TEST NO.

SSC Mains (Maths) Answer with Explanation

1. (A) A.T.Q,

CP	MP
$100-\%$ Discount	$100+\%$ Profit
$\frac{100-4 \%}{16 \text { articles }}$	$\frac{100+35 \%}{15 \text { articles }}$
$\therefore 6: 9$	
or, $2: 3$	

2. (C) Let total oranges 100 units

Total profit is 150% of 30 oranges is $=45 \%$
3. (A) A.T.Q,

Rate $\longrightarrow 1 \%$ more
$₹ 100 \xrightarrow{\text { lyear }} ₹ 1$ more
$₹ 2400 \xrightarrow{\text { 1year }} ₹ 24$ years

4 years
₹ 96 more
Total amount now after increment in rate by 1% is ₹ $(3350+96)=₹ 3446$
4. (B) A.T.Q,

We see that interest is 100% if compounded half yearly,
Now, If compounded yearly then interest become 200\%

Total time 3 years
$(\therefore ₹ 100 \xrightarrow{200 \%} ₹ 300)$
5. (C)

$1 \longrightarrow ₹ 210$
$2 \longrightarrow ₹ 420$
6. (A) A.T.Q,

$9 \times 3-5 \times 5 \longrightarrow 9 \times 900-1300 \times 5$
20 units $\longrightarrow ₹ 1600$
1 unit \longrightarrow ₹ 800
A - 5 units \longrightarrow ₹ 4000
B $\longrightarrow ₹ 3$ units $\longrightarrow ₹ 2400$
7. (B) A.T.Q,

A : B+C

1 unit $\longrightarrow ₹ 200$
15 units \longrightarrow ₹ 3000
8. (A) $(823)^{933!} \times(777)^{223!} \times(838)^{123!}$
$3^{4} \times 7^{4} \times 8^{4}=1 \times 1 \times 6=6$
9. (B) 8315945×8315947
$=(8315946)^{2}-1$
Added number was + 1
10. (A) A.T.Q,

Meeting time is same
Distance \times speed
$\frac{\mathrm{D}_{\mathrm{P}}}{\mathrm{D}_{\mathrm{T}}}=\frac{\mathrm{S}_{\mathrm{P}}}{\mathrm{S}_{\mathrm{T}}}=\frac{4.7 / 34}{4.7 / 41}=\frac{41}{34}$
7 units $\longrightarrow 700$ metres
1 unit $\longrightarrow 100$ metres
34 units $\longrightarrow 3400$ metres
11. (A) A.T.Q,

Meeting time,
$\mathrm{t}=\sqrt{t_{1} \times t_{2}}$
$=\sqrt{24 \times 54}$
$=36$ minutes
Hence meeting time is $10: 36 \mathrm{am}$
12. (B) A.T.Q,

Total distance covered by train in 5 hours

So, Speed of train $=\frac{300}{5}=60 \frac{\mathrm{~km}}{\mathrm{hr}}$
13. (A) A.T.Q,

If A - work 3 days then B complete the remaining work in 6 days
$\therefore \mathrm{A} \quad=\quad \mathrm{B}$
1 day
3 days
$\Rightarrow A=3 B$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}=\frac{3}{1}$ efficiency
Total units work is $=5$
A does the work alone in $=\frac{15}{3}=5$ days
B does the work alone in $=\frac{15}{1}=15$ days
14. (B) A.T.Q,

Total number is $=17$
$x, x+2, x+4, x+6$, $x+32$
Total sum of digit are,

$$
=\frac{n}{2}(a+l)=\frac{17}{2}(x+x+32)
$$

Average $=\frac{\frac{17}{2}[x(a+l)]}{17}=142$

$$
x+(x+2)=284
$$

Sum of $1^{\text {st }}$ and last number is $=284$
Difference of number is $=32$
15. (C)

A.T.Q,

We can put values in Geometrically also Let the angles 0°
$\angle \mathrm{BDC}=180^{\circ}-40^{\circ}=140^{\circ}$
16. (B)

A.T.Q,

We assumed the value of $\angle B=0^{\circ}$ and $\angle \mathrm{C}=0^{\circ}$
$x+0=25^{\circ}$ (By the external angle property) $x=25^{\circ}$
17. (A)

A.T.Q,

Cyclic trapezium = Isosceles trapezium
$\cos \alpha=\frac{x}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow x=\frac{2 \times 2}{8}=\frac{1}{2}$
$\Rightarrow \mathrm{CD}=\mathrm{MN}=(\mathrm{AB}-2 x)=8-1$
$C D=7 \mathrm{~cm}$
18. (A) A.T.Q,

