SSC TIER II (MATHS) MOCK TEST - 48 (SOLUTION)

1. (A) A.T.Q,
$25 \%=\frac{1}{4}$
4 units $\underset{1 \text { unit }}{\longrightarrow 5}$ units
1 unit $\longrightarrow 9800-9440$
1 unit $\longrightarrow ₹ 360$
4 units $\longrightarrow 360 \times 4=₹ 1440$
Total interest gain ₹ 1440 in 3 years
3 years $\longrightarrow 1440$
1 year $\longrightarrow ₹ \frac{1440}{3}=₹ 480$
Hence, pricipal = ₹ 9440

$$
\text { = ₹ } 9440-1440
$$

$$
\text { = ₹ } 8000
$$

$₹ 8000 \xrightarrow{\text { 1year }} 480$
$₹ 100 \longrightarrow \frac{480 \times 100}{8000}$
Rate $\longrightarrow 6 \%$
2. (C) A.T.Q,

$$
\text { = ₹ } 1675
$$

3. (A) A. T. Q,

Ratio $=1: 2: 3: 4$
Total initial cost $=10^{2}=100$ units
After broken $=1^{2}+2^{2}+3^{2}+4^{2}=30$ units Loss $=(100-30)$ units

70 units $\longrightarrow ₹ 700$
100 units $\longrightarrow ₹ 1000$
Hence, initial cost is ₹ 1000
4. (C) Ratio of total amount received male and female $=5: 4$
Ratio of amount received by one male and female $=3: 2$
Ratio of no. of male : no of female

$$
\begin{aligned}
& =\frac{5}{3}: \frac{4}{2} \\
\Rightarrow \quad & 5: 6
\end{aligned}
$$

11 units \qquad 66

1 unit \qquad 6

No. of males \qquad 30

No. of female $\longrightarrow 36$
5. (A) A.T.Q,

33 years $\xrightarrow[\text { After } 4 \text { years }]{ } 37$ years
33 years $\xrightarrow{\text { on death of } 64 \text { years }} 37-\frac{64}{8}$
29 years $\xrightarrow[3 \text { years }]{\text { After }} 32$ year
32 years $\xrightarrow[\text { on death of } 72 \text { years }]{ } 32-\frac{72}{8}$
23 years $\xrightarrow[3 \text { years }]{\text { After }} 26$ years
6. $(\mathrm{D}) 656656 \longrightarrow(656000+656)$
$656(1000+1)$
656×1001
Is divisible by 1001
7. (D)

A.T.Q,

If meeting time is same,
Then the ratio of speed is equal to ratio of distance,
$\frac{\mathrm{S}_{\mathrm{P}}}{\mathrm{S}_{\mathrm{Q}}}=\frac{\mathrm{D}_{\mathrm{P}}}{\mathrm{D}_{\mathrm{Q}}}=\frac{48}{72}=\frac{2}{3}$
1 unit $\longrightarrow 4 \mathrm{kms} / \mathrm{hr}$
2 units $\longrightarrow 8 \mathrm{kms} / \mathrm{hr}$
3 units $\longrightarrow 12 \mathrm{kms} / \mathrm{hr}$
Hence, of P and Q is $8 \mathrm{kms} / \mathrm{hr}$ and
$12 \mathrm{kms} / \mathrm{hr}$ respectively
8. (B) A.T.Q,

Time Efficiency

$$
\begin{aligned}
& \frac{A}{B}=\frac{140}{100}=\frac{7}{5}=\frac{5}{7} \times \frac{5}{7} \\
& \frac{B}{C}=\frac{80}{100}=\frac{4}{5}=\frac{5}{7} \times \frac{7}{7}
\end{aligned}
$$

So, time
A : B: C

$$
25: 35: 28
$$

3 units $\longrightarrow 6$ days
35 units $\longrightarrow 70$ days
Hence, B will complete this work in 70 days.

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
9. (D) A.T.Q,

$$
\begin{array}{cc}
5 \mathrm{~km} / \mathrm{hr} & 7 \mathrm{~km} / \mathrm{hr} \\
10 \text { seconds } & 11 \text { seconds }
\end{array}
$$

Distance $50 \mathrm{~km} \quad 77 \mathrm{~km}$
Distance in unit time $=27 \frac{\mathrm{~km}}{\mathrm{hr}}$
Hence the speed of train is $27 \frac{\mathrm{~km}}{\mathrm{hr}}$
10. (C) A.T.Q,

In both cases, distance will be same then the ratio of speed is inverse of ratio of the time,
$\frac{\text { Speed }_{1}}{\text { Speed }_{2}}=\frac{V+45}{V-45}=\frac{120}{20}$
$\Rightarrow \frac{\mathrm{V}+45}{\mathrm{~V}-45}=\frac{6}{1}$
$\Rightarrow V+45=(V-45) \times 6$
$\Rightarrow \mathrm{V}=63 \mathrm{~km} / \mathrm{hr}$
Then, the speed of faster train is $63 \mathrm{~km} / \mathrm{hr}$
11. (B) A.T.Q,
$\because \quad(A+B)$ do whole the work in 10 days
$\mathrm{A} \longrightarrow 2.5$ days $\longrightarrow 5$ days
$\mathrm{B} \longrightarrow 8.5$ days $\longrightarrow(5+12)$ days
Half work $+B$ (Half work)
($\mathrm{A}+\mathrm{B}$)
5 days 12 days
Whole work will complete
$\because \quad$ B does half the work in 12 days.
Hence, B alone does the whole work in 24 days,
12. (B) A.T.Q,

If overall commission is 4% then 1% of 10,000 goes to company then,
Let sales be 100 units
Sales commission
100\% 4\%
Company
$96 \% \longrightarrow ₹(31100+100)$
$1 \% \longrightarrow$ ₹ 325
$100 \% \longrightarrow$ ₹ 32500
Hence, Total sale is ₹ 32500
13. (C)

A.T.Q,
$\because \quad \mathrm{EC}=\mathrm{AC}$ and $\mathrm{CF}=\mathrm{BC}$
$=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ}$
14. (D)

