SSC TIER II (MATHS) MOCK TEST - 46 (SOLUTION)

1. (A) Let, the number be x,

Then,
$\Rightarrow \quad 32 \% x-17 \% x=120$
$\Rightarrow \quad \frac{32 x}{100}-\frac{17 \%}{100}=120$
$\Rightarrow \quad \frac{15 x}{100}=120$

$$
x=800
$$

Then, the number is 800
2. (C) ATQ,

$$
\begin{array}{rlrl}
& & x & =2+\sqrt{3} \\
\Rightarrow & & 2 x & =4+2 \sqrt{3} \\
& & =(\sqrt{3})^{2}+1^{2}+2 \sqrt{3} \\
\Rightarrow & & 2 x & =(\sqrt{3}+1)^{2} \\
\Rightarrow & & \sqrt{2 x} & =\sqrt{3}+1 \\
\Rightarrow & & \frac{1}{\sqrt{2 x}} & =\frac{\sqrt{3}-1}{2}
\end{array}
$$

then

$$
\begin{aligned}
\Rightarrow \quad \sqrt{2 x}+\frac{1}{\sqrt{2 x}} & =\sqrt{3}+1+\frac{\sqrt{3}-1}{2} \\
& =\frac{3 \sqrt{3}+1}{2}
\end{aligned}
$$

3. (A) A.T.Q,
$\left.\Rightarrow \frac{\mathrm{CP}}{\mathrm{MP}}=\frac{5}{9}, \frac{\mathrm{SP}}{\mathrm{CP}}=\frac{6}{5}\right) 20 \% \rightarrow$ Profit
CP SP MP
5

Discount $\%=\frac{3}{9} \times 100$

$$
=33 \frac{1}{3} \%
$$

4. (A) A.T.Q,
$3 A=6 B=8 C$
Divide by LCM of 3, 6, 8 i.e. $=24$
$\Rightarrow \frac{\mathrm{A}}{8}=\frac{\mathrm{B}}{4}=\frac{\mathrm{C}}{3}$
$\Rightarrow \mathrm{A}: \mathrm{B}: \mathrm{C}$
$8: 4$: 3
5. (A) A.T.Q,

Milk: Water
$17 x: 3 x$
$17 x+3 x=400$ litres
$20 x=400$

$$
x=20 \text { litres }
$$

Milk : Water
$\therefore 340: 60$
After adding y litres of milk, the ratio becomes
Milk : Water
7 : 1
$\therefore \frac{340+y}{60}=\frac{7}{1}$
$\Rightarrow 340+y=420$
$y=420-340$
$y=80$ Litres
6. (D) $\mathrm{CP}=₹ 80$

100 oranges - ₹ 80
20 oranges are rotten
Remaining fresh oranges is (100-20)
Seller wants 25% profit on CP

$$
=\frac{80 \times 25}{100}=₹ 20 \text { (profit) }
$$

S.P. of 80 oranges is $₹ 100$
S.P. of one orange $=\frac{100}{80}=\frac{5}{4}=₹ 1.25$
7. (C) $\sin 480^{\circ}-\sin 60^{\circ}+\sin 780^{\circ}+\cos 120^{\circ}$
$=\sin \left(360^{\circ}+120^{\circ}\right)-\sin 60^{\circ}+\sin (2 \times 360$
$+60^{\circ}$)
$=\sin 120-\sin 60^{\circ}+\sin 60^{\circ}-\sin 30^{\circ}$
$=\cos 30^{\circ}-\sin 30^{\circ}$
$=\frac{\sqrt{3}-1}{2}$
8. (B) For equal roots

D = 0
(where D represent discriminants)
A.T.Q,
$k x(x-2)+6=0$
$\Rightarrow k x^{2}-2 k x+6=0$
$\Rightarrow \mathrm{D}=b^{2}-4 a c=0$
$\Rightarrow 4 k^{2}-4 \times 6 k=0$
$\Rightarrow k=0$
$\Rightarrow k=6$
$k=0$, (Doesn't satisfy equation)
Hence, $k=6$
9. (C)

A.T.Q,
$\mathrm{AB}=\mathrm{DC}=x$
$\tan 60=\frac{\mathrm{AB}}{\mathrm{BP}} \Rightarrow \sqrt{3}=\frac{x}{\mathrm{BP}}$
$\mathrm{BP}=\frac{x}{\sqrt{3}}$
$\tan 30=\frac{\mathrm{DC}}{\mathrm{PC}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{x}{\mathrm{PC}}$
$\mathrm{PC}=x \sqrt{3}$
Adding (i) and (ii)
$\mathrm{BP}+\mathrm{PC}=\frac{x}{\sqrt{3}}+x \sqrt{3}$
$B P+P C=50$
$50=x\left(\frac{4}{\sqrt{3}}\right)$
$x=50 \times \frac{\sqrt{3}}{4}$
$x=21.65$ mitres
10. (B) Using alligation method

Amount ₹ 16000

Ratio 4: 1
4 units \rightarrow ₹ 16000
5 units \rightarrow ₹ 20000
11. (D) Let present age is ' x '
A.T.Q
$3(x+3)-3(x-3)=x$
$\Rightarrow 3 x+9-3 x+9=x$
$\Rightarrow x=18$
12. (B) Let the radius of ball is r and of the cylinder the radius given is 12 cm
$27 \times \frac{4}{3} \pi r^{3}=\pi r^{2} \times l$
$27 \times \frac{4}{3} \pi r^{3}=\pi \times 12 \times 12 \times 6.75$
$r=3 \mathrm{~cm}$
13. (C) P does the whole work in 10 days
one day work done by P is $=\frac{1}{10}$
P does the work in 4 days $=\frac{4}{10}=\frac{2}{5}$
remaining work $=1-\frac{2}{5}=\frac{3}{5}$
Q does the remaining work in 9 days
$=\frac{3}{5}$ unit $\rightarrow 9$ days
1 unit $\rightarrow \frac{9 \times 5}{3}$ days
1 unit $\rightarrow 15$ days
and P does the 1 unit work in $\rightarrow 10$ days

