rightarrow a^{2}=\frac{4 \Delta}{\sqrt{3}}$
$\Rightarrow 3 a^{2}=\frac{4 \Delta}{\sqrt{3}}$
$\Rightarrow 3 a^{2}=4 \sqrt{3} \Delta$
Therefore, the minimum value of the sum of squares of sides is $4 \sqrt{3} \Delta$.
57. (A) If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{j}$ and $c \hat{i}+c \hat{j}+b \hat{k}$
$\therefore\left|\begin{array}{lll}a & a & c \\ 1 & 0 & 1 \\ c & c & b\end{array}\right|=0$
$\left[\mathrm{C}_{1} \rightarrow\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)\right]$
$\left|\begin{array}{lll}0 & a & c \\ 1 & 0 & 1 \\ 0 & c & b\end{array}\right|=0$
$\Rightarrow c^{2}=a b$
58. (C) Consider, $\vec{b}=3 \hat{i}+6 \hat{j}+6 \hat{k}$
$\vec{b}=3(\hat{i}+2 \hat{j}+2 \hat{k})$
$\vec{b}=3(\vec{a})$
59. (D) Consider $\lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{2}}-1}{(1+x)^{\frac{1}{2}}-1}$
$=\lim _{x \rightarrow 0} 1$
$=1$
60. (A) Consider, $\lim _{x \rightarrow 0} \frac{a^{\tan x}-a^{\sin x}}{\tan x-\sin x}$
$=\lim _{x \rightarrow 0} \frac{\left(a^{\tan -1}-1\right)-\left(a^{\sin x}-1\right)}{\tan x-\sin x}$
$=\lim _{x \rightarrow 0} \frac{\left(\frac{a^{\tan x}-1}{\tan x}\right) \tan x-\left(\frac{a^{\sin x}-1}{\sin x}\right) \sin x}{\tan x-\sin x}$
$=\lim _{x \rightarrow 0} \frac{\left(\log _{e} a\right) \tan x-\left(\log _{e} a\right) \sin x}{\tan x-\sin x}$

$$
\left[\because \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a\right]
$$