A.T.Q,
$\angle \mathrm{A}$ will be obtuse angle
($\mathrm{II}^{\text {nd }}$ Quadrant)
$\tan \mathrm{A}$ will be negative
So,
By option only D
Options contain - 2
$\frac{\tan A}{\tan B}=-2$
15. (C) A.T.Q,
$\mathrm{R}=\frac{a b c}{4 \mathrm{~A}}$
$=\frac{a \times 9 \times 17.5}{4 \times \frac{1}{2} \times a \times 3}$
$\Rightarrow \frac{52.5}{2}=26.25 \mathrm{~cm}$
16. (A)

$$
\begin{aligned}
& \angle \mathrm{OBD}-\angle \mathrm{CBD} \\
& =\angle \mathrm{BDC}-\angle \mathrm{ODB} \\
& \Rightarrow \angle \mathrm{OBD}-\angle \mathrm{ODB}=\angle \mathrm{BDC}-\angle \mathrm{CBD} \\
& \quad \quad \Delta \mathrm{OBD} \quad \Delta \mathrm{BCD}
\end{aligned}
$$

Then, third side of both triangles,
$\angle \mathrm{BOD}-\angle \mathrm{BCD}=2 \alpha$ (let)
$\angle \mathrm{BAD}=$ Half of $\angle \mathrm{BOD}=\alpha$
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
$\alpha+2 \alpha=180^{\circ}$
$\therefore \alpha=60^{\circ}$
17. (C) A.T.Q,

	CP	SP	Profit
30 kg	8.9	9.5	$=.6 \times 30$
40 kg	9.9	9.5	$=.4 \times 40$
Profit $=₹$	18		
Loss $=₹$	16		
Over all $=18-16=₹$	2 Profit		

Campus

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
18. (C) Prime cost = Raw material + manufacturing expenses
$3=1+2$

The article, now cost is

$$
=5+4.8=₹ 9.8
$$

19. (D) Total cost price of 80 dozens

Bananas at ₹ 10 per dozen

$$
\text { = ₹ } 800
$$

12 dozen got rotten and its selling price is,

$$
\begin{aligned}
& =₹ 12 \times 6 \\
& =₹ 72
\end{aligned}
$$

Remaining sold at 14 per dozen

$$
=₹ 14 \times 68
$$

Total selling price $=1024$
Profit $\%=\frac{1024-800}{800} \times 100=28 \%$
20. (B)

The volume of frustum,
$=44=14 \pi$
Volume of smaller cone $=\frac{1}{3} \pi \times 3^{2} \times 9-14 \pi$

$$
\begin{aligned}
& \Rightarrow \frac{1}{3} \pi r^{2} \times 3 r=3 \pi \\
& \Rightarrow \mathrm{r}^{3}=13 \\
& \Rightarrow \mathrm{r}=\sqrt[3]{13}
\end{aligned}
$$

The radius of upper circular surface of the frustum $\sqrt[3]{13}$
21. (A) A.T.Q,

$$
\begin{aligned}
& a=(\sqrt{3}+2)^{-3} \\
& b=(\sqrt{3}-2)^{-3} \\
& \Rightarrow a b=1 \\
& (a+1)^{-1}+(b+1)^{-1}
\end{aligned}
$$

$$
\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}=\frac{1}{a+1}+\frac{1}{\frac{1}{a}+1}=1
$$

22. (D) $\cos x=\frac{2 \cos y-1}{2-\cos y}$

Let $\mathrm{y}=60^{\circ}$
$\cos x=\frac{2 \times \frac{1}{2}-1}{2-\frac{1}{2}}$
$\Rightarrow x=90^{\circ}$
Then,
$\tan \left(\frac{x}{2}\right) \cot \left(\frac{y}{2}\right)=\tan 45^{\circ} \cot 30^{\circ}=\sqrt{3}$
23. (A) A.T.Q,

Length of median
$\mathrm{AD}=\frac{1}{2} \sqrt{2 \mathrm{AC}^{2}+2 \mathrm{AB}^{2}-\mathrm{BC}^{2}}$
$=\frac{1}{2} \sqrt{2 \times 25+2 \times 36-64}=\sqrt{\frac{29}{2}}$
Then the length of median is $\sqrt{\frac{29}{2}}$
24. (A)

In $\triangle \mathrm{BDG}$
$\tan \alpha=\frac{a}{13}$
In $\triangle \mathrm{FCE}$
$\tan (90-\alpha)=\cot \alpha=\frac{a}{9}$
Multiplying equation (i) and (ii)
$\tan \alpha \cdot \cot \alpha=\frac{a}{13} \times \frac{a}{9}$
$\Rightarrow a^{2}=117$
Hence, Area of square is $117 \mathrm{~cm}^{2}$
25. (C)

$\alpha+15^{\circ}=30^{\circ}$
$\alpha=15^{\circ}$
Then, $\mathrm{AC}=\mathrm{CD}=96$ metres If,

$$
2 \text { units } \longrightarrow 96 \text { metres }
$$

Then 1 unit $\longrightarrow 48$ metres
$\mathrm{AB}=48$ metres
Hence, height of tower is 48 metres
26. (C)

Draw a circle passing through all the points A, B, C and D. 210° is twice of 105°
So, A, B, D will be on circumference of circle and C is the centre.
Radius $=\mathrm{BC}=\mathrm{CD}=\mathrm{AC}=12 \mathrm{~cm}$
27. (A) A.T.Q,

30 days $\xrightarrow{\text { 1day }} 30$ work
Remaining,
Work $=50-30=20$ units
1 day $\longrightarrow 1$ unit
20 boys
20 units work done by
20 boys in 20 days
28. (B) 20 minutes $\quad 30$ minutes

A fill the tank in $\frac{1}{2}$
minute $\longrightarrow \frac{3}{2}$ unit
$(A+B)$ fill the tank another
$\frac{1}{2}$ minute $\longrightarrow \frac{5}{2}$
$[\mathrm{A}+(\mathrm{A}+\mathrm{B})]$ fill the tank in 1 minute is $\left(\frac{3}{2}+\frac{5}{2}=8\right)$,
Total time taken to fill the tank is
$=\frac{60}{4}=15$ minutes
29. (A) Average of each 4 groups $=500 \mathrm{gm}$ Let, weight of 4 packets $=500 \mathrm{gm}$ 2 packets $=250 \mathrm{gm}$ 6 packets $=750 \mathrm{gm}$
30. (C) A.T.Q,