30 units of work is done by P and Q together is
$\Rightarrow \frac{30}{5}=6$ days
14. (A) Given
$(1640)^{2}+(1641)^{2}+(1662)^{2}+(1693)^{2}$
Unit digit
$=0^{2}+1^{2}+2^{2}+3^{2}$
$=0+1+4+9=14$
\therefore unit digit $=4$
15. (C)

Given
[$\mathrm{C}_{1}=$ Centre of larger circle
$\mathrm{C}_{2}=$ Centre of smaller circle]
In $\triangle \mathrm{ACC}_{1}$
$\mathrm{AC}_{1}{ }^{2}=\mathrm{AC}^{2}+\mathrm{CC}_{1}^{2} \Rightarrow 8^{2}=\mathrm{AC}^{2}+4^{2}$
$\mathrm{AC}^{2}=64-16=48$
$\mathrm{AC}=4 \sqrt{3} \mathrm{~cm}$
Hence, Length of chord $A B=8 \sqrt{3} \mathrm{~cm}$
16.
(B) $\sin ^{2} \theta+\frac{1+\cos \theta}{\sin \theta}+\frac{1}{\sec ^{2} \theta}-\frac{\sin \theta}{1-\cos \theta}$
$=\sin ^{2} \theta+\cos ^{2} \theta+\frac{1-\cos ^{2} \theta-\sin ^{2} \theta}{\sin \theta(1-\cos \theta)}$
$=1$

$$
\left\{\begin{array}{l}
\because 1-\cos ^{2} \theta=\sin ^{2} \theta \text { and } \\
\sin ^{2} \theta+\cos ^{2} \theta=1
\end{array}\right\}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
17. (A) Part of acid in vessel $\mathrm{A}=\frac{5}{7}$

Part of acid in vessel B $=\frac{8}{13}$
Part of acid in new mixture $=\frac{9}{13}$

$\frac{1}{13}: \frac{2}{91}=7: 2$
Required ratio $=7: 2$
18. (A) $f(x)=\frac{1}{x^{2}+3 x+5}$
for maximum value
$f^{\prime}(x)=0$
$\frac{d}{d x}\left[\frac{1}{x^{2}+3 x+5}\right]=0$
$\Rightarrow \frac{\left(x^{2}+3 x+5\right) \times 0-(2 x+3)}{\left(x^{2}+3 x+5\right)^{2}}=0$
$2 x+3=0$
$x=\frac{-3}{2}$
$[f(x)]_{\max }=\frac{1}{\left(\frac{-3}{2}\right)^{2}-3 \times \frac{3}{2}+5}=\frac{4}{11}$
(at $x=\frac{-3}{2}$)
19. (C)

Average speed
$=\frac{\text { Total distance }}{\text { Total time }}$
$=\frac{800}{\frac{200}{20}+\frac{200}{40}+\frac{200}{60}+\frac{200}{80}}$
$=\frac{800}{10+5+\frac{10}{3}+\frac{5}{2}}=\frac{800}{\frac{60+30+20+15}{6}}$
$=\frac{800 \times 6}{125}=\frac{32 \times 6}{5}=\frac{192}{5}$
$=38 \frac{2}{5} \mathrm{~km} / \mathrm{hr}$
20. (D) Let x should be added to each number
$(8+x):(21+x)::(13+x):(31+x)$
$(8+x)(31+x)=(21+x)(13+x)$
$248+8 x+x^{2}+31 x=273+13 x+21 x+x^{2}$
$39 x-34 x=273-248$
$5 x=25$
$x=5$
5 is added to each numbers
21. (B) Let the salaries of Amit, Rakesh and Sunil are $5 x, 4 x$ and $3 x$ respectively
A. T. Q,
$4 x+3 x=3500$
$x=500$
Salary of Rakesh $=4 \times 500$

$$
=₹ 2000
$$

Salary of Sunil $=3 \times 500$

$$
=₹ 1500
$$

Required percent $=\frac{500}{1500} \times 100$

$$
=33 \frac{1}{3} \%
$$

22. (C) Side of regular octagon $=16 \mathrm{~cm}$

Height of pyramid $=30 \mathrm{~cm}$
Volume of pyramid
$=\frac{1}{3} \times$ base area \times height
$=\frac{1}{3} \times 2(\sqrt{2}+1) a^{2} \times h$
$=\frac{1}{3} \times 2(\sqrt{2}+1) \times 16 \times 16 \times 30$
$=5120(\sqrt{2}+1) \mathrm{cm}^{3}$
23.

$$
\text { (A) } \begin{aligned}
& \frac{(\sqrt{6}+\sqrt{4})}{(\sqrt{6}-\sqrt{4})}+\left(\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}\right) \\
&= \frac{\sqrt{6}+2}{\sqrt{6}-2}+\frac{\sqrt{6}-2}{\sqrt{6}+2} \\
&=\frac{(\sqrt{6}+2)^{2}+(\sqrt{6}-2)^{2}}{6-4}=\frac{10+10}{2}=10
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
24. (C) $\frac{a}{\operatorname{cosec} \theta}+b \cos \theta=c$
$a \sin \theta+b \cos \theta=c$
Let $\frac{a}{\sec \theta}-b \sin \theta=x$
$a \cos \theta-b \sin \theta=x$
Adding equation (i) and (ii) after taking square
$a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+2 a b \sin \theta \cos \theta$
$+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta-2 a b \sin \theta \cos \theta=x^{2}$ $+c^{2}$
$x= \pm \sqrt{a^{2}+b^{2}-c^{2}}$
$\therefore \frac{a}{\sec \theta}-b \sin \theta= \pm \sqrt{a^{2}+b^{2}-c^{2}}$
25. (D) Diagonal of cube $=7 \sqrt{3} \mathrm{~cm}$

Side of cube $=\frac{7 \sqrt{3}}{\sqrt{3}}=7 \mathrm{~cm}$
Volume of cube $=a^{3}=7^{3}=343 \mathrm{~cm}^{3}$
Total surface area of cube
$=6 a^{2}=6 \times(7)^{2}$
$=6 \times 49$
$=294 \mathrm{~cm}^{2}$
26. (A) Product of n postive integers $=n^{n}$