$=\lim _{x \rightarrow \infty} \log _{e} a\left(\frac{\tan x-\sin x}{\tan x-\sin x}\right)$
$=\log _{e} a$
61. (D) Consider, $1+16 x^{2} y=\tan (x-2 y)$ diff. w.r.t. x
$\Rightarrow 32 x y+16 x^{2} \frac{d y}{d x}=\sec ^{2}(x-2 y)\left(1-2 \frac{d y}{d x}\right)$
at point $\left(\frac{\pi}{4}, 0\right)$
$\Rightarrow 0+16\left(\frac{\pi}{4}\right)^{2} \frac{d y}{d x}=\sec ^{2}\left(\frac{\pi}{4}-0\right)\left(1-2 \frac{d y}{d x}\right)$
$\Rightarrow \pi^{2} \frac{d y}{d x}=2-4 \frac{d y}{d x}$
$\Rightarrow\left(\pi^{2}+4\right) \frac{d y}{d x}=2$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\pi^{2}+4}$
62. (B) The greatest coefficient in the expansion is same as the coefficient of middle term. The Coefficient of middle term in $\left(x+\frac{1}{x}\right)^{2 n}={ }^{2 n} C_{n}$
$\frac{(2 n)!}{n!(2 n-n)!}=\frac{(2 n)!}{n!n!}$
63. (B) Total number of outcomes during throwing a pair of dice is $6^{2}=36$
Number of favor events $=(1,6),(2,5)$, $(3,4),(5,6),(6,1),(4,3),(5,2),(6,5)=8$ Required probability $=\frac{8}{36}=\frac{2}{9}$
64. (A) Required probability $=\frac{{ }^{8} \mathrm{C}_{6}}{{ }^{10} \mathrm{C}_{6}}$
$=\frac{28}{210}$
$=\frac{2}{15}$
65. (D) Consider, $y+\sqrt{1+y^{2}}=e^{x}$
$\Rightarrow \sqrt{1+y^{2}}=e^{x}-y$
$\Rightarrow 1+y^{2}=e^{2} x+y^{2}-2 y e^{x}$
$\Rightarrow 2 y e^{x}=e^{2 x}-1$
$\Rightarrow 2 y=e^{x}-e^{-x}$
$\Rightarrow y=e^{x}-e^{-x}$
$\Rightarrow y=\frac{e^{x}-e^{-x}}{2}$
66. (C) The number of the ways in which the expert opinion can be expressed is $4^{5}=$ 1024
67. (D) Given, $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=4$
$f^{\prime}(0)=4\left[\because f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}\right]$
$\mathrm{g}^{\prime}(x)=(2 x+2) f(x)+\left(x^{2}+2 x+3\right) f^{\prime}(x)$
$\mathrm{g}^{\prime}(0)=2 f(0)+3 f^{\prime}(0)$
$=2(5)+3(4)$
$=10+12$
$=22$
68. (B) Here, we are given the focus $\mathrm{S}(1,-1)$, directrix $x-y-3=0$ and eccentricity $\frac{1}{2}$
Let $\mathrm{P}(x, y)$ be any point, then according to definition of ellipse we have SP = ePM
$\Rightarrow \sqrt{(x-1)^{2}+(y+1)^{2}}=\frac{1}{2}\left(\frac{x-y-3}{\sqrt{1^{2}+(-1)^{3}}}\right)$
$\Rightarrow(x-1)^{2}+(y+1)^{2}=\frac{1}{8}(x-y-3)^{2}$
$\Rightarrow 8\left(x^{2}-2 x+1+y^{2}+2 y+1\right)=x^{2}+y^{2}+9$
$-2 x y+6 y-6 x$
$\Rightarrow 8 x^{2}-16 x+8 y^{2}+16 y+16=x^{2}+y^{2}+9$
$-2 x y+6 y-6 x$
$\Rightarrow 7 x^{2}+7 y^{2}+2 x y-10 x+10 y+7=0$
69. (D) Consider, $\mathrm{I}=\int_{0}^{\pi / 4} \sqrt{\tan x}+\sqrt{\cot x} d x$
$=\int_{0}^{\pi / 4} \sqrt{\frac{\sin x}{\cos x}}+\sqrt{\frac{\cos x}{\sin x}} d x$
$=\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{\sqrt{\cos x \sin x}} d x$
$=$ Let $\sin x-\cos x=t$
$\Rightarrow(\cos x+\sin x) d x=d t$
Also, $(\sin x-\cos x)^{2}=t^{2}$
$\Rightarrow 1-2 \sin x \cos x=t^{2}$
$\Rightarrow \sin x \cos x=\frac{1-t^{2}}{2}$
$\Rightarrow \sqrt{\sin x \cos x}=\frac{\sqrt{1-t^{2}}}{\sqrt{2}}$
$\therefore \int_{0}^{\pi / 4} \frac{\sin x+\cos x}{\sqrt{\cos x \sin x}} d x=\int_{-1}^{0} \frac{1}{\sqrt{1-t^{2}}} d x$
$=\sqrt{2} \sin ^{-1} t$
$=\sqrt{2} \sin ^{-1}(\sin x-\cos x)$
$=\sqrt{2} \sin ^{-1}(\sin x-\cos x)$
$\therefore \mathrm{I}=\int_{0}^{\pi / 4} \sqrt{\tan x}+\sqrt{\cot x} d x=\sqrt{2}\left[\sin ^{-1}(\sin x-\cos x)\right]_{0}^{\pi / 4}$
$=\sqrt{2}\left(\frac{\pi}{2}\right)=\frac{\pi}{\sqrt{2}}$

Campus
 KD Campus Pvt. Ltd
 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

70. (D) Let us suppose, the perpendiculars lines be the x and y-axis.
Now, the sum of the distances from the point $\mathrm{P}(x, y)$ is 1. i.e., $|x|+|y|=1$
This is the locus of the point P which would be the square whose sides are $x+y=1 ;-x+y=1 ; x-y=1 ;-x-y=1$
71. (D) Consider, $s_{n}=u+\frac{a}{2}(2 n-1)$

Substitute $n=8, s_{n}=114, u=0$ in $s_{n}=u$
$+\frac{a}{2}(2 n-1)$
$\Rightarrow 114=0+\frac{a}{2}(16-1)$
$\Rightarrow 114=7.5 a$
$\Rightarrow a=15.2 \mathrm{~m} / \mathrm{sec}^{2}$
72. (A) $f(x)=\sin \left(x+\frac{\pi}{5}\right)+\cos \left(x+\frac{\pi}{5}\right)$

$$
=\sqrt{2} \sin \left(x+\frac{\pi}{5}+\frac{\pi}{4}\right)
$$

$f(x)$ is maximum when $x=\frac{\pi}{5}+\frac{\pi}{4}=\frac{\pi}{2}$

$$
x=\frac{\pi}{20}
$$

73. (D) $\mathrm{S}=0.4+0.44+0.444+\ldots . . n$ terms
$\mathrm{S}=4(0.1+0.11+0.111+\ldots \ldots . n$ terms $)$
$\mathrm{S}=4\left(\frac{1}{10}+\frac{11}{100}+\frac{111}{1000}+\ldots \ldots . . n\right.$ terms $)$
$\mathrm{S}=\frac{4}{9}\left(\frac{9}{10}+\frac{99}{100}+\frac{999}{1000}+\ldots \ldots . n\right.$ terms $)$
$S=\frac{4}{9}\left[\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{100}\right)+\ldots . n\right.$ terms $]$
$S=\frac{4}{9}\left[(1+1+\ldots n\right.$ terms $)-\left(\frac{1}{10}+\frac{1}{100}+\ldots n\right.$ terms $\left.)\right]$
$S=\frac{4}{9}\left[n-\frac{\frac{1}{10}\left(1-\frac{1}{10^{n}}\right)}{1-\frac{1}{10}}\right]$
$\mathrm{S}=\frac{4}{9}\left[n-\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)\right]$
74. (A) Firstly take internally