Let $\mathrm{CP}_{\mathrm{I}}-100 x$ and $\mathrm{CP}_{\text {II }}-100 y$
Profit-1 10x 20y
Profit-2 20x 10y
Substracting equation (i) and (ii)
$\Rightarrow 10 x-10 y=5$
\Rightarrow Multiply equation (iii) by 10 both sides
$\Rightarrow 100 x-100 y=₹ 50$
Hence difference of cost prices is ₹ 50
31. (A) Put $\beta=0$
$2 \sin ^{2} \beta+4 \cos (\alpha+\beta) \times \sin \alpha \cdot \sin \beta+\cos 2(\alpha+\beta)$
$\Rightarrow 0+0+\cos 2 \alpha$
$\Rightarrow \cos 2 \alpha$
32. (D) Total distance covers by A and B in one hour $=4+2=6 \mathrm{~km}$
$2^{\text {nd }}-$ hour \qquad 6.5 kms
$3^{\text {rd }}-$ hour $\longrightarrow 7 \mathrm{kms}$
It is certainly from an A.P (Arithematic Progression)
A.P $\rightarrow 6+6.5+7+7.5+\ldots \ldots \ldots . .=72$
$\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow 72=\frac{n}{2}[2 \times 6+(n-1) \times 5]$
$\Rightarrow n=9$
They will meet each other $=9 \times 4\left(\frac{\mathrm{~km}}{\mathrm{hr}}\right)$ $=36 \mathrm{kms}$ from A
Or mid-way between A and B
33. (C) $A+\sqrt{B}=\frac{4+3 \sqrt{3}}{\sqrt{7+4 \sqrt{3}}}$
$=\frac{4+3 \sqrt{3}}{\sqrt{2^{2}+3+2 \times 2 \sqrt{3}}}$
$=\frac{4+3 \sqrt{3}}{2+\sqrt{3}}$
Rationalizing the given equation,
$A+\sqrt{B}=\frac{(4+3 \sqrt{3})(2-\sqrt{3})}{4-3}$
$=\frac{8+6 \sqrt{3}-4 \sqrt{3}-9}{1}$
$\mathrm{A}+\sqrt{\mathrm{B}}=-1+2 \sqrt{3}$
$\mathrm{A}=-1$
B $=12$
Hence,
$\Rightarrow \mathrm{B}-\mathrm{A}=12+1=13$

Campus

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
34. (B) $\frac{1}{\sqrt[3]{25}+\sqrt[3]{20}+\sqrt[3]{16}}=5^{\frac{1}{3}} \mathrm{~A}+4^{\frac{1}{3}} \mathrm{~B}+\mathrm{C}$

Multiplying and dividing by $\left(5^{\frac{1}{3}}-4^{\frac{1}{3}}\right)$
$\Rightarrow \frac{5^{\frac{1}{3}}-4^{\frac{1}{3}}}{\left(5^{\frac{1}{3}}-4^{\frac{1}{3}}\right)\left[\left(5^{\frac{1}{3}}\right)^{2}+5^{\frac{1}{3}} \times 4^{\frac{1}{3}}+\left(4^{\frac{1}{3}}\right)^{2}\right]}$
$=5^{\frac{1}{3}} \mathrm{~A}+4^{\frac{1}{3}} \mathrm{~B}+\mathrm{C}$
$\Rightarrow 5^{\frac{1}{3}}-4^{\frac{1}{3}}=5^{\frac{1}{3}} \mathrm{~A}+4^{\frac{1}{3}} \mathrm{~B}+\mathrm{C}$
Comparing above equation,
$\mathrm{A}=1$
$B=-1$
$\mathrm{C}=0$
$\Rightarrow A+B+C=-1+1+0=0$
35. (B) A.T.Q,
$\sqrt{4}-\sqrt{8}=\frac{6}{\sqrt{14}+\sqrt{8}} \longrightarrow(\mathrm{IV})$
$\sqrt{12}-\sqrt{6}=\frac{6}{\sqrt{12}+\sqrt{6}} \longrightarrow$ (III)
$\sqrt{13}-\sqrt{7}=\frac{6}{\sqrt{13}+\sqrt{7}} \longrightarrow$ (II)
$\sqrt{11}-\sqrt{5}=\frac{6}{\sqrt{11}+\sqrt{5}} \longrightarrow(\mathrm{I})$
Hence,
$\sqrt{11}-\sqrt{5}>\sqrt{12}-\sqrt{6}>\sqrt{13}-\sqrt{7}>\sqrt{14}-\sqrt{8}$
36. (A) A.T.Q,

Let,
$\left(\frac{1}{9}\right)^{x}=(18)^{2 y}=2^{32}=k$
$\Rightarrow \frac{1}{9}=\mathrm{k}^{\frac{1}{x}}, 18=\mathrm{k}^{\frac{1}{2 y}}$
$\Rightarrow 2=\mathrm{k}$
$\Rightarrow \frac{1}{9} \times 18=2$
Putting all values,
$\Rightarrow \mathrm{k}^{\frac{1}{x}} \cdot \mathrm{k}^{\frac{1}{2 y}}=\mathrm{k}^{\frac{1}{32}}$
$\Rightarrow \frac{1}{x}+\frac{1}{2 y}=\frac{1}{32}$
$\Rightarrow \frac{2 y+x}{2 x y}=\frac{1}{32}$
$\Rightarrow Z .\left(\frac{x+2 y}{x y}\right)=\frac{2}{3}$
37. (A) A.T.Q,

Given,
25 units $\longrightarrow 75$ cows
1 unit $\longrightarrow 3$ cows
90 units \qquad 270 cows
38. (C) A.T.Q,
$3 \mathrm{E} 7+2 \mathrm{~F} 8+5 \mathrm{G} 9=1114$
$[\because$ At unit place digit's sum is 24 , we take 4 and carry 2 again tens digit place
1 is so total sum of digits is 11]
$\therefore \quad \mathrm{E}+\mathrm{F}+\mathrm{G}=9$
For F maximum E and G will be 1 and 2 So, $F=6$
39. (C) A.T.Q,