According to options,
The sum of n positive integers $\neq A$
negative number $\neq \mathrm{A}$ fraction $\neq n$ always
\therefore Sum of n positive integer
$=$ Never less than n^{2}
27. (C)

In a triangle the sum of two sides is greater than the third side and difference of two sides is less than the third side

In $\triangle B C D$
$38-10<\mathrm{BD}<38+10$
$28<\mathrm{BD}<48$
In $\triangle \mathrm{ABD}$
$36-12<\mathrm{BD}<36+12$
$24<\mathrm{BD}<48$
\therefore Length of BD
$=28<\mathrm{BD}<48$
28. (D) Ratio of incomes of Geetika and Surbhi = $5: 3$
Ratio of expenses of Geetika, Surbhi and
Roshani $=8: 5: 2$
\therefore Expense of Roshani $=₹ 3000$
Expense of Surbhi $=₹ \frac{3000 \times 5}{2}$

$$
=₹ 7500
$$

Expense of Geetika $=₹ \frac{3000}{2} \times 8$

$$
\text { = ₹ } 12000
$$

\therefore Income of Surbhi $=7500+1500$
= ₹9000
\therefore Income of Geetika $=\frac{9000 \times 5}{3}=₹ 15000$
\therefore Saving of Geetika $=₹(15000-12000)$

$$
\text { = ₹ } 3000
$$

29. (B)

Let the height of the building is h metre In $\triangle \mathrm{ABC}$
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}} \Rightarrow \mathrm{BC}=\frac{120}{\sqrt{3}}$
$B C=40 \sqrt{3}$ metres
In $\triangle \mathrm{AED}$
$\tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{ED}} \quad[\because \mathrm{BC}=\mathrm{ED}]$
$\mathrm{AE}=40 \sqrt{3} \times \frac{1}{\sqrt{3}}$
$\mathrm{AE}=40 \mathrm{~m}$
Height of the second building
= 120-40
= 80 metres
30. (C) Given,
$a^{x}=(x+y+z)^{y}$
$a^{y}=(x+y+z) z$
$\mathrm{a}^{z}=(x+y+z)^{x}$
$\therefore a^{x} \cdot a^{y} \cdot a^{z}=(x+y+z)^{x+y+z}$
$\Rightarrow a^{(x+y+z)}=(x+y+z)^{(x+y+z)}$
$\therefore a=x+y+z$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
31. (C) $\frac{4}{5}=.80, \frac{7}{8}=.87$

$$
\begin{aligned}
& \frac{6}{7}=.85 \frac{5}{6}=.83 \\
& \Rightarrow \frac{4}{5}<\frac{5}{6}<\frac{6}{7}<\frac{7}{8}
\end{aligned}
$$

32. (A) $8.3 \overline{1}=\frac{831-83}{90}=\frac{748}{90}$
$. \overline{6}=\frac{6}{9}$
$.00 \overline{2}=\frac{2}{900}$
Now,
$8.3 \overline{1}+. \overline{6}+.00 \overline{2}$
$\frac{748}{90}+\frac{6}{9}+\frac{2}{900}$
$\frac{8082}{900}=8 \frac{882}{900}=8 \frac{979-97}{900}$
$=8.97 \overline{9}$
33. (D) $(1 * 2)^{*} 3$
A.T.Q,
$=(1+8 \times 2)+8 \times 3$
$=17+24$
$=41$
34. (A) One digit positive number
$1,2,3, \ldots \ldots \ldots .9=9 \times 10^{0}$
Two digits positive number $=10,11,12$ $\ldots .9,=99-9=9 \times 10^{1}$
Three digits positive number $=999-100$

$$
=9 \times 10^{2}
$$

Similarly,
100 digits positive number $=9 \times 10^{99}$
35. (B) A.T.Q,
$S=\frac{1}{1 \times 3 \times 5}+\frac{1}{1 \times 4}+\frac{1}{3 \times 5 \times 7}+\frac{1}{4 \times 7}+$
$\frac{1}{5 \times 7 \times 9}+\frac{1}{7 \times 10}+\ldots .20$ terms
This series is sum of two different series one is 2 terms and another is 3 terms.
Here, total 20 terms two digits series have 10 terms and three digits have 10 terms
First we take 2 term series.
$S_{1}=\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\ldots .$.
(1, 4, $7, \ldots \ldots$.
$\left.\mathrm{T}_{10}=1+9 \times 3=28\right)$
$\mathrm{S}_{1}=\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\ldots .+\frac{1}{28 \times 31}$
$=\frac{1}{3}\left[\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\ldots .+\frac{1}{28}-\frac{1}{31}\right]$
$=\frac{1}{3}\left[1-\frac{1}{31}\right]$
$=\frac{10}{31}$
Now take 3rd term series,
$S_{2}=\frac{1}{1 \times 3 \times 5}+\frac{1}{3 \times 5 \times 7}+\ldots+\frac{1}{19 \times 21 \times 23}$

$$
\left(\because \mathrm{T}_{10}=1+9 \times 2=19\right)
$$

$=\frac{1}{4}\left[\frac{1}{1 \times 3}-\frac{1}{3 \times 5}+\frac{1}{3 \times 5}-\frac{1}{5 \times 7}+\ldots \frac{1}{19.21}-\frac{1}{21 \times 23}\right]$
$\mathrm{S}_{2}=\frac{1}{4}\left[\frac{1}{3}-\frac{1}{21 \times 23}\right]$
$=\frac{483-3}{3 \times 4 \times 21 \times 23}=\frac{40}{483}$
Now,
$\Rightarrow \mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}$
$=\frac{10}{31}+\frac{40}{483}$
$S=\frac{6070}{14973}$
36. (C) $\sqrt[3]{1+\sqrt{3}} \times \sqrt[6]{4-2 \sqrt{3}}$
$=\sqrt[3]{(1+\sqrt{3})} \cdot \sqrt[6]{(\sqrt{3}-1)^{2}}$
$=\sqrt[3]{(1+\sqrt{3})} \times(\sqrt{3}-1)^{2 / 6}$
$=(1+\sqrt{3})^{1 / 3} \times(\sqrt{3}-1)^{1 / 3}$
$=[(\sqrt{3}-1)(\sqrt{3}+1)]^{1 / 3}$
$=(3-1)^{1 / 3}=2^{1 / 3}$
37. (B) Number of seconds in 400 days
$=400 \times 24 \times 60 \times 60$
\therefore Number of drops $=400 \times 24 \times 3600$
1000 Drops $=200 \mathrm{ml}$
5000 Drops $=1000 \mathrm{ml}=1$ Litre
$=\frac{400 \times 24 \times 3600}{5000}$
= 6912 Litres
38. (C) $\frac{x}{a x+b y+c z}=\frac{y}{a y+b z+c x}=\frac{z}{a z+b x+c y}$ $=k$
$\Rightarrow(x+y+z)=k[x(a+b+c)+y(a+b+c)$