Co-ordinate of point P
$=\left(\frac{4 \times 3+5 \times 2}{2+3}, \frac{3 \times 3+7 \times 2}{2+3}\right)$
$=\left(\frac{22}{5}, \frac{23}{5}\right)$
Now, Externally

Co-ordinate of point $Q=$
$\left(\frac{4 \times 3-5 \times 2}{3-2}, \frac{3 \times 3-7 \times 2}{3-2}\right)$
$=(2,-5)$
Now, distance between (PQ) =
$\sqrt{\left(2-\frac{22}{5}\right)^{2}+\left(-5-\frac{23}{5}\right)^{2}}$
$=\frac{12 \sqrt{17}}{5}$
75. (B) $\left(m^{2}-m n\right) y=\left(m n+n^{2}\right) x+n^{3}$
$y=\frac{\left(m n+n^{2}\right)}{\left(m^{2}-m n\right)} x+\frac{n^{3}}{\left(m^{2}-m n\right)}$
Slope of equation $\mathrm{S}_{1}=\frac{\left(m n+n^{2}\right)}{\left(m^{2}-m n\right)}$
$\left(m n+m^{2}\right) y=\left(m n-n^{2}\right) x+m^{2}$
$y=\left(\frac{m n-n^{2}}{m n+m^{2}}\right) x+\frac{m^{3}}{m n+m^{2}}$

Slope of equation $\mathrm{S}_{2}=\frac{m n-n^{2}}{m n+m^{2}}$
Angle between lines $=\tan ^{-1}\left(\frac{\mathrm{~S}_{1}-\mathrm{S}_{2}}{1+\mathrm{S}_{1} \times \mathrm{S}_{2}}\right)$
$=\tan ^{-1}\left(\frac{\frac{m n+n^{2}}{m^{2}-m n}-\frac{m n-n^{2}}{m n+m^{2}}}{1+\frac{m n+n^{2}}{m^{2}-m n} \cdot \frac{m n-n^{2}}{m n+m^{2}}}\right)$
After solving this
Angle $=\tan ^{-1}\left(\frac{4 m^{2} n^{2}}{m^{4}-n^{4}}\right)$
76. (D)

Equation of line is
$y=m x+c$
$y=\tan 30^{\circ} x-2$
$y=\frac{1}{\sqrt{3}} x-2$
$\sqrt{3} y=x-2 \sqrt{3}$
$x-\sqrt{3} y-2 \sqrt{3}=0$
77. (C) Statement I

$\mathrm{p}=\frac{|-c|}{\sqrt{a^{2}+b^{2}}} \Rightarrow \mathrm{p}^{2}=\frac{c^{2}}{a^{2}+b^{2}}$
It is true.
Statement II

$\frac{1}{\mathrm{p}^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
It is true.
Statement III

$p=\frac{|c|}{\sqrt{m^{2}+1}}$
$\Rightarrow \mathrm{p}^{2}=\frac{c^{2}}{m^{2}+1} \Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{m^{2}+1}{c^{2}}$

It is false.
78. (D) $f(x)=|x+1|$
going through options
(A) $f\left(x^{2}\right)=\left|x^{2}+1\right|$
$\{f(x)\}^{2}=(x+1)^{2}$
$\Rightarrow f\left(x^{2}\right) \neq\{f(x)\}^{2}$
(B) $f|x|=||x|+1|$
$|f(x)|=\|x+1\|=|x+1|$
$\Rightarrow f|x| \neq|f(x)|$
(C) $f(x+y)=|x+y+1|$
$f(x)+f(\mathrm{y})=|x+1|+|y+1|$
$f(x+y) \neq f(x)+f(y)$
Now, option D is correct.
79. (A) $y=f(x)=\frac{x^{2}}{1+x^{2}}$

Clearly $y \geq 0$,
$x^{2}<1+x^{2}$
So range is $[0,1)$
80. (C)

Solving $y^{2}=6(x+1)$ and $y^{2}=3 x$
we get $x=2$ and $y= \pm \sqrt{6}$
Area $=\int_{-\sqrt{6}}^{\sqrt{6}}\left(1+\frac{y^{2}}{6}-\frac{y^{2}}{3}\right) d y$
$=2 \int_{0}^{\sqrt{6}}\left(1-\frac{y^{2}}{6}\right) d y$
$=2\left[y-\frac{y^{3}}{18}\right]_{0}^{\sqrt{6}}$
$=\frac{2 \times 2 \sqrt{6}}{3}=\frac{4 \sqrt{6}}{3}$
81. (A) Bag 1