125
Profit margin $=\frac{1250-125}{125} \times 100$

$$
=100 \%
$$

40. (B) A.T.Q,

Let the cost price 100 units

60 units $\longrightarrow ₹ 90$
100 units $\longrightarrow ₹ \frac{90 \times 100}{60}$
Hence, cost price is ₹ 150
41. (A) A.T.Q
$18.75 \%=\frac{3}{16}$

I-article

Loss percent on second-II article
$=\frac{3}{22} \times 100=13.63 \%$
42. (D) A.T.Q,

Let cost price of 100 units

$=\frac{110-100}{100} \times 100=10 \%$
43. (C) Let fares of different classes be-

First class $=10 x$
Second class $=7 x$
Third class $=2 x$
Then increased fares;
First class $=\frac{10 x+1}{4 \times 10 x}=12.5 x$
Second class $=\frac{7 x+1}{8 \times 7 x}=\frac{63}{8 x}$
third class $=\frac{2 x-(10 \times 2 x)}{100}=1.8 x$
Ratio of passengers $=4: 9: 17$
Assume passengers in first class, second class and third class are $4 y, 9 y$ and 7 y respectively
Then total fare $=\frac{4 y \times 12.5 x+9 y \times 63}{8 x \times 17 y \times 1.8 x}$
$60590=50 x y+70.875 x y+30.6 x y$
$60590=151.475 x y$
$\Rightarrow x y=400$
Amount received from third class
$\Rightarrow 17 \mathrm{y} \times 1.8 x=12240$
44. (B) Total population of town $=15 x$
$\frac{(\text { Number of males) }}{(\text { Number of females) }}=\frac{7}{8}$
$\therefore \quad$ Number of males and females $=7 x$ and $8 x$
Number of male children $=25 \%$ of $7 x$

$$
=\frac{25}{100 \times 7 x}=1.75 x
$$

Number of adult females $=8 x-1.6 x$

$$
=6.4 x
$$

$\Rightarrow 6.4 x=235200$
$\Rightarrow x=\frac{235200}{6.4}=36750$
\therefore Total population of town $=15 \times 36750$

$$
=551250
$$

45. (A) Let number of spherical balls be n 25% of (Volume of cone) $=n \times$ volume of sphere,
$\frac{1}{4} \times \frac{1}{3} \pi r^{2} h=\mathrm{n} \times \frac{4}{3} \pi \mathrm{R}^{3}$
$\frac{1}{4} \times \frac{1}{3} \pi \times 5 \times 5 \times 8$
$=\mathrm{n} \times \frac{4}{3} \pi \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$
$\mathrm{n}=100$
46. (B)

Volume of bigger cone
$=\frac{1}{3} \pi \times 7^{2} \times 24$
$=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24=1232 \mathrm{~cm}^{3}$
$=\frac{\text { Volume of smaller cone }}{\text { volume of bigger cone }}=\frac{h^{3}}{H^{3}}$
$=\frac{\text { Volume of smaller cone }}{1232}=\frac{12^{3}}{24^{3}}$
Volume of smaller cone $=1232 \times \frac{(12)^{3}}{(24)^{3}}$
$=154 \mathrm{~cm}^{3}$
47. (C)

$\mathrm{AD}=\mathrm{DC}=\mathrm{AB}=\mathrm{AC}=\mathrm{BC}=$ radius $=1$ unit
$\therefore \quad \triangle \mathrm{ACB}$ and $\triangle \mathrm{ACD}$ is an equilateral triangle.
$\therefore \quad \angle \mathrm{CAB}=\angle \mathrm{CAB}=60^{\circ}$
$\angle \mathrm{DAB}=60^{\circ}+60^{\circ}=120^{\circ}$
Area of sector $\mathrm{ABD}=$ Area of sector CBD
$=\pi r^{2} \frac{120^{\circ}}{360^{\circ}}=\frac{\pi r^{2}}{3}$
Area of Rhombus $\mathrm{ABCD}=$ product of two adjecent side \times sin of angle between them,
$=1 \times 1 \times \sin 120^{\circ}$
$=\sin \left(90^{\circ}+30^{\circ}\right)$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
Area common to both $=$ Area of sector $\mathrm{ABD}+$ Area of sector CDB - Area of Rhombus ABCD,
$=2 \times \frac{\pi r^{2}}{3}-\frac{\sqrt{3}}{2}$
$=\frac{4 \pi-3 \sqrt{3}}{6}$
48. (B) Rate $=30 \%=\frac{30}{100}=\frac{3}{10}$

Let Principal $\Rightarrow 1000$
C.I $1^{\text {st }}$ year $\rightarrow 1000 \times \frac{3}{10}=300$
C.I 2 nd year $\rightarrow 1000 \times \frac{3}{10}+3000 \times \frac{3}{10}$
$\Rightarrow 300+90=390$
C.I 3 rd year $\rightarrow 1000 \times \frac{3}{10}+300 \times \frac{3}{10}+390 \times \frac{3}{10}$
$\Rightarrow 300+90+117=507$
Total C.I $=300+390+507=1197$
$\mathrm{S} . \mathrm{I}=300+300+300=900$
$\%=\frac{1197-900}{900} \times 100=\frac{297}{9}=33 \%$
49. (D) S.I for 2 years $=\frac{16000 \times 15 \times 2}{100}=4800$

Principal for C.I $=16000+4800=20800$
C.I Rate $\rightarrow 12 \%=\frac{12}{100}=\frac{3}{25}$

Compound Interest for $1^{\text {st }}$ year
$=20800 \times \frac{3}{25}=2496$
C.I for $2^{\text {nd }}$ year $=20800 \times \frac{3}{25}+2496 \times \frac{3}{25}$
$=2496+299.52=2795.52$
Total interest after 4 years $=4800+2496$ $+2796.52=10091.52$
50. (D) $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}=56$ lakhs
$B+C+D=\frac{460 A}{100}$
$B+C+D=\frac{23 A}{5}$
$A+C+D=366.66 \% B$
$A+C+D=\frac{11}{3} B$
$C=\frac{40}{100}(A+B+C)$
$\mathrm{A}+\mathrm{B}+\mathrm{D}=\frac{5}{2} \mathrm{C}$
From (i) and (ii)
A = 10 lakhs
From (i) and (iii)
B = 12 lakhs
From (i) and (iv)
C = 16 lakhs
D = 56 lakhs -38 lakhs = 18 lakhs
51. (B) Petrol used $=\frac{2400}{18}=\frac{400}{3}=133 \frac{1}{3}$

$$
=133.33 \text { litres }
$$

Monthly Expenses $=133.33 \times 28=3733.24$
Increase price $=28 \times \frac{107}{100}=29.96$
New monthly Expenses $=29.96 \times 133.33$

$$
=3994.56
$$

Increase in Expenses $=3994.56-3733.24$

$$
=261.32 \cong 261
$$

52. (B)