$$
+z(a+b+c)]
$$

$$
\Rightarrow(x+y+z)=k(x+y+z)(a+b+c)
$$

$k=\frac{1}{a+b+c}$
39. (A) Total quantity of mixture $=154$ Litres

Quantity of milk in mixture $=154 \times \frac{7}{11}$
= 98 Litres
Quantity of water in mixure $=154-98$
$=56$ litres
Let x litre water to be added in mixture,
$\frac{98}{56+x}=\frac{21}{16}$
$16 \times 98=21 \times 56+x \times 21$
$16 \times 98=21 \times 56+21 x$
$21 x=16 \times 98-21 \times 56$
$x=\frac{392}{21}$
$x=\frac{56}{3}$ Litres
40. (A) Let maximum marks $=x$

Minimum passing marks $=\frac{x \times 35}{100}$
$\therefore 80+32=\frac{35 x}{100}$
$x=\frac{112 \times 20}{7}$
$x=320$
\therefore Maximum marks $=320$
41. (A)

Draw line Segment DG paralle to BF In $\triangle \mathrm{ADG}$
BF or $\mathrm{EF}|\mid \mathrm{DG}$ and $\mathrm{AE}=\mathrm{ED}$
$\therefore \mathrm{AF}=\mathrm{FG}$
In $\triangle B C F$
$\mathrm{DG}|\mid \mathrm{BF}$ and $\mathrm{BD}=\mathrm{DC}$
$\mathrm{CF}=2 \mathrm{FG}$

From equation (i) and (ii)
$\mathrm{CF}=2 \mathrm{AC} / 3$
$\mathrm{AF}+\mathrm{FC}=3 \mathrm{FG}$
$A C=3 F G$(iii)
Now, from eq^{n} (ii) and eq^{n} (iii)
$\mathrm{CF}=\frac{2}{3} \mathrm{AC}$
42. (D) Area of circle with diameter
$=\frac{\pi(\mathrm{AB})^{2}}{4}$
$\therefore \frac{\pi(\mathrm{AB})^{2}}{4}=1414$
$\mathrm{AB}=\sqrt{\frac{1414}{\pi} \times 4}$
$\mathrm{AB}=2 \times \sqrt{\left(\frac{1414}{\pi}\right)}$ metres
$\mathrm{AD}=\mathrm{DC}=\mathrm{CB}=\frac{\mathrm{AB}}{3}=\frac{2}{3} \sqrt{\frac{1414}{\pi}} \mathrm{~m}$
$\mathrm{AC}=\frac{4}{3} \sqrt{\frac{1414}{\pi}}$ metres
\therefore Area of shaded portion
$=2$ [Area of semicircle with AC as diameter - Area of semicircle with AD as diameter]
$=\frac{2 \pi(\mathrm{AC})^{2}}{8}-\frac{2 \pi(\mathrm{AD})^{2}}{8}$
$=\frac{2 \pi}{8}\left[\frac{16}{9} \times \frac{1414}{\pi}-\frac{4}{9} \times \frac{1414}{\pi}\right]$
$=\frac{1414}{3} \mathrm{~m}^{2}$
\therefore Cost of levelling the shaded
Portion $=\frac{1414}{3} \times 126=₹ 59388$
43. (A) Two circles touch each other externally if distance between their centres is equal to the sum of their radii

$\therefore \mathrm{O}_{1} \mathrm{O}_{2}=r+a$
$\mathrm{O}_{2} \mathrm{M}=2 a-r, \mathrm{O}_{1} \mathrm{M}=a$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

In right $\Delta \mathrm{O}_{1} \mathrm{MO}_{2}$
$\left(\mathrm{O}_{1} \mathrm{O}_{2}\right)^{2}=\left(\mathrm{O}_{1} \mathrm{M}\right)^{2}+\left(\mathrm{O}_{2} \mathrm{M}\right)^{2}$
$(r+a)^{2}=a^{2}+(2 a-r)^{2}$
$r^{2}+a^{2}+2 a r=a^{2}+r^{2}-4 a r+4 a^{2}$
$6 a r=4 a^{2}$
$r=\frac{2 a}{3}$
44. (B)

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{ACD}$
$\triangle \mathrm{AOB} \sim \triangle \mathrm{ACD}$
$\mathrm{CD}=\frac{r}{2}$
$\mathrm{AC}=\frac{h}{2}$
Required ratio $=\frac{\text { Volume of larger cone }}{\text { Volume of smaller cone }}$
$=\frac{\frac{1}{3} \pi r^{2} h}{\frac{1}{3} \pi\left(\frac{r}{2}\right)^{2}\left(\frac{h}{2}\right)}=\frac{8}{1}$
= $8: 1$
45. (D) 3D - Image

Here is a 3d image of hexagonal prism, side 12. If prism is cut by two cut MN \& BE. There are 4 parts
Total surface area of 1 part shown by third diagram
$1^{\text {st }}$ prism

$=12 \times 24+6 \times 24+2\left[\left(\frac{1}{2} \times 6 \sqrt{3} \times+6 \times 6 \sqrt{3}\right)\right]$
$+12 \times 24+6 \times 24 \sqrt{3}$
$=720+252 \sqrt{3}$
Total surface area of 4 parts
$=4[720+252 \sqrt{3}]$
$=2880+1008 \sqrt{3}$
46. (B)