4 copper coins
3 silver coins

Bag 2
6 copper coins 2 silver coins
$\frac{1}{2} \times \frac{4}{7}$ or $\frac{1}{2} \times \frac{6}{8}$
$\frac{2}{7}+\frac{3}{8}=\frac{16+21}{56}=\frac{33}{56}$
82. (B) $\int \sin 4 x \cos 7 x d x=A \cos 3 x+B \cos 11 x$ L.H.S
$\Rightarrow \int \sin 4 x \cos 7 x d x=\frac{1}{2} \int 2 \sin 4 x \cos 7 x d x$
$=\frac{1}{2} \int[\sin (4 x+7 x)+\sin (4 x-7 x)] d x$
$=\frac{1}{2} \int \sin 11 x-\sin 3 x d x$
$=\frac{1}{2}\left[\frac{-\cos 11 x}{11}+\frac{\cos 3 x}{3}\right]$
$\Rightarrow \frac{-\cos 11 x}{22}+\frac{\cos 3 x}{6}$
compair L.H.S and R.H.S
$A=\frac{1}{6}, B=\frac{-1}{22}$
83. (D) $x^{2}-5 x+16=0$
$\alpha+\beta=5, \alpha \beta=16$
and $x^{2}+\mathrm{p} x+\mathrm{q}=0$
$\left(\alpha^{2}+\beta^{2}+\frac{\alpha \beta}{2}\right)=-\mathrm{p},\left(\alpha^{2}+\beta^{2}\right) \cdot \frac{\alpha \beta}{2}=\mathrm{q}$
Now,
$\alpha+\beta=5$
Square both side
$\alpha^{2}+\beta^{2}+2 \alpha \beta=25$
$\alpha^{2}+\beta^{2}=2 \times 16=25$
$\alpha^{2}+\beta^{2}=-7$
Again
$\alpha^{2}+\beta^{2}+\frac{\alpha \beta}{2}=-p$
$\Rightarrow-7+8=-\mathrm{p}$
$\Rightarrow \mathrm{p}=-1$
and $\left(\mathrm{a} 2+\frac{\alpha \beta}{2}=\mathrm{q}\right.$
$\Rightarrow-7 \times 8=q$
$\Rightarrow q=-56$
84. (A)
85. (D)

Class	f	C
$0-10$	17	17
$10-20$	19	36
$\mathbf{2 0} \mathbf{- 3 0}$	$\mathbf{2 1}$	$\mathbf{5 7}$
$30-40$	23	80
$40-50$	20	100

$\mathrm{N}=100, \frac{\mathrm{~N}}{2}=50$
$l_{1}=20, l_{2}=30, f=21, C=36$

$$
\begin{aligned}
\text { Median } & =l_{1}+\frac{\frac{\mathrm{N}}{2}-C}{f}\left(l_{2}-l_{1}\right) \\
& =20+\frac{50-36}{21} \times(30-20) \\
& =20+\frac{14}{21} \times 10=26 \frac{2}{3}
\end{aligned}
$$

86. (A)

Let, 'EC' be the first tree an 'AB' be the second tree.
Height of first tree is ' 80 m ' and let height of second tree be ' x '
Then, $\mathrm{AB}=x$ and $\mathrm{ED}=(80-x)$
In $\triangle E A D$,
$\tan 45^{\circ}=\frac{\mathrm{ED}}{\mathrm{AD}}$
$1=\frac{80-x}{60}$
$x=20 \mathrm{~m}$
87. (A)

Let, the height fo first plane be 'AC' which is equal to 300 m . Height of second plane be ' BC '.
From triangle ACD,
$\tan 60^{\circ}=\frac{300}{C D}$
$\sqrt{3}=\frac{300}{C D}$
$\mathrm{CD}=\frac{300}{\sqrt{3}}$
From triangle $B C D$,
$\tan 45^{\circ}=\frac{\mathrm{BC}}{\mathrm{CD}}$
$C D=B C$
From equation (i) and (ii)
$\mathrm{BC}=\frac{300}{\sqrt{3}}$
$\mathrm{BC}=100 \sqrt{3}$
88. (B) $\left[\begin{array}{l}\mathrm{A}=\text { Hindi } \\ \mathrm{B}=\text { English }\end{array}\right]$
$n(\mathrm{~A} \cap \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})-n(\mathrm{~A} \cup \mathrm{~B})$
$\Rightarrow 60=45+33-x$
$\Rightarrow x=18$
89. (A) $\sqrt{5+12 i}=\sqrt{5+2 \times 6 i}$

$$
\begin{aligned}
& =\sqrt{5+2 \times 3 \times 2 i} \\
& =\sqrt{(3)^{2}+(2 i)^{2}+2 \times 3 \times 2 i} \\
& =\sqrt{(3+2 i)^{2}}= \pm 3+2 i
\end{aligned}
$$