Milk : Water

So, $\frac{1}{5}$
19. (C) $\left(a+\frac{1}{a}\right)^{2}=3$
$a+\frac{1}{a}=\sqrt{3}$
$a^{3}+\frac{1}{a^{3}}=3 \sqrt{3}-3 \sqrt{3}$
$a^{3}+\frac{1}{a^{3}}=0$
$\therefore \quad a^{3}+\frac{1}{a^{3}}+3 \sqrt{3}=0+3 \sqrt{3}=3 \sqrt{3}$
20. (B) Given, $p q+q r+r p=0$
$\Rightarrow-\mathrm{qr}=\mathrm{pr}+\mathrm{rp}$
$\therefore \frac{p^{2}}{p^{2}-q r}+\frac{q^{2}}{q^{2}-r p}+\frac{r^{2}}{r^{2}-p q}$
$=\frac{p^{2}}{p^{2}+r p+p q}+\frac{q^{2}}{q^{2}+p q+q r}+\frac{r^{2}}{r^{2}+q r+r p}$
$=\frac{p}{p+q+r}+\frac{q}{p+q+r}+\frac{r}{p+q+r}$
$=\frac{p+q+r}{p+q+r}=1$
21. (C) Given,
$u^{3}+(-2 \mathrm{v})^{3}+(-3 \mathrm{w})^{3}=3 \times(-2)(-3) \mathrm{uvw}$
$\therefore \quad u+(-2 v)+(-3 w)=0$
$u-2 v-3 w=0$
$u-2 v=3 w$
22.
(C) $\left(\frac{y-z-x}{2}\right)^{3}+\left(\frac{z-x-y}{2}\right)^{3}+\left(\frac{x-y-z}{2}\right)^{3}$
$\left(\frac{y-(z+x)}{2}\right)^{3}+\left(\frac{z-(x+y)}{2}\right)^{3}+\left(\frac{x-(y+z)}{2}\right)^{3}$
$\left(\frac{y-(-y)}{2}\right)^{3}+\left(\frac{z-(-z)}{2}\right)^{3}+\left(\frac{x-(-x)}{2}\right)^{3}$
$\Rightarrow\left(\frac{2 y}{2}\right)^{3}+\left(\frac{2 z}{2}\right)^{3}+\left(\frac{2 x}{2}\right)^{3}=3 x y z$
(If $a+b+c=0$, then $a^{2}+b^{3}+c^{3}=3 a b c$)
23. (A) $\frac{5}{\sec ^{2} \theta}+\frac{2}{\cot ^{2} \theta}+3 \sin ^{2} \theta$
$=5 \cos ^{2} \theta+\frac{2}{\operatorname{cosec}^{2} \theta}+3 \sin ^{2} \theta$
$=5 \cos ^{2} \theta+2 \sin ^{2} \theta+3 \sin ^{2} \theta$
$=5\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=5$
24. (D) Given, Height of aeroplane from the ground $A D=1 \mathrm{~km} ;$. Initial angle of elevation $=60^{\circ}$ and angle of elevation after 10 second $=30^{\circ}$
Let A be the initial position of the aeroplane and E be the position of observer. And B be the position of the aeroplane after 10 second.
Therefore $\angle \mathrm{AED}=60^{\circ}, \angle \mathrm{BEC}=30^{\circ}$ and $\mathrm{AB}=\mathrm{CD}$
We know that in \triangle AED,
$\frac{\mathrm{AD}}{\mathrm{DE}}=\tan 60^{\circ}=\sqrt{3}$
or $\frac{1}{\mathrm{DE}}=\sqrt{3}$, or $\mathrm{DE}=\frac{1}{\sqrt{3}}$

Similarly, in $\triangle B E C$,

or $\frac{1}{\mathrm{DE}+\mathrm{CD}}=\frac{1}{\sqrt{3}}$ or $\mathrm{DE}+\mathrm{CE}=\sqrt{3}$
or $\mathrm{CD}=\sqrt{3}-\mathrm{DE}=\sqrt{3}-\frac{1}{\sqrt{3}}=\frac{2}{\sqrt{3}}$
Therefore speed of the aeroplane per Distance AB
hour $=\frac{\text { Time taken to travel }}{}$
$=\frac{2}{\sqrt{3}} \times \frac{60 \times 60}{10}=240 \sqrt{3} \mathrm{~km} / \mathrm{h}$.
25. (B) Length of median of triangle $=\frac{\sqrt{3}}{2} \times 8$

$$
=4 \sqrt{3}
$$

Radius of the in-circle $=\frac{1}{3} \times 4 \sqrt{3} \mathrm{~cm}$

$$
=\frac{4}{\sqrt{3}} \mathrm{~cm}
$$

Area of the in-circle $=\pi\left(\frac{4}{\sqrt{3}}\right)^{2} \mathrm{~cm}^{2}$

$$
=\frac{16}{3} \pi \mathrm{~cm}^{2}
$$

Radius of circumcircle
$=\frac{2}{3} \times 4 \sqrt{3}=\frac{8}{\sqrt{3}} \mathrm{~cm}$
$\therefore \quad$ Area of the circum-circle $=\pi \times\left(\frac{8}{\sqrt{3}}\right)^{2}$

$$
=\frac{64}{3} \pi \mathrm{~cm}^{2}
$$

\therefore Area of the required region $=$

$$
\begin{aligned}
& \left(\frac{16}{3} \pi-\frac{16}{3} \pi\right) \mathrm{cm}^{2}=\frac{48 \pi}{3}=16 \pi \mathrm{~cm}^{2} \\
& =\frac{16 \times 22}{7}=\frac{352}{7}=50 \frac{2}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

26. (A) Volume of bucket $=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{2} r_{2}\right)$

$$
=\frac{1}{3} \times \frac{22}{7} \times 45\left(28^{2}+7^{2}+28 \times 7\right)
$$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 45(784+49+196) \\
& =\frac{1}{3} \times \frac{22}{7} \times 45 \times 1029=48510 \mathrm{~cm}^{3}
\end{aligned}
$$

27. (D)

$\triangle \mathrm{APQ} \sim \triangle \mathrm{ABC}$
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}$
$\frac{1}{2}=\frac{\mathrm{PQ}}{\mathrm{BC}}$
$B C=2 P Q$
$B C=2(P R+R Q)$
$\mathrm{BC}=2 \times 6$
$\mathrm{BC}=12 \mathrm{~cm}$
28. (B) $(a-b)^{2}=a^{2}-2 a b+b^{2}$
$x^{4}-2 x^{2}+\mathrm{K}=\left(x^{2}\right)^{2}-2 \times x^{2} \times 1+\mathrm{K}$
$K=(1)^{2}=1$
29. (D) $\mathrm{CD}=$ radius $=\mathrm{OC}=\mathrm{OD}$
$\angle \mathrm{COD}=60^{\circ}$
$\angle \mathrm{CAD}=\frac{1}{2} \angle \mathrm{COD}$
$\frac{1}{2} \times 60^{\circ}=30^{\circ}$
Now $\angle \mathrm{ADB}=90^{\circ}$
[Angle of semicircle]
$\Rightarrow \angle \mathrm{ADP}=180^{\circ}-90^{\circ}=90^{\circ}$
Now in \triangle ADP,
$\angle \mathrm{P}=180^{\circ}-(\angle \mathrm{PAD}+\angle \mathrm{ADP})$
$180^{\circ}-\left(30^{\circ}+90^{\circ}\right)=60^{\circ}$
30
(A) $\cos \left(40^{\circ}-\theta\right)-\sin \left(50^{\circ}+\theta\right)+\frac{\cos ^{2} 40^{\circ}+\cos ^{2} 50^{\circ}}{\sin ^{2} 40^{\circ}+\sin ^{2} 50^{\circ}}$ $\cos \left[90^{\circ}-50^{\circ}+\theta\right]-\sin \left(50^{\circ}+\theta\right)+\frac{\cos ^{2} 40^{\circ}+\cos ^{2}\left(90^{\circ}-40^{\circ}\right)}{\sin ^{2} 40^{\circ}+\sin ^{2}\left(90^{\circ}-40^{\circ}\right)}$
$\sin \left(50^{\circ}+\theta\right)-\sin \left(50^{\circ}+\theta\right)+\frac{\cos ^{2} 40^{\circ}+\sin ^{2} 40^{\circ}}{\sin ^{2} 40^{\circ}+\cos ^{2} 40^{\circ}}$
$0+\frac{1}{1}=1$
30. (B) $\cot 12^{\circ} \cot 38^{\circ} \cot 52^{\circ} \cot 60^{\circ} \cot 78^{\circ}$
$\Rightarrow\left(\cot 12^{\circ} \cot 78^{\circ}\right)\left(\cot 38^{\circ} \cot 52^{\circ}\right)\left(\cot 60^{\circ}\right)$
$\Rightarrow\left[\cot 12^{\circ} \cot \left(90^{\circ}-12^{\circ}\right)\right]\left[\cot 38^{\circ} \cot \left(90^{\circ}-38^{\circ}\right)\right]$ $\cot 60^{\circ}$
$\Rightarrow\left(\cot 12^{\circ} \tan 12^{\circ}\right)\left(\cot 38^{\circ} \tan 38^{\circ}\right) \cot 60^{\circ}$
$\Rightarrow 1 \times 1 \times \frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}}$
31. (A)