Total surface area of toy $=\pi r l+\pi r^{2}$
Radius of cone $=3.5 \mathrm{~cm}$
Height of cone $=15.5-3.5=12 \mathrm{~cm}$ Slant height of cone,
$=\sqrt{h^{2}+r^{2}}$
$=\sqrt{144+12.25}=\sqrt{156.25}=12.5$
Total surface area of cone,
$=\pi \times 3.5 \times 12.5+\pi(3.5)^{2}$
$=43.75 \pi+12.25 \pi=56 \pi$
Surface area of Toy
$=24.5 \pi+56 \pi-\pi \mathrm{r}^{2}$
$=80.5 \pi-\pi r^{2}$
$=80.5 \times \frac{22}{7}-\frac{22}{7} \times(3.5)^{2}$
$=(80.5-12.25) \times \frac{22}{7}$
$=68.25 \times \frac{22}{7}=214.5 \mathrm{~cm}^{2}$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
53. (D) A.T.Q,
$57 \times 63+171 \times 27+114 \times 28$
$=57[63+3 \times 27+2 \times 28]$
$=57[63+81+56]$
$=57 \times 200=11400$
54. (C) A.T.Q,

$$
\begin{aligned}
& 3^{x}-3^{x-1}=1458 \\
& \Rightarrow 3^{x}-\frac{3^{x}}{3}=1458 \\
& \Rightarrow 3^{x}\left(1-\frac{1}{3}\right)=1458 \\
& \Rightarrow 3^{x} \times \frac{2}{3}=1458 \\
& \Rightarrow 3^{x}=2187 \\
& \Rightarrow 3^{x}=3^{7} \\
& \Rightarrow x=7
\end{aligned}
$$

55. (C) A.T.Q,

Copper Aluminium

Then,
Required Ratio $=\frac{1}{24}: \frac{3}{56}=7: 9$
56. (A) A.T.Q,

Effective compound interest rate after paying tax $=10 \%-\left(10 \times \frac{20}{100}\right) \%=8 \%$ Now,

Required amount $=P\left[1+\frac{\mathrm{r}}{100}\right]^{n}$
$=15625\left[1+\frac{8}{100}\right]^{3}=₹ 19683$
57. (B) A.T.Q,

Now, 1 unit = 5 wickets
Then,
Total number of wickets before his last match $=21$ units

$$
=21 \times 5=105
$$

58. (C) A.T.Q,

Total number of digits
$=1 \times 9+2 \times 90+3 \times 351$
$=1242$
59. (C) Let the three digits number be x. Then,
$625=x \times \mathrm{P}+\mathrm{R}$ \qquad
and, $2406=x \times \mathrm{Q}+\mathrm{R}$
From equation (i) and (ii), we get
$x(\mathrm{Q}-\mathrm{P})=2406-625$
$\Rightarrow x(\mathrm{Q}-\mathrm{P})=1781$
$\Rightarrow x(\mathrm{Q}-\mathrm{P})=13 \times 137$
Here, $x=137$
\therefore Sum of the digits of the number
$=1+3+7=11$
60. (B) A.T.Q,
$\left.\left.\begin{array}{rl}A+\mathrm{B} \rightarrow 2 \\ \mathrm{C} \longrightarrow 1\end{array} \right\rvert\, \times 4 \Rightarrow \begin{array}{l}8 \\ 4\end{array}\right) 12$
and,
$\left.\left.\begin{array}{r}\mathrm{A}+\mathrm{C} \longrightarrow 3 \\ \mathrm{~B} \rightarrow 1\end{array} \right\rvert\, \times 3 \Rightarrow \begin{array}{l}9 \\ 3\end{array}\right) 12$
Now,
Capacity of A, B and C becomes 5 units, 3 units and 4 units respectively.
Then,
Time taken by A to complete the work

$$
=\frac{12 \times 12}{5}=28 \frac{4}{5} \text { days }
$$

61. (B) A.T.Q,
$(\sqrt{3}+\sqrt{2})^{-3}+(\sqrt{3}-\sqrt{2})^{-3}$
$=\frac{1}{(\sqrt{3}+\sqrt{2})^{3}}+\frac{1}{(\sqrt{3}-\sqrt{2})^{3}}$
$=(\sqrt{3}-\sqrt{2})^{3}+(\sqrt{3}+\sqrt{2})^{3}$
$=2\left[(\sqrt{3})^{3}+3 \times \sqrt{3} \times(\sqrt{2})^{2}\right]$
$=2[3 \sqrt{3}+6 \sqrt{3}]=18 \sqrt{3}$
62. (B) A.T.Q,

Distance travelled in $33 \frac{3}{5}$ minutes at the speed of $5 \mathrm{~km} / \mathrm{h}$
$=\frac{168}{5} \times \frac{5000}{60}=2800 \mathrm{~m}$
Let length and breadth of the rectangle be $4 x$ and $3 x$.
Then,

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$2(4 x+3 x)=2800$
$\Rightarrow x=200$
Now,
length of the field $=4 \times 200=800 \mathrm{~m}$ and, breath of the field $=3 \times 200=600 \mathrm{~m}$
Then, area of the field $=800 \times 600$
$=480000 \mathrm{~m}^{2}=48$ hectare
63. (C) A.T.Q,

$\mathrm{AP}: \mathrm{PD}=1: 3$
Then, length of $\mathrm{PQ}=\frac{\mathrm{AP} \times \mathrm{DC}+\mathrm{PD} \times \mathrm{AB}}{\mathrm{AP}+\mathrm{PD}}$
$=\frac{1 \times 20+3 \times 12}{1+3}=14 \mathrm{~cm}$
64. (A) A.T.Q,