90. (D) $x^{2}+k x-b=0$

Let roots α, β
$\alpha+\beta=-k, \alpha \beta=-b$
$\alpha^{2}+\beta^{2}=2 b$
[given]
Now,
$(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$
$(-k)^{2}=2 b-2 b$
$k=0$
91. (D) $\left(1+\omega-\omega^{2}\right)^{7}=\left(-\omega^{2}-\omega^{2}\right)^{7}$
$\left[\because 1+\omega+\omega^{2}=0\right]$
$=\left(-2 \omega^{2}\right)^{7}=(-2)^{7} \omega^{14}=-128 \omega^{2}$
92. (B) Write the nth term of the given series and simplify it to get its lowest form.
Then, apply, $\mathrm{S}_{n}=\sum \mathrm{T}_{n}$
Given series is $\frac{1^{3}}{1}+\frac{1^{3}-2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+.$. ∞
Let T_{n} be the $n^{\text {th }}$ term of the given series.
$\therefore \mathrm{T}_{n}=\frac{1^{3}+2^{3}+3^{3}+\ldots \ldots+n^{3}}{1+3+5+\ldots+\text { upto } n \text { terms }}$
$=\frac{\left\{\frac{n(n+1)}{2}\right\}^{2}}{n^{2}}=\frac{(n+1)^{2}}{4}$
$\left.\mathrm{S}_{9}=\sum_{n=1}^{9} \frac{(n+1)^{2}}{4}=\frac{1}{4}\left(2^{2}+3^{2}+\ldots .+10^{2}\right)+1^{2}-1^{2}\right]$
$=\frac{1}{4}\left[\frac{10(10+1)(20+1)}{6}-1\right]=\frac{384}{4}=96$
93. (B) Since, $x_{1}, x_{2}, \ldots, x_{n}$ are any real numbers.

$$
\therefore \frac{x_{1}^{2}+x_{2}^{2}+\ldots .+x_{n}^{2}}{n} \geq\left(\frac{x_{1}+x_{2}+\ldots .+x_{n}}{n}\right)^{2}
$$

[using $m^{\text {th }}$ power theorem]
$\Rightarrow n \sum_{i=1}^{n} x_{i}^{2} \geq\left(\sum_{i=1}^{n} x_{i}\right)^{2}$
94. (C) There are two possible cases

Case I Five 1 's, one 2 's, one 3 's
Number of numbers $=\frac{7!}{5!}=42$
Case II Four 1's, three 2's
Number of numbers $=\frac{7!}{4!3!}=35$
\therefore Total number of numbers $=42+35=$ 77
95. (B) $\left({ }^{21} \mathrm{C}_{1}-{ }^{10} \mathrm{C}_{1}\right)+\left({ }^{21} \mathrm{C}_{2}-{ }^{10} \mathrm{C}_{2}\right)+\left({ }^{21} \mathrm{C}_{3}-{ }^{10} \mathrm{C}_{3}\right)+$ $\ldots .+\left({ }^{21} \mathrm{C}_{10}-{ }^{10} \mathrm{C}_{10}\right)$
$=\left({ }^{21} \mathrm{C}_{1}-{ }^{21} \mathrm{C}_{2}+\ldots .+{ }^{21} \mathrm{C}_{10}\right)-\left({ }^{10} \mathrm{C}_{1}+{ }^{10} \mathrm{C}_{2}+\ldots\right.$
$\ldots .+{ }^{10} \mathrm{C}_{10}$)
$=\frac{1}{2}\left({ }^{21} \mathrm{C}_{1}-{ }^{21} \mathrm{C}_{2}+\ldots .+{ }^{21} \mathrm{C}_{20}\right)-\left(2^{10}-1\right)$
$=\frac{1}{2}\left({ }^{21} \mathrm{C}_{1}-{ }^{21} \mathrm{C}_{2}+\ldots . .+{ }^{21} \mathrm{C}_{21}-1\right)-\left(2^{10}-1\right)$
$=\frac{1}{2}\left(2^{21}-2\right)-\left(2^{10}-1\right)=2^{20}-1-2^{10}+1$
$=2^{20}-2^{10}$
96. (A) Let $\phi(x)=f(x)-\mathrm{g}(x)=\left\{\begin{array}{l}x, x \in \mathrm{Q} \\ -x, x \notin \mathrm{Q}\end{array}\right.$

