PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

SSC MOCK TEST - 184 (SOLUTION)

1. (C) Nephrology is the study of kidney whereas Ichthyology is the study of Fish.
2. (B) As, $16: 40 \rightarrow 16 \times \frac{5}{2}=40$ Similarly, $32 \rightarrow 32 \times \frac{5}{2}=\mathbf{8 0}$
3. (D) A

Similarly,

4. (D) Except Magnetic Field, others are unit for measurement.
5. (B) Except '325', others are one less than the perfect square of natural number
6. (C)

7. (C) Nature, Nest, News, Numeric, Nutrient
8. (D) $\frac{122}{L}, \frac{197}{\uparrow L}, \frac{290}{\uparrow}, \frac{401}{\uparrow}$

9. (A)

10. (B)

\therefore Rahul's wife is the mother of that girl.
11. (C) Neha, Shalini, Rekha, Neetu, Pooja Hence, Rekha is sitting in the middle.
12. (A) Word 'BLUE' cannot be made from the letters of the given words.
13. (C) As, FOREIGN

ULIVRTM
Similarly, GROUP
TILFK
Reverse
14. (A) $6 \Omega 108 \alpha 9 \beta 200 \lambda 56$

After inter-changing the signs as per
given details,
$6 \times 108 \div 9+200-56$
$=72+200-56$
$=216$
15. (B) As, $8 \times 4 \times 3=51 \rightarrow 8^{1}+4^{2}+3^{3}=51$
and, $9 \times 5 \times 6=250 \rightarrow 9^{1}+5^{2}+6^{3}=250$
Similarly, $12 \times 8 \times 4 \rightarrow 12^{1} \times 8^{2} \times 4^{3}=\mathbf{1 4 0}$
16. (B) As, $8,16,2,64 \rightarrow 8 \times \frac{16}{2}=64$ and, $4,9,3,12 \rightarrow 4 \times \frac{9}{3}=12$
Similarly, 12,5, ? , $20 \rightarrow 12 \times \frac{5}{x}=20$

$$
\Rightarrow \boldsymbol{x}=\mathbf{3}
$$

17. (C) Required number of rectangles $=\mathbf{1 8}$
18. (A)

I. True
II. False
\therefore Only conclusion I follows.
19. (A)

Hence, She is $\mathbf{3} \mathbf{~ k m}$, west with reference to her starting point.
20. (A)

21. (D)
22. (D)
23. (A)
24. (A)
25. (D) N I $\mathrm{G} \quad \mathrm{H} \quad \mathrm{T}$

\downarrow	\downarrow	\downarrow	H	T
10	$\mathbf{3 2}$	$\mathbf{5 9}$	$\mathbf{3 0}$	$\downarrow 9$

27. (C) "Kailashanath Temple, Kanchipuram (Tamil Nadu) was built by Pallava king Narsimham Varman. " Kailashanatha Tample of Ellora was built by the Rashtrakata king Krishna-I
28. (B) Mountain Peak

Kangchenjunga
Saltoro Kangri

Anamudi	Kerala/Sahyadhri Range Madhya Pradesh/ Dhupgarh
Amarkantak	Satpura Rang Madhya Pradesh/
Guru Shikhar	Vindhya Range Rajasthan /Aravalli Range Jindhagada Peak Andhra Pradesh/ Eastern Ghats

30. (C) Devaluation in modern monetary policy is a reduction in the value of a currency with respect to those goods, services or other monetary units with which that currency can be exchanged. It means official lowering of the value of a country's currency with in fixed exchanged rate system.
31. (A) Magnetic quantum number represents the number of orbital's present in the subshell magnetic quantum number about the orientation of the orbital.
32. (C) The battle of Dharmat fough in 1658.

- Battal of Chandwar - Muhammad Ghori and Jai Chand
- Third Battle of Panipat - Ahammad Shah Abdali and Marathas.

39. (B) The Ross Sea is one of the last intact marine ecosystem in the world, which covers 1.6 million square kilometers. It is home to Penguins, Seals, Antarctic tooth fish and Whales.
40. (D) Member of Parliament are directly elected by citizens of India on the basis of Universal Adult Franchise, except two who are appointed by the President of India.

- The president of India is elected from an Electoral College comprising a Group of Nominees by the elected member of the Parliament of India (Lok Sabha and Rajya Sabha) as well of the state Legislatures (Vidhan Sabha)
- The Vice President is elected indirectly by an electoral college consisting member of
both Houses of the Parliament.
- Member of the Lok Sabha elect their Speaker in the First Meeting of the Houses after a General Election.