Given,
$\frac{\text { C.S.A. of cylinder }}{\text { T.S.A. of cylinder }}=\frac{2}{3}$
$\frac{2 \pi r h}{2 \pi r(r+h)}=\frac{2}{3}$
$\frac{r}{h}=\frac{1}{2}$
Volume of hemisphere $=$ volume of cylinder
$\frac{2}{3} \times \pi \times 14 \times 14 \times 14=\pi r^{2} \times 2 r$
$r=\frac{14}{\sqrt[3]{3}}$
47. (B)

Given
$\mathrm{AB}=5 \mathrm{~cm}$
Radius $=5$
Hence $\triangle \mathrm{AOB}$ is an equilateral triangle So,
$\mathrm{AO}=\mathrm{OB}=$ radius $=\mathrm{AB}$
$\Rightarrow \angle \mathrm{AOB}=60^{\circ}$
$\Rightarrow \angle \mathrm{PAM}=\angle \mathrm{PBM}=90^{\circ}-60^{\circ}=30^{\circ}$ (each)
$\Rightarrow \angle \mathrm{APB}=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)=120^{\circ}$
$\Rightarrow \angle \mathrm{COD}=120^{\circ}$
Because PA||OC \& PB||OD
48. (C) Let first no. be x

So, there are 44 odd numbers
Total sum $=x+(x+2)+(x+4)+\ldots .(x+86)$
Total sum $=44 x+2[1+2+3+\ldots . .+43]$
sum $=44 x+2 \frac{43 \times 44}{2}$
sum $=44 x+43 \times 44$
Average $=\frac{44 x+43 \times 44}{44}$
$144=x+43$
$x=101$
Largest number
$=101+86=187$
49. (A) Required number
$=(\mathrm{LCM}$ of $5,15,25,45)+4$
$=225+4$
$=229$
50. (A) Let the two digit number is $10 x+y$
A.T.Q,
$\Rightarrow(10 x+y)-(10 y+x)=3.6 \times 10$
$\Rightarrow 9(x-y)=36$
$\Rightarrow x-y=4$
51. (B) Tank : Plane
$5: 3$
$5 x$, $3 x$
$\Rightarrow \frac{5 x-1000}{3 x-800}=\frac{2}{1}$
$x=600$
Tanks after war
$=5 \times 600-1000$
$=2000$
52. (B) Given $28 \frac{4}{7} \%=\frac{2}{7}$

$\Rightarrow 16 x=9.2-7.6$
$\Rightarrow 16 x=1.6$
$\Rightarrow x=.1$ Lakh
$\mathrm{CP}=7.6+1=7.7$ Lakhs
sum of digits $=7+7$

$$
=14
$$

53. (A) Old CP $=100$, Profit $=260 \%$

$$
\mathrm{SP}=360
$$

If CP increase by $36 \%=100+100 \times \frac{36}{100}$

$$
=136
$$

$\mathrm{P} \%=\left(\frac{360-136}{136}\right) \times 100$
$=164.7 \%$
54. (B) $x=\frac{1}{2}\left(\sqrt{\frac{9}{8}}-\sqrt{\frac{8}{9}}\right)=\frac{1}{2}\left(\frac{9-8}{\sqrt{8} \times \sqrt{9}}\right)$
$=\frac{1}{2}\left(\frac{1}{6 \sqrt{2}}\right)=\frac{1}{12 \sqrt{2}}$
$\Rightarrow \frac{18 \sqrt{1+x^{2}}}{x+\sqrt{1+x^{2}}}=\frac{18 \sqrt{1+\frac{1}{288}}}{\frac{1}{12 \sqrt{2}}+\sqrt{1+\frac{1}{288}}}$
$\Rightarrow \frac{18 \frac{17}{12 \sqrt{2}}}{\frac{1}{12 \sqrt{2}}+\frac{17}{12 \sqrt{2}}}=\frac{18 \times 17}{18}=17$
55. (C) $x^{2}+x y+y^{2}=84$
$x-\sqrt{x y}+y=6$
$x+y=6+\sqrt{x y}$
...(ii)
Squaring both side equation (ii)
$x^{2}+y^{2}+2 x y=36+x y+12 \sqrt{x y}$
$x^{2}+y^{2}+x y=36+12 \sqrt{x y}$
from equation (i)
$84=36+12 \sqrt{x y}$
$\sqrt{x y}=4 \Rightarrow x y=16$
putting the value of $\sqrt{x y}$ in eq (ii)
$x+y=10$
Now,
$x-y=\sqrt{(x+y)^{2}-4 x y}$
$x-y=6$
equation (iii) \& (iv)
$x=8, y=2$
$\Rightarrow x^{3}+y^{3}=8^{3}+2^{3}=512+8$
$=520$
56. (A)

Let the base of prism $\triangle \mathrm{ABC}$ has side x, x and r respectively
$\therefore x^{2}+x^{2}=r^{2}$
$x=\frac{r}{\sqrt{2}}$
\therefore Volume of prism $=$ Base area \times height
$=\frac{1}{2} \times \frac{r}{\sqrt{2}} \times \frac{r}{\sqrt{2}} \times \mathrm{s}=\frac{r^{2} \mathrm{~s}}{4} \mathrm{~cm}^{3}$
57. (C) Taking power of 12 in all terms

I $: \frac{1}{31^{3}}>\frac{1}{13^{4}}>\frac{1}{6^{6}}=\frac{1}{29791}>\frac{1}{28561}>\frac{1}{46656}$
II : $\frac{1}{6^{6}}>\frac{1}{13^{4}}>\frac{1}{13^{4}}=\frac{1}{46656}>\frac{1}{28561}>\frac{1}{29791}$
III : $\frac{1}{13^{4}}>\frac{1}{31^{3}}>\frac{1}{6^{6}}=\frac{1}{28561}>\frac{1}{29791}>\frac{1}{46656}$
Now, We know that number with smaller denominator will be larger
\therefore Statement III is correct
58. (C) $\tan 2 \theta \cdot \tan 3 \theta=1$
$2 \theta+3 \theta=90^{\circ}$
$5 \theta=90^{\circ}$
(If $\tan A \cdot \operatorname{tanB}=1$ then $\mathrm{A}+\mathrm{B}=90^{\circ}$)
$\Rightarrow 2 \cos ^{2} \frac{5 \theta}{2}-1$
$\Rightarrow 2 \cos ^{2} 45^{\circ}-\mathrm{L}$
$\Rightarrow 2 \times \frac{1}{2}-1=0$
59. (C)