Now, to check one-one.
Take any straight line parallel to X-axis which will intersect $\phi(x)$ only at one point.
$\Rightarrow \phi(x)$ is one-one.
To check onto
As $f(x)=\left\{\begin{array}{l}x, x \in \mathrm{Q} \\ -x, x \notin \mathrm{Q}\end{array}\right.$, which shows
$y=x$ and $y=-x$ for rational and irrational values
$\Rightarrow y \in$ real numbers.
\therefore Range $=$ Co domain \Rightarrow onto
Thus, $f-\mathrm{g}$ is one-one and onto.
97. (B) Given, $f(x)=\left[\tan ^{2} x\right]$

Now, $-45^{\circ}<x<45^{\circ}$
$\Rightarrow \tan \left(-45^{\circ}\right)<\tan x<\tan \left(45^{\circ}\right)$
$\Rightarrow-\tan 45^{\circ}<\tan x<\tan \left(45^{\circ}\right)$
$\Rightarrow-1<\tan x<1$
$\Rightarrow 0<\tan ^{2} x<1$
$\Rightarrow\left[\tan ^{2} x\right]=0$
i.e. $f(x)$ is zero for all values of x from $x=$ -45° to 45°.
Thus, $f(x)$ exists when $x \rightarrow 0$ and also it is continuous at $x=0$.
Also, $f(x)$ is differentiable at $x=0$ and have a value of zero.
98. (B) Given $\mathrm{P}(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}+\ldots+a_{n} x^{2 n}$
where, $a_{n}>a_{n-1}>a_{n-2}>\ldots>a_{2}>a_{1}>a_{0}>0$
$\Rightarrow P^{\prime}(x)=2 a_{1} x+4 a_{2} x^{3}+\ldots .+2 n a_{n} x^{2 n-1}$
$=2 x\left(a_{1}+2 a_{2} x^{2}+\ldots .+n a_{n} x^{2 n-2}\right)$
where, $\left(a_{1}+2 a_{2} x^{2}+3 a_{3} x^{4}+\ldots+n a_{n} x 2^{n-2}\right)$ $>0, \forall x \in \mathrm{R}$.

Thus, $\left\{\begin{array}{l}\mathrm{P}^{\prime}(x)>0, \text { when } x>0 \\ \mathrm{P}^{\prime}(x)<0, \text { when } x<0\end{array}\right.$
i.e. $\mathrm{P}^{\prime}(x)$ changes sign from (-ve) to (+ve) at $x=0$.
$\therefore \mathrm{P}(x)$ attains minimum at $x=0$.
Hence, it has only one minimum at $x=0$.
99. (C) $\mathrm{I}_{1}=\int_{1-k}^{k} x f[x(1-x)] d x$
$\Rightarrow \mathrm{I}_{1}=\int_{1-k}^{k}(1-x) f[(1-x) x] d x$
$=\int_{1-k}^{k} f[(1-x) d x]-\int_{1-k}^{k} x f(1-x) d x$
$\Rightarrow \mathrm{I}_{1}=\mathrm{I}_{2}-\mathrm{I}_{1} \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{1}{2}$
100. (D) Required area
$=\int_{0}^{1}(1+\sqrt{x}) d x+\int_{1}^{2}(3-x) d x-\int_{0}^{2} \frac{x^{2}}{4} d x$

$=\left[x+\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{1}+\left[3 x-\frac{x^{2}}{2}\right]_{1}^{2}-\left[\frac{x^{3}}{12}\right]_{0}^{2}$
$=\left(1+\frac{2}{3}\right)+\left(6-2-3+\frac{1}{2}\right)-\left(\frac{8}{12}\right)$
$=\frac{5}{3}+\frac{3}{2}-\frac{2}{3}=1+\frac{3}{2}=\frac{5}{2}$ sq units
101. (D) Given differential equation is
$y(1+x y) d x=x d y$
$\Rightarrow y d x+x y^{2} d x=x d y$
$\Rightarrow \frac{x d y+y d x}{y^{2}}=x d x$
$\Rightarrow-\frac{(y d x-x d y)}{y^{2}}=x d x \Rightarrow-d\left(\frac{x}{y}\right)=x d x$
On integrating both sides, we get
$-\frac{x}{y}=\frac{x^{2}}{2}+\mathrm{C}$
\because It passes through $(1,-1)$.
$\therefore 1=\frac{1}{2}+\mathrm{C} \Rightarrow \mathrm{C}=\frac{1}{2}$
Now, from eq(i) $-\frac{x}{y}=\frac{x^{2}}{2}+\frac{1}{2}$
$\Rightarrow x^{2}+1=-\frac{2 x}{y}$
$\Rightarrow y=-\frac{2 x}{x^{2}+1}$
$\therefore f\left(-\frac{1}{2}\right)=\frac{4}{5}$
102. (D) Let, the vertices of triangle be $\mathrm{A}(1, \sqrt{3})$, $B(0,0)$ and $C(2,0)$. Here, $A B=B C=C A=$ 2.