$\mathrm{BO}=\mathrm{BC}$
\therefore Circumcentre are equal distance from the each vertices,
So,
DC $=2 a$
In triangle BPD
$90+\theta+\theta+\theta+30^{\circ}=180^{\circ}$
$\Rightarrow 3 \theta=60^{\circ}$
$\Rightarrow \theta=20^{\circ}$
32. (C)

A.T.Q,
$\pi r^{2}=3 \pi$
$r=\sqrt{3}$
$\angle \mathrm{BOC}=90^{\circ}+\frac{\angle \mathrm{A}}{2}=120^{\circ}$
($\therefore \angle \mathrm{ABC}$ is an equilateral triangle) Using cosine rule
$\cos 120^{\circ} \frac{(\sqrt{3})^{2}+(\sqrt{3})^{2}-E F^{2}}{2 \times \sqrt{3} \times \sqrt{3}}$
$\Rightarrow-\frac{1}{2}=\frac{3+3-\mathrm{EF}^{2}}{2 \times 3}$
$\Rightarrow 6-\mathrm{EF}^{2}=-3$
$\mathrm{EF}=3$
Therefore
$\mathrm{AC}=\mathrm{AB}=\mathrm{BC}=6$
($\therefore \mathrm{E}$ and F are midpoint)
33. (D) A.T.Q,
\because Join the points E and C
G is midpoints of side FC
FG = GC =1

So, Area of triangle
$\triangle \mathrm{EFG}=1$ unit
And $\triangle \mathrm{EGC}=1$ unit
\therefore Area of $\triangle \mathrm{EFG}$ become 2 units
$\therefore \quad$ Area of $\triangle \mathrm{EBC}$ also 2 units
Similarly,
Area of $\triangle \mathrm{FBD}=2$ units
E is midpoints of $\triangle A D B$
Area of $\triangle \mathrm{AEB}=2$ units
Simillarly,
Area of $\triangle \mathrm{AEC}=2$ units
$\frac{\text { Area of } \triangle \mathrm{EFG}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{1}{8}$
35. (B)

By the same arc property,
Angle ABD = Angle DAC
Angle ACB = Angle ADB
Vertically opposite angle are equal $\angle \mathrm{BEC}=\angle \mathrm{AED}$
$\triangle \mathrm{ADE}$ and $\triangle \mathrm{BEC}$ are similar triangle
$\Rightarrow \frac{10}{4}=\frac{5}{2}=\frac{\frac{15}{2}}{\mathrm{AD}}$
$\Rightarrow \mathrm{AD}=3$
Again using similarity
$\frac{5}{10}=\frac{2}{4}=\frac{\mathrm{AB}}{\mathrm{CD}}$
$\Rightarrow \mathrm{CD}=2 \mathrm{AB}$
In $\square \mathrm{ABCD}$
$2 x \times x+\frac{15}{2} \times 3=12 \times 9$
$x^{2}=54-\frac{45}{4}$
$\Rightarrow x^{2}=\frac{171}{4}$
$x=\frac{\sqrt{171}}{2}$
Hence, $\mathrm{AB}=\frac{\sqrt{171}}{2}$
36. (C)

A.T.Q,
$\mathrm{AB}+\mathrm{BD}+\mathrm{DE}+\mathrm{EA}=\mathrm{DC}+\mathrm{CE}+\mathrm{ED}$
$\frac{A B+B D+A E}{5}=\frac{D C+C E}{5}$
Area of $\triangle \mathrm{DCE}=$ area of $\frac{\triangle \mathrm{ABC}}{2}$
$\Rightarrow \frac{1}{2} x \times(5-x)=\frac{1}{2} \times 4 \times 3 \times \frac{1}{2}$
$5 x-x^{2}=6$
$x^{2}-5 x+6=0$
$x=3,2$
DC $=3 \mathrm{~cm}$
$\mathrm{BD}=1 \mathrm{~cm}$
37.
(B)

A.T.Q,
$P Q=6 \mathrm{~cm}$
$\mathrm{PS}=\mathrm{SQ}=\mathrm{SR}=3 \mathrm{~cm}$
In $\Delta \mathrm{O}_{1} \mathrm{RS}$
$\mathrm{O}_{1} \mathrm{R}^{2}=\mathrm{O}_{1} \mathrm{~S}^{2}-\mathrm{SR}^{2}$

$$
=25-9=16
$$

$\mathrm{Q}_{1} \mathrm{R}=4 \mathrm{~cm}$
In $\Delta \mathrm{O}_{2} \mathrm{RS}$
$\mathrm{O}_{2} \mathrm{R}^{2}=16-9=7$
$\mathrm{O}_{2} \mathrm{R}=\sqrt{7} \mathrm{~cm}$
Area of $\Delta \mathrm{O}_{1} \mathrm{SO}_{2}$
$=\frac{1}{2} \times(4+\sqrt{7}) \times 3$
$=\frac{3}{2} \times(4+\sqrt{7}) \mathrm{cm}^{2}$
38. (A)