$=\left(\tan ^{2} \alpha+1\right) \sin ^{2} \beta$
$=\left(\tan ^{2} 45^{\circ}+1\right) \sin ^{2} 45^{\circ}$
$\Rightarrow 2 \times \frac{1}{2}=1$
60. (B) $x \%$ of $x+y \%$ of $y=2 \%$ of $x y$

It can be written as;
$.01 x^{2}+.01 y^{2}=.02 x y$
$x^{2}+y^{2}=2 x y$
$(x-y)^{2}=0$
$x=y$
$\therefore x$ is 100% of y
61. (B) Since the car gives the mileage of $26 \frac{2}{3}$
$\frac{\mathrm{km}}{\text { litre }}$ in the return journey;
\therefore Quantity of petrol used in return journey $=920 /(80 / 3)=34.5$ litres
\therefore Quantity of petrol used in whole journey $=46+34.5=80.5$
\therefore Mileage given by the car in the whole
journey $=\frac{920+920}{80.5}=22.85 \mathrm{~km} /$ litre
62. (D) Let total number of workers $=x$

Number of married women
$=\left(\frac{x}{3}\right) \times \frac{1}{2}=\frac{x}{6}$
Number of married men $=\frac{2 x}{3} \times \frac{3}{4}=\frac{x}{2}$
\therefore Ratio of married women to married
men $=\frac{x / 6}{x / 2}=1: 3$
63. (B) Since one root is irrational so other root will be $=3-\sqrt{2}$
A.T.Q,
$a x^{2}+b x+c=0$
$\Rightarrow[x-(3+\sqrt{2})][x-(3-\sqrt{2})]=0$
$\Rightarrow x^{2}-6 x+7=0$ comparing eq ${ }^{\mathrm{n}}$
$\Rightarrow a=1, b=-6$ and $c=7$
Putting these value in given equation
$\Rightarrow a^{2}+b^{2}+c^{2}=1+36+49=86$
64. (A) $1^{\text {st }}$ year interest $11 \frac{1}{9} \%=\frac{1}{9}$
$2^{\text {nd }}$ year interest $7 \frac{9}{13} \%=\frac{1}{13}$
Let Principal $=13 \times 9$ units

$$
=117 \text { units }
$$

I $^{\text {st }}$ year $\rightarrow 13$
$\mathrm{II}^{\text {nd }}$ year $\rightarrow 91$
Difference of CI \& SI is 1 unit
1 unit $\rightarrow 360$
117 units $\rightarrow 360 \times 117$
₹ 42120
65. (B) Since the article is marked up by 150%

Marked price $=2.5 \mathrm{P}$
After giving 16% discount, it is sold at ₹945;
$\therefore 2.5 \mathrm{P} \times .84=₹ 945$
$\Rightarrow \mathrm{P}=₹ 450$
\therefore Cost price of the article $=₹ 450$
66. (A) Let the sum $=$ ₹ P

Differece (CI - SI) for two years
= interest on SI of $1^{\text {st }}$ year
$\Rightarrow 50=\frac{\text { SI of } 1^{\text {st }} \text { year } \times 10 \times 1}{100}$
\Rightarrow SI of $1^{\text {st }}$ year $=500$
$\therefore 500=\frac{\mathrm{P} \times 10 \times \mathrm{L}}{100}$
$\Rightarrow \mathrm{P}=₹ 5000$
Sum of money = ₹5000
67. (B) Total distance covered by the man in 4 minutes $=12 \times \frac{4}{60}=0.8 \mathrm{~km}$

$$
=800 \text { metres }
$$

Since the distance of the car to man was 2.4 km at the time of disappearance of the car.
\therefore Distance covered by car in 4 minutes
$=800+2400$
$=3200 \Rightarrow 3.2 \mathrm{~km}$
\therefore Speed of the car $=\frac{\frac{3.2}{4}}{60}=\frac{3.2 \times 60}{4}$

$$
=48 \mathrm{~km} / \mathrm{hr}
$$

68. (B) When 40% area is removed and cone is made from 60% of the circle
$\therefore 0.6 \times \pi \times 15 \times 15=\pi \times r \times 15$
$\Rightarrow r=9 \mathrm{~cm}$
Height of cone $(\mathrm{H})=\sqrt{225-81}=12 \mathrm{~cm}$
\therefore Volume of that cone $=\frac{1}{3} \times \pi \times 9 \times 9 \times 12$
$=324 \pi \mathrm{~cm}^{3}$
69. (B) $(2 \cos \theta)^{2}+8 \cos \theta \sin \theta-2$
$\Rightarrow 4 \cos ^{2} \theta-2+8 \cos \theta \sin \theta$
$\Rightarrow 2 \cos 2 \theta+4 \sin 2 \theta$
\therefore Maximum value $=\sqrt{4+16}$

$$
=2 \sqrt{5}
$$

70. (A) $(-9,21)$

$7 x+5 y=42$
$3 x+2 y=15$
After solving eq (i) and (ii)
interecting point is $(-9,21)$
Now, x-axis $y=0$
from eq(i) $x=6$
from eq(ii) $x=5$ and
Points of $\Delta,(5,0),(6,0),(-9,21)$
$\mathrm{AC}=9+5=14$
$\mathrm{AD}=9+6=15$
$\mathrm{AB}=21$
Area of $\triangle C D B=$ Area of $\triangle \mathrm{ADB}$ - Area of $\Delta \mathrm{ACB}$
$=\frac{1}{2} 21 \times 15-\frac{1}{2} 21 \times 14$
$=10.5$ units ${ }^{2}$
71. (B) Let cost price of the article be ₹ x