Therefore, it is an equilateral triangle. So, the incentre coincides with centroid.
$\therefore \mathrm{I}=\left(\frac{0+1+2}{3}, \frac{0+0+\sqrt{3}}{3}\right)$
$\Rightarrow \mathrm{I}=\left(1, \frac{1}{\sqrt{3}}\right)$
103. (C) Here, radius of smaller circle, $\mathrm{AC}=$ $\sqrt{1^{2}+3^{2}-6}=2$
Clearly, from the figure the radius of bigger circle
$r^{2}=2^{2}+\left[(2-1)^{2}+(1-3)^{2}\right]$
$r^{2}=9 \Rightarrow r=3$

Campus
 KD Campus Pvt. Ltd
 1997, OUTRAM LINE, KINGSWAY CAMP, DELHI - 110009

104. (B) Let equation of line L_{1} be $y=m x$. Intercepts made by L_{1} and L_{2} on the circle will be equal i.e. L_{1} and L_{2} are at the same distance from the centre of the circle; Centre of the given circle is $(1 / 2,-3 / 2)$. Therefore,
$\frac{\mid 1 / 2-3 / 2-1}{\sqrt{1+1}}=\left|\frac{\frac{m}{2}+\frac{3}{2}}{\sqrt{m^{2}-1}}\right| \Rightarrow \frac{2}{\sqrt{2}}=\frac{|m+3|}{2 \sqrt{m^{2}+1}}$
$\Rightarrow 8 m^{2}+8=m^{2}+6 m+9$
$\Rightarrow 7 m^{2}-6 m-1=0(7 m+1)(m-1)=0$
$\Rightarrow m=-\frac{1}{7}, m=1$
Thus, two chords are $x+7 y=0$
and $x-y=0$.
105. (A) Let the tangent to parabola be $y=m x+\frac{a}{m}$, if it touches the other curve, then $\mathrm{D}=0$, to get the value of m.
For parabola, $y^{2}=4 x$
Let $y=m x+\frac{1}{m}$ be tangent line and it touches the parabola $x^{2}=-32 y$
$\therefore x^{2}=-32\left(m x+\frac{1}{m}\right)$
$\Rightarrow x^{2}+32 m x+\frac{32}{m}=0$
$\because(32 m)^{2}-4\left(\frac{32}{m}\right)=0 \Rightarrow m^{3}+\frac{1}{8}$
$\therefore m=\frac{1}{2}$
106 (B) Given, $\mathrm{A}=\sin ^{2} \theta+\left(1-\sin ^{2} \theta\right)^{2}$
$\Rightarrow A=\sin ^{4} \theta-\sin ^{2} \theta+1$
$\Rightarrow \mathrm{A}=\left(\sin ^{2} \theta-\frac{1}{2}\right)^{2}+\frac{3}{4}$
$\Rightarrow 0 \leq\left(\sin ^{2} \theta-\frac{1}{2}\right)^{2} \frac{1}{4}\left[\because 0 \leq \sin ^{2} \theta \leq 1\right]$
$\therefore \frac{3}{4} \leq \mathrm{A} \leq 1$
106. (B) Since, $\tan \theta<0$.
\therefore Angle θ is either in the second or fourth quadrant.
Then, $\sin \theta>0$ or <0
$\therefore \sin \theta$ may be $\frac{4}{5}$ or $-\frac{4}{5}$
107. (B) Given $f(x)=\frac{3 x-2}{5}$

Let $=y=\frac{3 x-2}{5}$
$\Rightarrow 3 x-2=5 y \Rightarrow x=\frac{5 y+2}{3}$
$\Rightarrow f^{-1}(x)=\frac{5 y+2}{3}$
109. (D) $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$

Unit vector in direction of $\vec{a}=\frac{\vec{a}}{|\vec{a}|}$
$=\frac{3 i-2 j+6 k}{\sqrt{3^{2}+(-2)^{2}+6^{2}}}=\frac{1}{7}(3 \hat{i}-2 \hat{j}+6 \hat{k})$
110. (C) For continuity of the function $x=2$
$\lim _{h \rightarrow 0} f(2-h)=f(2)=\lim _{h \rightarrow 0} f(2+h)$
Now, $f(2-h)=2(2-h)+1=5-2 h$
$\therefore \lim _{h \rightarrow 0} f(2-h)=5$
Also, $f(2+h)=3(2+h)-1=5+3 h$
$\lim _{h \rightarrow 0} f(2+h)=5$
So, for continuity $f(2)=5$.
$\therefore k=5$
111. (A) Equation of the plane passing through $(3,4,1)$ is
$a(x-3)+b(y-4)+c(z-1)=0$
Since this plane passes through $(0,1,0)$ also
$\therefore a(0-3)+b(1-4)+c(0-1)=0$
or $-3 a-3 b-c=0$
or $-3 a+3 b+c=0$
Since (i) is parallel to
$\frac{x+3}{2}=\frac{y-3}{7}=\frac{z-2}{5}$
$\therefore 2 a+7 b+5 c=0$
From (ii) and (iii)
$\frac{a}{15-7}=\frac{b}{2-15}=\frac{c}{21-6}=\mathrm{k}$
$\Rightarrow a=8 k, b=-13 k, c=15 k$
Putting in (i), we have
$8 k(x-3)-13 k(y-4)+15 k(z-1)=0$
$\Rightarrow 8(x-3)-13(y-4)+15(z-1)=0$
$\Rightarrow 8 x-13 y+15 z+13=0$
Which is the required equation of the plane.
112. (B) Given that Mean $=13$ and Mode $=7$