A.T.Q,

In $\triangle \mathrm{BPQ}$
Area of $\triangle \mathrm{BPQ}=\triangle \mathrm{BDP}+\triangle \mathrm{DPQ}$

$$
=\Delta \mathrm{BDP}+\Delta \mathrm{DPC}
$$

$$
=\triangle \mathrm{BDC}
$$

Area of $\triangle \mathrm{BPQ}=$ Area of $\frac{\triangle \mathrm{ABC}}{2}$
[If two lines are parallel on same base both are equal area
Area of $\triangle \mathrm{DPC}=$ Area of $\triangle \mathrm{DPQ}]$
($\therefore \mathrm{D}$ is mid points of side AB)
Area of $\triangle \mathrm{ABC}=2$ area of $\triangle \mathrm{BPQ}$
39. (A)

A.T.Q,
$\therefore \quad \mathrm{AD}$ is angle bisector and altitude $\triangle \mathrm{APB}$ is Isosceles triangle
$\mathrm{AP}=9 \mathrm{~cm}$
$\mathrm{BE}=2 \mathrm{~cm}$
Draw a line between points D and E .
E is midpoints of line $B C$,
So, $\mathrm{DE}=1 \mathrm{~cm}$
40. (A) A.T.Q,

$$
\frac{B}{A}=\frac{3}{4}, \frac{B}{C}=\frac{6}{5}
$$

increment
Total income before $=1900$ units
Total income after increment $=2140$ units

$$
\begin{aligned}
\text { Increment }= & \frac{2140-1900}{1900} \times 100 \\
& =12.63 \%=13 \%
\end{aligned}
$$

41.

(B)

A.T.Q,
$\mathrm{AM}=\mathrm{Mc}$ and $\mathrm{GM}=\mathrm{MK}$
$\triangle \mathrm{AMG}$ and $\triangle \mathrm{KMC}$
$\triangle \mathrm{KMC}$ and $\triangle \mathrm{AMG}$ - SAS
$\therefore \quad \angle B C K=45^{\circ}$ and opposite side $B K=4 \mathrm{~cm}$
$\angle \mathrm{KBC}=45^{\circ}$ opposite side $\mathrm{KC}=4 \mathrm{~cm}$
$B C=4 \sqrt{2} m$
42. (B)

A.T.Q,

If $\triangle A B C$ an acute angle triangle
$\mathrm{N}^{2}+10^{2}>24^{2}$
$10^{2}+24^{2}>\mathrm{N}^{2}$
From equation (i)
$\mathrm{N}^{2}>24^{2}-10^{2}$
$\mathrm{N}>21$
$\mathrm{N}^{2}<676$
$\mathrm{N}<26$
$\underline{21}<\mathrm{N}<26$
43. (D) Since a , b, c, d, e, f, g be consecutive even numbers;
Suppose $a=2, b=4, c=6, d=8, e=10$, $\mathrm{f}=12$ and $\mathrm{g}=14$.
Since $\mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}$, n be consecutive odd numbers;
Suppose $\mathrm{j}=1, \mathrm{k}=3,1=5, \mathrm{~m}=7$ and $\mathrm{n}=9$.
$\therefore \quad$ Average of all the numbers $=(\mathrm{a}+\mathrm{b}+\mathrm{c}+$ $d+e+f+g+j+k+1+m+n) / 12$
Putting the values of every term as supposed above;
$\therefore \quad$ Average of all the numbers $=\frac{56+25}{12}$
$=\frac{81}{12}=\frac{27}{4}$
On checking with the options, any option will not be satisfied with this data.
$\therefore \quad$ None of the above
44. (B) Ratio of people who got 1 kg box, 2 kg box and 500 gm box $=4: 3: 6$
Since 4 boxes of 1 kg are still remaining and Total number of 1 kg boxes was 16 more than total number of 2 kg boxes;
$\therefore 4 \mathrm{x}+4=3 \mathrm{x}+16$
$\Rightarrow x=12$
Number of people who recieved the gift $=12 \times 13=156$
Since 9 boxes are remaining;
\therefore Total number of gift boxes $=156+9=165$
45. (B)

From the figure
$x+\mathrm{y}+\mathrm{w}+25=0.45 \times 400=180$
$x+z+\mathrm{w}+45=0.575 \times 400=230$
$y+z+w+110=0.725 \times 400=290$
And,
$x+y+z+w+25+45+110=400$
$\Rightarrow x+\mathrm{y}+\mathrm{z}+\mathrm{w}=220$
Solving all 4 equations:
$\Rightarrow x=40, \mathrm{y}=35, \mathrm{z}=65$ and $\mathrm{w}=80$
Number of players who played in both $1{ }^{\text {st }} \mathrm{WC}$ and $2^{\text {nd }} \mathrm{WC}$ but not in $3^{\text {rd }} \mathrm{WC}=x=40$
46. (B) Numbers divisible by $3=\frac{699}{3}=233$

Numbers divisible by $7=\frac{700}{7}=100$
Numbers divisible by 21 (Both 3 and 7)
$=\frac{693}{21}=33$
\therefore Total number between 1 and 700 that not divisible by 3 or $7=700-[233+100-33]$