MP $=1.6 x$
$\mathrm{SP}=1.6 x \times 0.9 \times 0.75=1.08 x$
A.T.Q,
$\Rightarrow 1.6 x-1.08 x=3744$

$$
x=7200
$$

$\therefore \mathrm{CP}=₹ 7200$
72. (D) One day work of Rajni $=\frac{1}{x}$

3 days work of Rajni $=\frac{3}{x}$
4 days work of Geetika $=\frac{4}{x+4}$
A.T.Q,
$\Rightarrow \frac{\frac{3}{x}}{\frac{4}{x+4}}=\frac{15}{16}$
$\Rightarrow \frac{x+4}{x}=\frac{5}{4}$
$4 x+16=5 x$
$x=16$
73. (A) $40 \%\left[(516 \times 645) \div 43^{2}\right]+141$
$=40 \%$ of $[(43 \times 12 \times 43 \times 15) \div(43 \times 43)]+141$
$=40 \%$ of $180+141$
$=72+141$
$=213$
Hence, $x=213$
74. (B) $\left[\sin 10^{\circ} \times \sin 30^{\circ} \times \sin 50^{\circ} \times \sin 70^{\circ}\right]$ We can write the expression as;
$[\sin (90-\theta)=\cos \theta]$
$\Rightarrow\left[\cos 80^{\circ} \frac{1}{2} \times \cos 40^{\circ} \times \cos 20^{\circ}\right]$
$\Rightarrow \frac{1}{2} \times\left[\cos 20^{\circ} \times \cos 40^{\circ} \times \cos 80^{\circ}\right]$
[We know the indentity;
$\left.\cos \mathrm{A} \cdot \cos 2 \mathrm{~A} \cdot \cos 4 \mathrm{~A}=\frac{1}{4} \cos 3 \mathrm{~A}\right]$
$\Rightarrow \frac{1}{2} \times \frac{1}{4} \times \cos 60^{\circ} \Rightarrow \frac{1}{16}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
75. (D) $x=\sec \mathrm{A}+\tan \mathrm{A}-1$
$\sec \mathrm{A}+\tan \mathrm{A}=x+1$
$\sec \mathrm{A}-\tan \mathrm{A}=\frac{1}{x+1}\left(\because \sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1\right)$
Substracting equation 1 and 2
$2 \tan \mathrm{~A}=(x+1)-\frac{1}{x+1}$
$2 \tan \mathrm{~A}=\frac{x^{2}+2 x+1-1}{x+1}$
$\tan \mathrm{A}=\frac{x^{2}+2 x}{2(x+1)}=\frac{x(x+2)}{2(x+1)}$
$\cot \mathrm{A}=\frac{2(x+1)}{x(x+2)}$
76. (A) Let the angles are x and y
$x+y=105^{\circ}$
Difference of the length of arc subtented by these two angles in a circles of radius is 82.5 cm ;
$\therefore(x-y) \frac{\pi}{180}=\frac{82.5}{105}$
$\Rightarrow(x-y) \frac{22}{7 \times 180}=\frac{82.5}{105}$
$\Rightarrow(x-y)=45^{\circ}$
Solving both equation ;
$\Rightarrow x=75^{\circ}$ and $y=30^{\circ}$
77. (A) $\sin \alpha=3 \sin (\beta+2 \alpha)$

Put $\alpha=0$
$\Rightarrow 0=3 \sin \beta \Rightarrow \beta=0$
Putting $\alpha=\beta=0$ in the given expression;
$\Rightarrow \tan (2 \alpha+\beta)+2 \tan \alpha$
$\Rightarrow \tan 0+2 \tan 0$
$\Rightarrow 0$
78. (C)

$\mathrm{p}=\left|\frac{0+0-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}\right|=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}$
$\Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
79. (C)

Here, XA = 7
Radius of semicircle $=\frac{7}{2} \mathrm{~cm}$
All semicircles $=\frac{7}{2} \mathrm{~cm}$

So radius $=\frac{7}{2}($ each $) \mathrm{cm}$
Here $X P Q R$ form square with side $\frac{7}{2} \mathrm{~cm}$
Area of shaded region is $=$
[Total Area of quadrant with radius 14 $\mathrm{cm}]$-[Area of 2 semicircles + Area of semicircle + Area of square]
$=\frac{\pi}{4}(14)^{2}-\left[\pi\left(\frac{7}{2}\right)^{2}+\frac{\pi}{2} \times\left(\frac{7}{2}\right)^{2}+\left(\frac{7}{2}\right)^{2}\right]$
After solving this $\left(\pi=\frac{22}{7}\right)$
$=84 \mathrm{~cm}^{2}$
80. (A) A.T.Q,
$\mathrm{N}=. \overline{369}$
$\mathrm{N}=\frac{369}{999}=\frac{41}{111}$
$\mathrm{M}=. \overline{531}$
$M=\frac{531}{999}=\frac{59}{111}$
$\Rightarrow \frac{1}{\mathrm{~N}}+\frac{1}{\mathrm{M}}=\frac{111}{41}+\frac{111}{59}$
$=\frac{6549+4551}{2419}$
$=\frac{11100}{2419}$
81. (B) A.T.Q, $1200 \times 25 \% \times 0.09 \%$
$1200 \times \frac{1}{4} \times \frac{.09}{100}=12 \times \frac{1}{4} \times \frac{9}{100}=.27$
82. (C) C.P. $\rightarrow 4$ bananas $\rightarrow ₹ 3$ 3×
S.P. $\rightarrow 3$ bananas $\rightarrow ₹ 4$

4×
C.P. $\rightarrow 12$ bananas \rightarrow ₹9
S.P. $\rightarrow 12$ bananas $\rightarrow ₹ 16$

Profit $=$ S.P. - C.P.

$$
=16-9=7
$$

Profit $\%=\frac{\text { Profit }}{\text { C.P }} \times 100=\frac{7}{9} \times 100=77.77 \%$
83. (D) A.T.Q,

Cost price of single packet tea powder $=$ ₹ 25
Price of tea powder in a single cup of tea
$=₹ \frac{25}{20} \Rightarrow ₹ 1.25$
1000 ml (1 Litre) milk price $=₹ 35$
250 ml price $=₹ \frac{35 \times 250}{1000}$
= ₹ 8.75
Total price of 1 cup of tea $=(1.25+8.75)$

$$
\text { = ₹ } 10
$$

Selling price $=\frac{130 \times 10}{100}=₹ 13$
84. (C)