Required angle $=\frac{180^{\circ}-(\angle \mathrm{E}+\angle \mathrm{F})}{2}$
$=\frac{180^{\circ}-\left(50^{\circ}+60^{\circ}\right)}{2}=35^{\circ}$
65. (C) A.T.Q,

QC is perpendicular to AB .
and,
We know that radius of the circle makes right angle with tangent.
$\therefore \mathrm{PB} \perp \mathrm{AB}$
Now,
$\Delta \mathrm{ABP} \sim \Delta \mathrm{ACQ}$
Then,
$\frac{\mathrm{PB}}{\mathrm{QC}}=\frac{\mathrm{AP}}{\mathrm{QA}}=\frac{3 \mathrm{r}}{\mathrm{r}}=\frac{3}{1}$
\therefore Required ratio $=3: 1$
66. (D) We know that,

Angle made at the centre of the circle is always double the angle made at the circumference.
Then, $\angle \mathrm{QOR}=75^{\circ} \times 2=150^{\circ}$
and $\angle \mathrm{ORQ}=\frac{180^{\circ}-150^{\circ}}{2}=15^{\circ}$
Now, $\angle \mathrm{PRO}=80^{\circ}-15^{\circ}=65^{\circ}$
and, $\angle \mathrm{PRO}=\angle \mathrm{OPR}$
$\therefore \angle \mathrm{OPR}=65^{\circ}$
67. (B) $\left(\frac{4}{9}\right)^{-\frac{3}{2}} \times\left(\frac{1}{2}\right)^{-5}-3 \times(27)^{\frac{2}{3}}-\left(\frac{1}{4}\right)^{-2} \times 5^{\circ} \times\left(\frac{16}{9}\right)^{\frac{-1}{2}}$
$=\left(\frac{3}{2}\right)^{3} \times 2^{5}-3 \times 3^{2}-4^{2} \times 1 \times \frac{3}{4}$
$=108-27-12=69$
68. (C) $\frac{105}{43}$
69. (D) A.T.Q,

Sum of the roots $(\alpha+\beta)$
$=5+\sqrt{24}+5-\sqrt{24}=10$
and, Product of the roots $(\alpha \beta)$
$=(5+\sqrt{24}) \times(5-\sqrt{24})=1$
Now,
Required equation $\Rightarrow x^{2}-(\alpha+\beta) x+\alpha=0$
$\Rightarrow x^{2}-10 x+1=0$
70. (A) A.T.Q,
$10^{3}+11^{3}+12^{3}+$ \qquad
$=$ (sum of the cube of first 25 natural numbers - (sum of the cube of first 9 natural numbers
$=\left(\frac{25 \times 26}{2}\right)^{2}-\left(\frac{9 \times 10}{2}\right)^{2}$
$=105625-2025=103600$
71. (C) Alchol Water

5	9	$\times 1$
2	5	
$\times 2$		

Now, New ratio is-
Alchol Water
$1\left(\begin{array}{ll}5 & 9 \\ 4 & 10\end{array}\right.$
Here, mixture to be taken out $=\frac{1}{5}$
Now, $\frac{1}{5}$ units $=5$ litre
Then, total quantity $=1$ unit
$=5 \times 5=25$ litre
72. (D) $\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+$ \qquad $+\frac{1}{240}$
$=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots . .\left(\frac{1}{15}-\frac{1}{16}\right)$
$=1-\frac{1}{16}=\frac{15}{16}$
73. (A) A.T.Q,
$\frac{(m+n) x+(a-b)}{(m-n) x+(a+b)}=\frac{(m+n) x+(c-d)}{(m-n) x+(c+d)}$
$\Rightarrow\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right) x+(m+n)(\mathrm{c}+\mathrm{d}) x+(a-b)$
$(m-n) x+(a-b)(c+d)$
$=\left(m^{2}-n^{2}\right) x+(m-n)(c-d) x+(m+n)$
$(a+b) x+(a+b)(c-d)$
$\Rightarrow 2 \mathrm{md} x+2 n c x+2 a d=2 a n x+2 b m x+2 b c$
$\Rightarrow x=\frac{a d-b c}{m(b-d)+n(a-c)}$
74. (A) $\frac{\left(\cos 18^{\circ}-\cos 54^{\circ}\right)\left(\sin 84^{\circ}+\sin 36^{\circ}\right)}{\left(\cos 24^{\circ}-\cos 96^{\circ}\right)\left(\sin 42^{\circ}-\sin 6^{\circ}\right)}$
$=\frac{\left(2 \sin 36^{\circ} \sin 18^{\circ}\right)\left(2 \sin 60^{\circ} \cos 24^{\circ}\right)}{\left(2 \sin 60^{\circ} \sin 36^{\circ}\right)\left(2 \cos 24^{\circ} \sin 18^{\circ}\right)}$
$=1$
75. (C) A.T.Q,

Sum of the roots $(\tan \alpha+\tan \beta)=\frac{-b}{a}$ and,
product of the roots $(\tan \alpha \tan \beta)=\frac{c}{a}$
Now, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
Putting the respective values, we get
$\tan (\alpha+\beta)=\frac{\frac{-b}{a}}{1-\frac{c}{a}}=\frac{b}{c-a}$
76. (B) A.T.Q,
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan \cdot \tan B}$
$=\frac{a+b+a-b}{1-(a+b)(a-b)}$
$=\frac{2 a}{1-\left(a^{2}-b^{2}\right)}$
and, $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}$
$=\frac{(a+b)-(a-b)}{1+(a+b)(a-b)}=\frac{2 b}{1+\left(a^{2}-b^{2}\right)}$
Multiply equation (i) and (ii), we get $\tan (A+B) \cdot \tan (A-B)$
$=\frac{2 a}{1-\left(a^{2}-b^{2}\right)} \times \frac{2 b}{1+\left(a^{2}-b^{2}\right)}$
$=\frac{4 a b}{1-\left(a^{2}-b^{2}\right)^{2}}$
77. (A) A.T.Q,