$$
=400
$$

Number divisible by $3=\frac{948}{3}=316$
Number divisible by $7=\frac{945}{7}=135$
Number divisible by 21 (Both 3 and 7)
$=\frac{945}{21}=45$
\therefore Total number between 1 and 700 that are not divisible by 3 or $7=950-[316+$ $135-45]=544$
$\therefore \quad$ Number between 700 and 950 that are not divisible by 3 or $7=544-400=144$
47. (D) LCM of $\left[\left(3^{3}\right)^{333}+1\right]$ and $\left[\left(3^{3}\right)^{334}+1\right]=$ $\left[\left(L C M\right.\right.$ of 3^{333} and $\left.\left.3^{334}+1\right)\right]$
$\Rightarrow+1$
$\Rightarrow\left[\left(3^{3}\right)^{334}+1\right]$
48. (C) Suppose CP of a notebook is ₹. P and thus CP of a pen will be ₹. 2P.
Since Ratio of selling price of pen and notebook is 2:3;
Suppose SP of a notebook is ₹ 3 k and thus SP of a pen will be ₹ 2 k
Profit percentage on selling X notebooks $=[(\mathrm{Y} \times 2 \mathrm{k}) /(\mathrm{X} \times \mathrm{P})] \times 100$
Loss percentage on selling X pens
$=\frac{[(\mathrm{Y}+1) \times 3 \mathrm{k}]}{\mathrm{X} \times 2 \mathrm{P}} \times 100$
$\therefore \frac{[(\mathrm{Y} \times 2 \mathrm{k})]}{(\mathrm{X} \times \mathrm{P})} \times 100=\frac{[\{(\mathrm{Y}+1) \times 3 \mathrm{k}\}]}{(\mathrm{X} \times 2 \mathrm{P})} \times 100$
$\Rightarrow 4 \mathrm{Yk}=3 \mathrm{Yk}+3 \mathrm{k}$
$\Rightarrow \mathrm{Yk}=3 \mathrm{k}$
$\Rightarrow \mathrm{Y}=3$
Value of X and the CP's can't be determined.
49. (B) Ratio of which the profit should be shared $=(9 \times 8):(6 \times 12):(14 \times 6)=72: 72: 84$ = $6: 6: 7$
Suppose total profit $=₹ x$
$\therefore \quad$ B kept $₹ 0.05 x$ and distributed $₹ 0.95 x$
\therefore Amount received by C out of remaining
$=\frac{0.95 x \times 7}{19}=₹ 0.35 x$
Since the amount received by C is ₹ 10500
$\therefore \quad 0.35 x=10500$
$\Rightarrow x=₹ 30000$
$\therefore \quad$ Amount received by B out of total profit
$=\frac{0.95 x \times 6}{19}+0.05 x=0.35 x$
$\Rightarrow 0.35 \times 30000=₹ 10500$
50. (B) Suppose the seller buys 300 product and the cost price of a product is ₹ 100 .
Amount paid = ₹ 30000
Since he got cheated by 20% volume while buying:
Quantity he actually received for ₹ 30000
$=300 \times 0.8=240$
Since he offers "buy 2 get 1 free" offer to the customer.
That means he receives selling price of

200 produced by giving 300 products.
But he cheats by 25% volume.
He actually gives $225=(300 \times 0.75)$ products at the selling price of 200 products.
He marked the product above 80% of the cost price?
Amount of money received by selling 225 product $=100 \times 1.8 \times 200=₹ 36000$

Cost price of 225 products $=\frac{30000}{240} \times 225$

$$
=₹ 28125
$$

Profit percentage $=\frac{36000-28125}{28125} \times 100$

$$
=28 \%
$$

51. (A) Interest rate for $1^{\text {st }}$ and $2^{\text {nd }}$ years are $11 \frac{1}{9} \%$ and $7 \frac{9}{13} \%$ compound yearly.
$\therefore \quad \mathrm{r}\left(1^{\text {st }}\right.$ year $)=\frac{1}{9}$ and $\mathrm{r}\left(2^{\text {nd }}\right.$ year $)=\frac{1}{13}$
Suppose money borrowed by the person $=(9 \times 13)=₹ 117$
$\therefore \quad$ Simple interest for 2 years $=\left(117 \times \frac{1}{9}\right)$
$+\left(117 \times \frac{1}{13}\right)=13+9=₹ 22$
And compound interest for 2 years = (SI for 2 years) + (Interest on SI of $1^{\text {st }}$ year)
$22+\left(13 \times \frac{1}{13}\right)=₹ 23$
\therefore Difference of compound and simple interest for two years $(\mathrm{CI}-\mathrm{SI})=360$.
\therefore Principal amount of money borrowed by him $=360 \times 117=₹ 42120$
52. (D) A.T.Q,

$$
\left[\sqrt{a^{2}+b^{2}+a b}+\sqrt{a^{2}+b^{2}-a b}\right]=1
$$

Let $\mathrm{b}=0$
$a+a=1$
$a=\frac{1}{2}$
$\Rightarrow\left(1-a^{2}\right)\left(1-b^{2}\right)=\left(1-\frac{1}{4}\right)(1-0)=\frac{3}{4}$
53. (B) A.T.Q,
$\sqrt{\left(1-p^{2}\right)\left(1-q^{2}\right)}=\frac{\sqrt{3}}{2}$
Let $\mathrm{q}=0$

$$
\begin{aligned}
& \sqrt{\left(1-p^{2}\right)}=\frac{\sqrt{3}}{2} \Rightarrow 1-p^{2}=\frac{3}{4} \\
& P=\frac{1}{2} \\
& \Rightarrow \sqrt{2 p^{2}+2 q^{2}+2 p q}+\sqrt{2 p^{2}+} \\
& \text { Put } q=0 \\
& \Rightarrow \sqrt{2 p^{2}}+\sqrt{2 p^{2}} \\
& \Rightarrow 2 \sqrt{2} p \\
& \Rightarrow 2 \sqrt{2} \times \frac{1}{2}=\sqrt{2}
\end{aligned}
$$

$$
\Rightarrow \sqrt{2 p^{2}+2 q^{2}+2 p q}+\sqrt{2 p^{2}+2 q^{2}-2 p q}
$$

54. (A) A.T.Q,
$x+y+z=0$
Let $z=0$
$\Rightarrow x+\mathrm{y}=0$
$\Rightarrow x=-y$
$\Rightarrow \frac{3 y^{2}+x^{2}+z^{2}}{2 y^{2}-x y}=\frac{3 x^{2}+x^{2}}{2 x^{2}}=2$
55. (C) A.T.Q,
$x+y=3$
Put $y=0$
$x=3$
$\Rightarrow x^{3}+y^{3}+9 x y=0$
$\Rightarrow 27$
56. (C) A.t.Q,
$\frac{x+y}{z}=2$
Let $x=2$

$$
y=0
$$

and $z=1$
$\Rightarrow\left[\frac{y}{y-2}\right]+\left[\frac{x}{x-z}\right]=\frac{2}{2-1}=2$
57. (C) A.T.Q,
$A+B+A B=65$
Let, $A=10$
$B=5$
$\Rightarrow \mathrm{A}-\mathrm{B}=10-5=5$
58. (B) A.T.Q,
$a=q+r$
$b=r+p$
$c=p+q$
Put $\mathrm{r}=0, \mathrm{q}=0$
$p^{3}+q^{3}+r^{3}-3 p q r=4$
$a=\mathrm{o}, b=\mathrm{p}, c=\mathrm{p}$

$$
\begin{aligned}
\Rightarrow a^{3}+b^{3}+c^{3}-3 a b c & =0+\mathrm{p}^{3}+\mathrm{p}^{3}-0 \\
& =2 \mathrm{p}^{3}=8
\end{aligned}
$$