ABCD is a square of side length $=10 \mathrm{~cm}$ Semi circle radius $=5 \mathrm{~cm}$ Therefore,
Area $=$ (area of square) +4 (are of semi circles)
$=10^{2}+4\left(\frac{\pi}{2}\right)(5)^{2}$
$=50(2+\pi) \mathrm{cm}^{2}$
85. (A) A.T.Q,

$$
\begin{equation*}
a+\frac{1}{a}=-2 \tag{i}
\end{equation*}
$$

squaring both sides and we get
$a^{2}+\frac{1}{a^{2}}+2=4$
$\Rightarrow\left(a-\frac{1}{a}\right)^{2}=0$
$\Rightarrow a-\frac{1}{a}=0$
$\Rightarrow a+\frac{1}{a}=-2$
from eq(i) and eq(ii)
$\Rightarrow a=-1$
$\therefore a^{2 n+1}+\frac{1}{a^{2 n+1}}=(-1)^{2 n+1}+\frac{1}{(-1)^{2 n+1}}$
$=-2$
86. (C) A.T.Q,

The tank is filled in 15 hours.
Therefore
capacity of tank $=15\left(\mathrm{~A} \quad{ }_{\text {inlet }}+\mathrm{B}_{\text {inlet }}-\mathrm{C}_{\text {outlet }}\right)$
$=15(35+45-50)$ Litres
= 15×30 Litres
$=450$ Litres
87. (B) Let the ages be $5 x, 7 x$ and $9 x$

Average $=\frac{5 x+7 x+9 x}{3}=7 x$
$\Rightarrow 7 x=28 \Rightarrow x=4$
age of eldest girl $=9 \times 4$
$=36$ years
88. (B) $10 \%=\frac{1}{10}, 20 \%=\frac{1}{5}$

Intial	Final
10	11
$\frac{5}{50}$	$\frac{6}{66}$
$=\frac{16}{50} \times 100 \Rightarrow 32 \%$	

89. (C) A.T.Q,
$=\frac{\cos ^{2} x-\sin ^{2} x}{1-\tan ^{2} x}$
$=\frac{\cos ^{2} x-\sin ^{2} x}{\cos ^{2} x-\sin ^{2} x} \times \cos ^{2} x$
$=\cos ^{2} x$
90. (B) According to option,

Put A $=3, x=y=z=1$
All three eq ${ }^{\mathrm{n}}$ are satisfied
$\Rightarrow \sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{\mathrm{A}}{3}$
$\Rightarrow 1=1=1=1$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
91. (B) Percentage of crop $B=\frac{72^{\circ}}{360} \times 100=20 \%$
92. (B) Crop $\mathrm{F}\left(45^{\circ}\right)=1.5$ Million

Total food grains $=\frac{360^{\circ}}{45^{\circ}} \times 1.5=12$ Millions
93. (C) $50 \%=180^{\circ}$

Only option C, A + B + C = 180°
94. (A) Crop $\mathrm{F}\left(45^{\circ}\right)=1.5$ Millions

Total quantity of $D \& E\left(18^{\circ}+18^{\circ}=36^{\circ}\right)$
$=\frac{1.5}{45^{\circ}} \times 36^{\circ}=1.2$ millions
95. (C) A. T. Q,

Ratio of A \& C
$=\frac{3 \times 72^{\circ}}{1 \times 36^{\circ}}=\frac{6}{1}$
96. (A) In the year 2007

$$
\begin{aligned}
\text { Decrease in percentage } & =\frac{60-50}{60} \times 100 \\
& =16 \frac{2}{3} \%
\end{aligned}
$$

97. (C) Required percentage
$=\frac{60+60}{50+40} \times 100 \Rightarrow 133.3 \%$
98. (B) Average production flavour $\mathrm{P}=\frac{300}{3}$

Flavour $\mathrm{Q}=\frac{328}{3}-$ Maximum
Flovour $\mathrm{R}=\frac{300}{3}$
99. (B) Percentage decrease $=\frac{60-40}{60} \times 100$
= 33.33\%
100. (D) Average production of flavour Q during

$$
\text { 2008, } 2009 \text { and } 2010=\frac{55+50+55}{3}
$$

Average Production of flavour P during 2005, 2006 and 2007
$\Rightarrow \frac{50+40+55}{3}=\frac{145}{3}$ lakh bottles
Required difference $=\frac{160}{3}-\frac{145}{3}=\frac{15}{3}$
$=5$ lakh bottles

SSC TIER II (MATHS) MOCK TEST - 46 (ANSWER KEY)

1. (A)	11. (D)	21. (B)	31. (C)	41. (A)	51. (B)	61. (B)	71. (B)	81. (B)	91. (B)
2. (C)	12. (B)	22. (C)	32. (A)	42. (D)	52. (B)	62. (D)	72. (D)	82. (C)	92. (B)
3. (A)	13. (C)	23. (A)	33. (D)	43. (A)	53. (A)	63. (B)	73. (A)	83. (D)	93. (C)
4. (A)	14. (A)	24. (C)	34. (A)	44. (B)	54. (B)	64. (A)	74. (B)	84. (C)	94. (A)
5. (A)	15. (C)	25. (D)	35. (B)	45. (D)	55. (C)	65. (B)	75. (D)	85. (A)	95. (C)
6. (D)	16. (B)	26. (A)	36. (C)	46. (B)	56. (A)	66. (A)	76. (A)	86. (C)	96. (A)
7. (C)	17. (A)	27. (C)	37. (B)	47. (B)	57. (C)	67. (B)	77. (A)	87. (B)	97. (C)
8. (B)	18. (A)	28. (D)	38. (C)	48. (C)	58. (C)	68. (B)	78. (C)	88. (B)	98. (B)
9. (C)	19. (C)	29. (B)	39. (A)	49. (A)	59. (C)	69. (B)	79. (C)	89. (C)	99. (B)
10. (B)	20. (D)	30. (C)	40. (A)	50. (A)	60. (B)	70. (A)	80. (A)	90. (B)	100.(D)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