Area of the church to be painted
$=$ Area of four walls + C.S.A of hemisphere

+ (area of roof - area of circular part of hemisphere)
$=4 a^{2}+2 \pi r^{2}+a^{2}-\pi r^{2}$
$=5 a^{2}+\pi r^{2}$
Here, $a=28 \mathrm{~cm}$
and, radius of hemisphere $=\frac{a}{2}=14 \mathrm{~cm}$ Then, required area
$=5 \times 28 \times 28+\frac{22}{7} \times 14 \times 14=4536 \mathrm{~m}^{2}$
Now,
cost of white wash $=15 \times 4536=₹ 68040$

78. (B) A.T.Q,

A	B	C
4000×3	6000×6	5000×8
$+6000 \times 9$	$+\frac{4000 \times 6}{56000}$	$\frac{+15000 \times 4}{100000}$

The, Ratio of profit of A, B and C
= $33: 28: 50$
And,
Total profit $=₹ 6750$
and, the amount which C gets due to his
continutiy $=100 \times 12=₹ 1200$
Now, profit to be shared among
A, B and C = 6750-1200 = ₹5550
Here,
$(33+28+50)$ units $=₹ 5550$
$\Rightarrow 111$ units $=₹ 5550$
$\Rightarrow 1$ unit $=₹ 50$
Then, share of $\mathrm{B}=28$ units
$=28 \times 50=₹ 1400$
79. (B) Let the investments of the person be P_{1}, P_{2} and P_{3}
A.T.Q,
$P_{1}\left[\frac{r_{1} t_{1}}{100}+1\right]=P_{2}\left[\frac{r_{2} t_{2}}{100}+1\right]=P_{3}\left[\frac{r_{3} t_{3}}{100}+1\right]$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow P_{1}\left[\frac{6 \times 5}{100}+1\right]=P_{2}\left[\frac{8 \times 5}{100}+1\right]=P_{3}\left[\frac{10 \times 6}{100}+1\right]$
$\Rightarrow 13 \mathrm{P}_{1}=14 \mathrm{P}_{2}=16 \mathrm{P}_{3}$
Then,
$P_{1}: P_{2}: P_{3}=14 \times 16: 13 \times 16: 13 \times 14$
$=112^{2}: 1044: 91$
\therefore Required ratio $=112: 104: 91$
80. (A) A.T.Q,

CP MP SP

4	5		$\times 3$
6		7	$\times 2$

Now, Ratio of CP, MP and SP
= $12: 15: 14$
Then, discount percent
$=\frac{15-14}{15} \times 100 \%$
$=6 \frac{2}{3} \%$
81. (B) A.T.Q,
$x=\frac{\sqrt{9}+\sqrt{7}}{\sqrt{9}-\sqrt{7}}$
$\Rightarrow x=\frac{(\sqrt{9}+\sqrt{7})(\sqrt{9}+\sqrt{7})}{(\sqrt{9}-\sqrt{7})(\sqrt{9}+\sqrt{7})}$
$\Rightarrow x=8+\sqrt{63}$
and, $\frac{1}{x}=\frac{1}{8+\sqrt{63}}=8-\sqrt{63}$
Then, $x+\frac{1}{x}=8+\sqrt{63}+8-\sqrt{63}=16$
Now, $\frac{x^{2}-6 x+1}{2 x}=\frac{x-6+\frac{1}{x}}{2}$
$=\frac{16-6}{2}=5$
82. (C) Here,
$3^{50}=\left(3^{5}\right)^{10}=243^{10}$,
$4^{40}=\left(4^{4}\right)^{10}=256^{10}$,
$5^{30}=\left(5^{3}\right)^{10}=125^{10}$,
and,
$6^{20}=\left(6^{4}\right)^{10}=36^{10}$,
$\therefore \quad$ Greatest number $=256^{10}=4^{40}$
83. (D) Let $\mathrm{AC}=x$ unit

Then, $\mathrm{BC}=x-2$ unit
Using pythagoras, we get
$x^{2}-(x-2)^{2}=(4 \sqrt{2})^{2}$
$\Rightarrow(x-x+2)(x+x-2)=32$

Now,
$\sec A+\tan A=\frac{A C}{A B}+\frac{B C}{A B}=\frac{9+7}{4 \sqrt{2}}=2 \sqrt{2}$
84. (A) A.T.Q,
$\frac{\text { C.S.A }}{\text { T.S.A }}=\frac{3}{4}$
$\Rightarrow \frac{2 \pi \mathrm{rh}}{2 \pi \mathrm{r}(h+r)}=\frac{3}{4}$
$\Rightarrow h=3 r$
Now, T.S.A of the cylinder $=1232 \mathrm{~cm}^{2}$
$\Rightarrow 2 \pi \mathrm{r}(h+r)=1232$
On putting $h=3 \mathrm{r}$ and solving, we get $r=7 \mathrm{~cm}$
85. (A) A.T.Q,
$x=\sqrt[3]{a+\sqrt{a^{2}+b^{3}}}+\sqrt[3]{a-\sqrt{a^{2}+b^{3}}}$
On cubing both sides, we get
$x^{3}=a+\sqrt{a^{2}+b^{3}}+a-\sqrt{a^{2}+b^{3}}+$
$3\left(a^{2}-\left(a^{2}+b^{3}\right)\right)^{\frac{1}{3}} x$
$\Rightarrow x^{3}=2 a-3 b x$
$\Rightarrow x^{3}+3 \mathrm{~b} x=2 a$
86. (B) Here, D, E and F are the midpoints of side $A C, A B$ and $B C$ respectively.
$\therefore \mathrm{BD}$ is the median of $\triangle \mathrm{ABC}$.
87. (A) A.T.Q,
$\frac{1}{x}: \frac{1}{y}: \frac{1}{z}=3: 4: 5$
$x: y: z=20: 15: 12$
88. (C) A.T.Q,
$x=\sqrt{3}+\sqrt{4}+\sqrt{5}$
$\Rightarrow x-2=\sqrt{3}+\sqrt{5}$
Squaring both sides, we get
$x^{2}+4-4 x=3+5+2 \sqrt{15}$
$\Rightarrow x^{2}-4-4 x=2 \sqrt{15}$
Again squaring both sides, we get
$x^{4}+16 x^{2}+16-8 x^{3}+32 x-8 x^{2}=60$
$\Rightarrow x^{4}-8 x^{3}+8 x^{2}+32 x=44$
Multiply both sides by 3
$3 x^{4}-24 x^{3}+24 x^{2}+96 x=132$
Now,
$3 x^{4}-24 x^{3}+28 x^{2}+80 x-148$
$=132+4 x^{2}-16 x-148$
$=132+4[4+2 \sqrt{15}]-148=8 \sqrt{15}$
89. (C) A.T.Q,
$\left(1+\sec 40^{\circ}+\cot 50^{\circ}\right)\left(1-\operatorname{cosec} 40^{\circ}+\tan 50^{\circ}\right)$
$=\left(1+\sec 40^{\circ}+\tan 40^{\circ}\right)\left(1-\operatorname{cosec} 40^{\circ}+\cot 40^{\circ}\right)$
$=\left(1+\frac{1}{\cos 40^{\circ}}+\frac{\sin 40^{\circ}}{\cos 40^{\circ}}\right)\left(1-\frac{1}{\sin 40^{\circ}}+\frac{\cos 40^{\circ}}{\sin 40^{\circ}}\right)$
$=\frac{\left(1+\cos 40^{\circ}+\sin 40^{\circ}\right)\left(\sin 40^{\circ}-1+\cos 40^{\circ}\right)}{\cos 40^{\circ} \cdot \sin 40^{\circ}}$
$=\frac{\left(\cos 40^{\circ}+\sin 40^{\circ}\right)^{2}-1}{\cos 40^{\circ} \cdot \sin 40^{\circ}}$