59. (B) A.T.Q,
$x^{y+z}=1, y^{x+z}=1024$ and $z^{x+y}=729$
Let $\mathrm{x}=1$

$$
\begin{aligned}
& \mathrm{y}^{1+\mathrm{z}}=1024 \\
& \mathrm{z}^{1+\mathrm{y}}=729
\end{aligned}
$$

Let $\mathrm{y}=2$
$z=9$
$(z+1)^{y+x+1}=10^{4}=10000$
60. (B) A.T.Q, milk
Vessels A 40 litres
water
Vessels B 22 litres

8 litres mixture taken out
Water $=22$ litres
Milk = 8 litres
$\mathrm{W}: \mathrm{M}=22: 8=11: 4$
Step - II
When 6 litres mik is taken out from vessels B
15 units $=$ litres
4 units $=4 \times \frac{6}{15}=\frac{8}{15}$ litres
11 units $=11 \times \frac{6}{15}=\frac{22}{5}$ litres
Now, total milk ini vessels,
$\mathrm{A}=32+\frac{8}{5}=\frac{168}{5}$
Remaining water in vessels $B=22-\frac{22}{5}$

$$
=22 \times \frac{4}{5}
$$

Required ratio $=\frac{\frac{168}{5}}{22 \times \frac{4}{5}}=21: 11$
61. (A) $x=\left(\frac{a}{b}\right)+\left(\frac{b}{a}\right), y=\frac{b}{c}+\frac{c}{b}, z=\frac{c}{a}+\frac{a}{c}$

Let, $a=b=1$
$x=2, \mathrm{y}=2$ and $\mathrm{z}=2$
$\Rightarrow x y z-x^{2}-y^{2}-z^{2}=2 \times 2 \times 2-4-4-4$ $=-4$
62. (C) A.T.Q,

Let, CP \longrightarrow candles $\longrightarrow x$
$\mathrm{CP} \longrightarrow$ Pen $\longrightarrow 2 x$
$\Rightarrow \frac{3 \mathrm{P}}{x} \times 100=\frac{4 \mathrm{C}}{2 x} \times 100$
$\Rightarrow \frac{\mathrm{C}}{\mathrm{P}}=\frac{3}{2}$
63. (D) A.T.Q,

$$
25 \%=\frac{1}{4}
$$

Let $\mathrm{CP}=16$ units
Profit $=25 \%$
S.P $=20$ units

Profit $=4$ units
If profit is calculated on S.P 25% of 20 profit $=5$ units
Profit on CP and Profit on SP is 1 unit more.
Now, 5% of $16=0.8$
Total profit is 1 unit more
Hence,
5% of $16+0.2$
$0.2 \longrightarrow$ ₹ 80
16 units $\longrightarrow \frac{80 \times 16}{0.2}=₹ 6400$
64. (B) A.T.Q,
$x^{4}+y^{4}+x^{2} y^{2}=481, x y=12$
Let $x=4$
$\mathrm{y}=3$
$\Rightarrow x^{2}-x y+y^{2}=16-12+9=13$
65. (B) $a+b+c=9$

$$
\begin{aligned}
& a b+b c+c a=26 \\
& a^{3}+b^{3}=91 \\
& b^{3}+c^{3}=72 \\
& c^{3}+a^{3}=35 \\
& \text { Let } a=3 \\
& \quad b=4 \\
& \quad c=2 \\
& \Rightarrow a b c=3 \times 4 \times 2=24
\end{aligned}
$$

66. (B) A.T.Q,

$$
\begin{aligned}
& 3 \sqrt{\frac{1-a}{a}}+9=19-3 \sqrt{\frac{a}{1-a}} \\
\Rightarrow & {\left[\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}}\right]=\frac{10}{3} } \\
\Rightarrow & \sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}}=3 \frac{1}{3} \\
\Rightarrow & \sqrt{\frac{1-a}{a}}=3 \\
\Rightarrow & \frac{1-a}{a}=9 \\
\Rightarrow & 1-a=9 a \\
\Rightarrow & a=\frac{1}{10}
\end{aligned}
$$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
67. (B) A.T.Q,

20\% Profit
$\mathrm{CP}: \mathrm{SP}=5: 6$

$$
=15: 18
$$

10% Profit more 5 units
CP : SP = $10: 13^{\downarrow}$
5 units \qquad \rightarrow ₹ 20

15 units \qquad ₹ 60
68.
(B) $\sqrt{\frac{a}{b}}-13=-\sqrt{\frac{b}{a}}-11$
$\Rightarrow \sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=2$
$\Rightarrow \sqrt{\frac{a}{b}}=1$
$\Rightarrow a=b$
$\Rightarrow a+b=10$
$\Rightarrow a=5, b=5$
$\Rightarrow 3 a b+4 a^{2}+5 b^{2}=3 \times 5 \times 5+100+125$

$$
=300
$$

69. (D) Total profit $=\frac{20000 \times 10 \times 1}{100}=₹ 2000$

According to the question,
Case (I): Interest $=\frac{12000 \times 8 \times 1}{100}=₹ 960$
Remaining interest (profit) $=(2000-960)$ = ₹ 1040
Remaining principal $=(20000-12000)$

$$
=₹ 8000
$$

Required rate $\%=\frac{1040}{8000} \times 100=13 \%$
70. (D) ATQ $=\frac{8}{25} \longleftarrow$ S.I

Time $=\frac{R}{2}$, Rate $=R$
Now $8=\frac{25 \times \mathrm{R} \times \mathrm{R}}{100 \times 2}=\left[\mathrm{SI}=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}\right]$
$8=\frac{R^{2}}{4 \times 2} \Rightarrow 64=R^{2}$
$\mathrm{R}=8 \%$
71. (C) $\frac{1}{2} \mathrm{~A}=\frac{1}{3} \mathrm{~B}=\frac{1}{4} \mathrm{C}$
\therefore A:B:C
2:3:4

$$
\begin{aligned}
2 x+3 x+4 x & =900 \\
9 x & =900 \\
x & =100
\end{aligned}
$$

$A=200$
$B=300$
$C=400$
72. (D)