We know that
Mode $=3$ Median -2 Mean
$\Rightarrow 7=3$ Median -2×13
$\Rightarrow 3$ Median $=33 \Rightarrow$ Median $=11$
113. (C)

$(10111)_{2}=(23)_{10}, \quad(0.011)_{2}=(0.375)_{10}$ Hence $(10111.011)_{2}=(23.375)_{10}$
114. (C) digits $0,1,3,5,8,9,6$

$$
\begin{array}{|l|l|l|}
\hline 6 & 6 & 5 \\
\hline
\end{array}
$$

115. (C) 101, 103, \qquad
Now, $\mathrm{T}_{\mathrm{n}}=a+(n-1) d$

$$
999=101+(n-1) \times 2
$$

$$
898=(n-1) \times 2
$$

$$
449=n-1 \Rightarrow n=450
$$

Now, $\mathrm{S}=\frac{n}{2}(2 a+(n-1) d)$

$$
\begin{aligned}
& S=\frac{450}{2}(2 \times 101+449 \times 2) \\
& S=450 \times 550=247500
\end{aligned}
$$

116. (B) Given that $\theta=130^{\circ}$
$y=\sin \theta+\cos \theta$
$y=\sin 130+\cos 130$
$y=\sin 130+\cos (90+40)$
$y=\sin 130-\sin 40$
We know that $130>40$

$$
\sin 130>\sin 40
$$

Hence $y>0$
117. (C) $z=\frac{3+i}{(2-i)^{2}}$
$z=\frac{3+i}{3-4 i} \times \frac{3+4 i}{3+4 i}$
$z=\frac{5+15 i}{25}=\frac{1+3 i}{5}$
118. (B) Word "STATEMENT"

The total no. of arrangement $=\frac{9!}{3!2!}=\frac{9!}{12}$
No. of arrangement when T's come together $=\frac{7!}{2!}=\frac{7!}{2}$
No. of arrangement when T's don't come together $=\frac{9!}{12}-\frac{7!}{2}$

$$
=6 \times 7!-\frac{7!}{2}=\frac{11 \times 7!}{2}
$$

119. (C) $\mathrm{A}=\{x: x$ is multiple of 2$\}$
$A=\{2,4,6,8,10, \ldots \ldots\}$
$B=\{x: x$ is multiple of 3$\}$
$B=\{3,6,9,12,15, \ldots \ldots\}$
$\mathrm{C}=\{x: x$ is a multiple of 6$\}$
$=\{6,12,18, \ldots \ldots\}$
Now, $(\mathrm{A} \cap \mathrm{C})=\{6,12,18, \ldots \ldots \ldots\}=\mathrm{C}$
and $(\mathrm{B} \cap \mathrm{C})=\{6,12,18, \ldots \ldots \ldots\}=\mathrm{C}$
Hence $(A \cap C) \cup(B \cap C)=C$
120. (C)

$x_{1}=\frac{3 \times 3+1 \times(-4)}{3+1}=\frac{5}{4}$
and $y_{1}=\frac{3 \times(-1)+1 \times 2}{3+1}=\frac{-1}{4}$
Co-ordinate of $\mathrm{P}=\left(\frac{5}{4}, \frac{-1}{4}\right)$
$x_{2}=\frac{3 \times 3-1 \times(-4)}{3-1}=\frac{13}{2}$
and $y_{2}=\frac{3 \times(-1)-1 \times 2}{3-1}=\frac{-5}{2}$
Co-ordinate of $\mathrm{Q}=\left(\frac{13}{2}, \frac{-5}{2}\right)$
Now,
Distance Between P and Q
$=\sqrt{\left(\frac{5}{4}-\frac{13}{2}\right)^{2}+\left(\frac{-1}{4}+\frac{5}{2}\right)^{2}}$
$=\sqrt{\left(\frac{-21}{4}\right)^{2}+\left(\frac{9}{4}\right)^{2}}=\sqrt{\frac{522}{16}}=\frac{3 \sqrt{58}}{4}$

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