Campus

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

$$
\begin{aligned}
& =\frac{1+2 \cos 40^{\circ} \sin 40^{\circ}-1}{\cos 40^{\circ} \sin 40^{\circ}}=2 \\
& \therefore \text { Required value }=2
\end{aligned}
$$

90. (A) A.T.Q,

Equation of line AB is $3 x+y-3=0 \ldots$. (i)
Then, slope of line $A B=-3$
and, slope of line $\mathrm{PQ}=\frac{1}{3}$
$(\because \mathrm{PQ} \perp \mathrm{AB})$
Now, equation of line $P Q$ is
$\frac{y-4}{x-3}=\frac{1}{3}$
$\Rightarrow 3 y-12=x-3$
$\Rightarrow x-3 y+9=0$
Solving equation (i) and (ii). we get
$x=0$ and $y=3$
We know that
$\mathrm{O}(0,3)$ is the mid point of PQ
Then, $0=\frac{a+3}{2} \Rightarrow-3$
and, $3=\frac{b+4}{2} \Rightarrow \mathrm{~b}=2$
\therefore Required point $=(-3,2)$
91. (B) For 1997

For 1998
$100 \%=42980$
$100 \%=48640$
$1 \%=\frac{42980}{100}$,
$1 \%=\frac{48640}{100}$
For D
$\begin{array}{ll}10 \%=\frac{42980}{100} \times 10, & 9 \%=\frac{48640}{100} \times 9 \\ =4298 & =4377.6\end{array}$
92. (C) Change was maximum in B

$$
\frac{48640}{100} \times 10-\frac{42980}{100} \times 6=2285.2
$$

93. (C) B in $1997=\frac{42980 \times 6}{100}=2578.8$
B in $1998=\frac{48640 \times 10}{100}=4864$
Difference $=4864-2578.8=2285$
94. (B) $\mathrm{D}=500$
$\mathrm{D} \%=\frac{5000}{48640} \times 100=10.27$
95. (C) A in $1997=\frac{42980}{100} \times 20$
A in $1998=\frac{48640}{100} \times 22$
Required $\%=\frac{\frac{48640 \times 22}{100}}{\frac{42980}{100} \times 20} \times 100$
$=\frac{945560}{859600}=115$
96. (C) $\frac{150-125}{150} \times 100$
$=\frac{25}{150} \times 100=61.6 \%-16.3$
97. (D) $\mathrm{P} \rightarrow 100+125+200+225+275+275=1200$
$\mathrm{Q} \rightarrow 175+150+125+175+175+275=1025$
P
1200
48 Q
$\Rightarrow 48$ 1025
C) $\frac{\text { Type Q }(2010)}{\text { Type } P(2014)} \times 100$

$$
\Rightarrow \frac{150}{275} \times 100=54.5
$$

99. (A) Average production (Type P) $=200$

No. of years productions of type P is higher than average $=3$
100. (C) $\frac{100+200}{150+225} \times 100=\frac{300}{375} \times 100=80 \%$

SSC TIER II (MATHS) MOCK TEST - 48 (ANSWER KEY)

1. (A)	11. (B)	21. (A)	31. (A)	41. (A)	51. (B)	61. (B)	71. (C)	81. (B)	91. (B)
2. (C)	12. (B)	22. (D)	32. (D)	42. (D)	52. (B)	62. (B)	72. (D)	82. (C)	92. (C)
3. (A)	13. (C)	23. (A)	33. (C)	43. (C)	53. (D)	63. (C)	73. (A)	83. (D)	93. (C)
4. (C)	14. (D)	24. (A)	34. (B)	44. (B)	54. (C)	64. (A)	74. (A)	84. (A)	94. (B)
5. (A)	15. (C)	25. (C)	35. (B)	45. (A)	55. (C)	65. (C)	75. (C)	85. (A)	95. (C)
6. (D)	16. (A)	26. (C)	36. (A)	46. (B)	56. (A)	66. (D)	76. (B)	86. (B)	96. (C)
7. (D)	17. (C)	27. (A)	37. (A)	47. (C)	57. (B)	67. (B)	77. (A)	87. (A)	97. (D)
8. (B)	18. (C)	28. (B)	38. (C)	48. (B)	58. (C)	68. (C)	78. (B)	88. (C)	98. (C)
9. (D)	19. (D)	29. (A)	39. (C)	49. (D)	59. (C)	69. (D)	79. (B)	89. (C)	99. (A)
10. (C)	20. (B)	30. (C)	40. (B)	50. (D)	60. (B)	70. (A)	80. (A)	90. (A)	100.(C)