	Milk	:	water
AB	3	:	$1=4_{\times 7}$
	5	:	$2=7_{\times 4}$
		$\begin{array}{ll} & \text { Milk } \\ \text { A } & 21 \end{array}$	Water 7
\Rightarrow		B 20	: 8
	New	re $\underline{41}$: $\underline{15}$

73. (B) A.T.Q,
$A=B+C$ (efficiency)
efficiency

$$
\begin{equation*}
(\mathrm{A}+\mathrm{B}) \tag{C}
\end{equation*}
$$

$(A+B+C)$'s efficiency $=6$ units A should do half of the work by B and C together.
So,
A's efficiency $=\frac{6}{2}=3$ units
B's efficiency $=6-3-1=2$ units B will complete whole work in ,

$$
\frac{48}{2}=24 \text { hours }
$$

74. (C)

Complete work in ' 4 ' days $=11 \times 4=44$ remaining work $=60-44=16$
New efficiency of A and B
$\mathrm{A}=6 \times 2=12$
C $=2 \times \frac{1}{2}=1$
New efficiency of A + B + C $=12+1+3=16$
No of day $=4+\frac{16}{16}=5$ days

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
75. (B)

76. (C)

(I) (II)
(III)

Ist pipe fills till $3 p m=5 \times 2=10$ units
IInd pipe fills till $3 \mathrm{pm}=4 \times 1=4$ units
Total filled $=10+4=14$ units
Now, pipe (III) efficiency $=15-9=6$ units $/ \mathrm{hrs}$
Tank will be empty in $=\frac{14}{6}=2 \mathrm{hr} 20 \mathrm{~min}$
$30 \mathrm{hr}+2 \mathrm{hr} 20 \mathrm{~min}=5: 20 \mathrm{pm}$
77. (D) Distance travelled by driver in 2 hours
$=300 \times \frac{40}{100}=120 \mathrm{~km}$
Distance to be covered in 2 hours
$=300-120=180 \mathrm{~km}$
Required speed $=\frac{180}{2}=90 \mathrm{~km} / \mathrm{h}$
Required difference $=90-\frac{120}{2}$

$$
=30 \mathrm{~km} / \mathrm{hr}
$$

78. (B)

Distance travelled by Ist train in ' t ' time $=14 \mathrm{~km} / \mathrm{hr} \times \mathrm{th}$ [th $=$ time hours]
Distance travelled by IInd train in 't' time
$=21 \mathrm{~km} / \mathrm{hr} \times \mathrm{th}$
Difference their distance $=70 \mathrm{~km}$
$21 \times \mathrm{t}-14 \times \mathrm{t}=70$
$7 \mathrm{t}=70$
$\mathrm{t}=10 \mathrm{~h}$
It means both train travelled 10 hr
Ist train complete $=14 \mathrm{~km} / \mathrm{h} \times 10 \mathrm{hr}$

$$
=140 \mathrm{~km}
$$

IInd train complete $=21 \mathrm{~km} / \mathrm{h} \times 10 \mathrm{hr}$

$$
=210 \mathrm{~km}
$$

Total distance $=140+210=350 \mathrm{~km}$
79. (B) Let the unit place of the number $=x$ and the ten $=y$
Then number will be $=10 \mathrm{y}+x$
According to question
$10 y+x=3(x+y)$
$10 \mathrm{y}+x=3 x+3 \mathrm{y}$
$7 \mathrm{y}-2 \mathrm{x}=0$
Again,
$(10 y+x)+45=10 x+y$
$10 y+x+45=10 x+y$
$9 y-9 x=-45$
$x-y=5$
$x=5+y$
From equation (i)
$7 y-2(5+y)=0$
$7 y-10-27=0$
$5 y=10$
$\mathrm{y}=2$
Then $x=y+5$
$x=7$
Sum $=x+y=7+2=9$
80. (B) Number $=x y x y x y$

$$
\begin{aligned}
& =x y \times 1000+x y \times 100+x y \\
& =x y(1000+100+1) \\
& =x y(10101)
\end{aligned}
$$

81. (B) Assume weight of water $=x$

Weight of container $=y$
So,
That weight of container when it is filled with water,
$x+y=2.25 \mathrm{~kg}$
When it is filled $2 / 10^{\text {th }}$ of water then,
$=x \times \frac{2}{10}+y=0.77 \mathrm{~kg}$
After solving both equation,
$x=\frac{37}{20} \mathrm{~kg}$
$\mathrm{y}=0.40 \mathrm{~kg}$
Now, The weight (in kg) of the container when 0.4 part if its is filled with water is,
$=\frac{37}{20} \times \frac{4}{10}+0.40=1.14 \mathrm{~kg}$
82.
(C)

$\sqrt{2}$	$\sqrt[6]{3}$
\downarrow	\downarrow
$2^{1 / 2}$	$3^{1 / 6}$
$2^{6 / 12}$	$3^{2 / 12}$
\downarrow	\downarrow
$\left(2^{6}\right)^{1 / 12}$	$\left(3^{2}\right)^{1 / 12}$
$(64)^{1 / 12}$	$(9)^{1 / 12}$

$\sqrt[3]{4}$	$\sqrt[4]{5}$
\downarrow	\downarrow
$4^{1 / 3}$	$5^{1 / 4}$
$4^{4 / 12}$	$5^{3 / 12}$
\downarrow	\downarrow
$\left(4^{4}\right)^{1 / 12}$	$\left(5^{3}\right)^{1 / 12}$
$(256)^{1 / 12}$	$(125)^{1 / 12}$

\uparrow
Largest
83. (B) If $x^{2}+\frac{1}{x^{2}}=1$

Then, $x+\frac{1}{x}=\sqrt{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=(\sqrt{3})^{3}-3 \sqrt{3}=0$
$\Rightarrow x^{6}=-1$,or $x^{6}+1=0$
then, $x^{102}+x^{96}+x^{90}+x^{84}+x^{78}+x^{72}+5$
$x^{96}\left(x^{6}+1\right)+x^{84}\left(x^{6}+1\right)+x^{72}\left(x^{6} 1\right)+5=5$
84. (A) Series :- $\mathrm{a}, \mathrm{a}+2, \mathrm{a}+4$ \qquad
Sum $=$ na $+2+4+\ldots$. upto n terms
Sum $=n a+S_{n}$
$\mathrm{S}_{\mathrm{n}}=\frac{2\left(2^{\mathrm{n}}-1\right)}{2-1}$
Average $=\mathrm{a}+\frac{2\left(2^{\mathrm{n}}-1\right)}{\mathrm{n}}$
85. (A)

area $=\frac{1}{2}($ sum of parallel sides $) \times$ distance between them
$\frac{1}{2}(7 x+4 x) \times 2 x=176$
$11 x^{2}=176 \Rightarrow x^{2}=16$
$\Rightarrow x=4$
$\mathrm{AB}=7 \times 4=28 \mathrm{~cm}$
$\mathrm{CD}=4 \times 4=16 \mathrm{~cm}$
$\mathrm{CM}=2 \times 4=8 \mathrm{~cm}$
$\mathrm{AM}=\mathrm{AN}+\mathrm{NM}$
$\Rightarrow \mathrm{AN}+16$
$\Rightarrow 6+16=22 \quad\left(\mathrm{AN}=\mathrm{BM}=\frac{12}{2}=6\right)$
$\mathrm{AC}^{2}=\mathrm{CM}^{2}+\mathrm{AM}^{2}$
$\mathrm{AC}^{2}=8^{2}+22^{2}$
$A C=\sqrt{64+484} \Rightarrow \sqrt{548} \Rightarrow 2 \sqrt{137}$
86. (C) Diagonal of cube will be equal to diameter of sphere,
$\sqrt{3} a=2 \times r$
$\sqrt{3} a=2 \times 6 \sqrt{3}$
$a=12$
Surface area $=6 a^{2}=6 \times 12 \times 12$
$\Rightarrow 864 \mathrm{~cm}^{2}$

87

$$
\begin{aligned}
& \text { (A) } \frac{\sin A}{1+\cos A}+\frac{\sin A}{1-\cos A} \\
& \Rightarrow \frac{\sin A(1-\cos A)+\sin A(1+\cos A)}{(1+\cos A)(1-\cos A)} \\
& \Rightarrow \frac{\sin A-\sin A \cos A+\sin A+\sin A \cos A}{1-\cos ^{2} A} \\
& \Rightarrow \\
& \frac{2 \sin A}{\sin ^{2} A}=2 \operatorname{cosec} A
\end{aligned}
$$

88. (B) $\sin \left(\frac{\pi x}{2}\right)=x^{2}-2 x+2$

Put value of x from options
$x=1$
$\sin \frac{\pi}{2} \times 1=1^{2}-2 \times 1+2$
$\sin 90^{\circ}=1-2+2$
$1=1$
89. (B)

In $\angle \mathrm{ABC}$
$2 \mathrm{U}=100 \mathrm{~m} \quad[\therefore \mathrm{BC}=100 \mathrm{~m}]$
$1 \mathrm{U}=50 \mathrm{~m}$
Hence, length of $A C=50 \mathrm{~m}$
In $\angle \mathrm{ADC}$

$\mathrm{AC}=50 \mathrm{~m}$
$\mathrm{AU}=50 \mathrm{~m}$
$\mathrm{U}=25 \mathrm{~m}$
$\mathrm{AD}=\sqrt{3} x$
$=\sqrt{3} \times 25=25 \sqrt{3} \mathrm{~m}$
Hence, the of the canal (AD) $=25 \sqrt{3}$

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

91. (B) It is clear from the bar diagram. The bar of west Bengal is lowest
92. (B) The bar of West Bengal is largest producer
93. (B) Total production of rice $=24$ million tonnes

Haryana share $=\frac{2}{24}=\frac{1}{12}$
94. (C) Maharashtra
95. (D) Uttar Pradesh produces 16 millions tonnes of wheat which is largest in graph
96. (C) Number of students who come to school

$$
\text { by car }=\frac{70^{\circ}}{360^{\circ}} \times 2160=₹ 420
$$

97. (B) Car : Bus $=70^{\circ}: 90^{\circ}=7: 9$ or $21: 27$
98. (C) Number of students coming by

$$
=\frac{80^{\circ} \times 90^{\circ}}{360^{\circ}} \times 2160=1020
$$

99. (D) Number of students do not come by train

$$
=\frac{360^{\circ} 120^{\circ}}{360^{\circ}} \times 2160=1440
$$

100. (B) Required percentage $=\frac{90^{\circ}-80^{\circ}}{80^{\circ}} \times 100$

$$
=12.5 \%
$$

SSC TIER II (MATHS) MOCK TEST - 49 (ANSWER KEY)

| |
| :--- |
| 1. | (A) | 11. | (A) | 21. | (C) | 31. | (B) | 41. | (B) | 51. | (A) | 61. | (A) | 71. | (C) | 81. | (B) | 91. | (B) |
| 2. | (C) | 12. | (B) | 22. | (C) | 32. | (A) | 42. | (B) | 52. | (D) | 62. | (C) | 72. | (D) | 82. | (C) | 92. | (B) |
| 3. | (A) | 13. | (A) | 23. | (A) | 33. | (C) | 43. | (D) | 53. | (B) | 63. | (D) | 73. | (B) | 83. | (B) | 93. | (B) |
| 4. | (B) | 14. | (B) | 24. | (D) | 34. | (D) | 44. | (B) | 54. | (A) | 64. | (B) | 74. | (C) | 84. | (A) | 94. | (C) |
| 5. | (C) | 15. | (C) | 25. | (B) | 35. | (B) | 45. | (B) | 55. | (C) | 65. | (B) | 75. | (B) | 85. | (A) | 95. | (D) |
| 6. | (A) | 16. | (B) | 26. | (A) | 36. | (C) | 46. | (B) | 56. | (C) | 66. | (B) | 76. | (C) | 86. | (C) | 96. | (C) |
| 7. | (B) | 17. | (A) | 27. | (D) | 37. | (B) | 47. | (D) | 57. | (C) | 67. | (B) | 77. | (D) | 87. | (A) | 97. | (B) |
| 8. | (A) | 18. | (A) | 28. | (B) | 38. | (A) | 48. | (C) | 58. | (B) | 68. | (B) | 78. | (B) | 88. | (B) | 98. | (C) |
| 9. | (B) | 19. | (C) | 29. | (D) | 39. | (A) | 49. | (B) | 59. | (B) | 69. | (D) | 79. | (B) | 89. | (B) | 99. | (D) |
| 10. | (A) | 20. | (B) | 30 | (A) | 40. | (A) | 50. | (B) | 60. | (B) | 70. | (D) | 80. | (B) | 90. | (B) | 100. | (B) |

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