44. (A) Hydrogen has the highest Calorific value of $(141,790, \mathrm{KJ} / \mathrm{Kg})$. Thus, it has fuel value. Calorific value of charcoal, natural gas and gasoline are $29600 \mathrm{KJ} /$ $\mathrm{Kg}, 43000 \mathrm{KJ} / \mathrm{m}^{3}$ and $47300 \mathrm{KJ} / \mathrm{Kg}$) respectively.
45. (A) Ali Smith - How to be Both

Javier Moro -The Red Sari
Amitav Ghosh - Flood of Fire.
51. (C) Let the ratio of ages of A and B is $4 x: 5 x$ and C and D is $6 y: 7 y$
10 yrs ago, ratio of ages of A and C is
$\frac{4 x-10}{6 y-10}=\frac{1}{2}$
$\Rightarrow 8 x-20=6 y-10 \Rightarrow 4 x-3=10$
10 yrs ago, ratio of B and D
$\frac{5 x-10}{7 y-10}=\frac{3}{5} \Rightarrow 25 x-50=21 y-30$
$\Rightarrow 25 x-21 y=20 \quad$...(ii)
From eq. (i) and (ii), $x=5$ and $y=5$
$\therefore \quad$ Present ages of A, B, C and D is 20, 25, 30, 35

Average age of A, B and C $=\frac{20+25+30}{3}$
$=\frac{75}{3}=25$ years
52. (C) We know $150 \%=\frac{3}{2}, 75 \%=\frac{3}{4}$ and 125%
$=\frac{5}{4}$
$\therefore \quad$ Let the ratio of saving of Deepak and Javed $=3 x: 2 x$
Ratio of expenditure of Deepak and Javed $=3 y: 4 y$
According to question,

$$
\begin{aligned}
& \frac{3 x+3 y}{2 x+4 y}=\frac{4}{5} \\
\Rightarrow & 15 x+15 y=8 x+16 y \\
\Rightarrow & 7 x=y \\
\Rightarrow & \frac{x}{y}=\frac{1}{7}
\end{aligned}
$$

$\therefore \quad$ Ratio of saving to expenditure of Deepak $=3 x: 3 y \Rightarrow x: y=1: 7$

Campus
 KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
53. (B) $(x y z)^{\frac{1}{2}+\frac{1}{2}}-1=\left[(x y z)^{\frac{3}{2}+\frac{1}{2}}\right]$
$\Rightarrow x y z-1=(x y z)^{2}$
and, $(x y z)^{4}=(x y z-1)^{2}=(x y z)^{2}+1-2 x y z$
Putting in the equation.
$\frac{1+2(x y z)^{2}+(x y z)^{4}}{(x y z)^{2}}$
$\Rightarrow \frac{1+2(x y z-1)+(x y z)^{2}+1-2 x y z}{(x y z)^{2}}$
$\Rightarrow \frac{2+2 x y z-2+(x y z)^{2}-2 x y z}{(x y z)^{2}}=\frac{(x y z)^{2}}{(x y z)^{2}}$
$=1$
54. (A) Given $\frac{c-a}{b}+\frac{b-c}{a}+\frac{a+b}{c}=1$
$\frac{c-a}{b}+\frac{b-c}{a}=1-\left(\frac{a+b}{c}\right)$
$\Rightarrow \quad \frac{a c-a^{2}+b^{2}-b c}{a b}=\frac{(c-a-b)}{c}$
$\Rightarrow \quad \frac{a c-b c+b^{2}-a^{2}}{a b}=\frac{c-a-b}{c}$
$\Rightarrow \frac{c(a-b)+(b+a)(b-a)}{a b}=\frac{c-a-b}{c}$
$\Rightarrow \frac{(a-b)(c-b-a)}{a b}=\frac{(c-a-b)}{c}$
$\Rightarrow \frac{1}{b}-\frac{1}{a}=\frac{1}{c}$
55. (D) Let x be the money borrowed at interest rate 5% for $1^{\text {st }}$ years.
\therefore Amount become $=1.05 x$
Amount left after $1^{\text {st }}$ year $=(1.05 x-7250)$
Now, according to question
$\frac{(1.05 x-7250) 4 \%}{x \times 5 \%}=\frac{11}{20}$
$\Rightarrow \frac{105}{100} x \times 80-580,000=55 x$
$\Rightarrow 29 x=5,80,000$
$x=20,000$
$\therefore \quad$ Amount borrowed $=20,000$
56. (B) Interest for 10 years is 4140
\therefore Interest for one year $=414$
Now interest for 5 years $=414 \times 5=2070$
After 5 years principal becomes 5 times.
\therefore Interest will also become 5 times
$=2070 \times 5=10350$
\therefore Total interest $=2070+10350=12,420$
57. (D) Increased age of whole team $=11 \times 3$ months = 33 months.
Now, Age of two new players $=18+20+$ $\frac{33}{12}$ years
$=40+\frac{9}{12}$ years.
$\therefore \quad$ Average of two new players $=20$ years 4.5 months.
58. (D) Multiplying and Dividing the equation by $\left(x^{2}+\frac{1}{x^{2}}\right)$
$\left(x^{2}+\frac{1}{x^{2}}\right) \times \frac{\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)\left(x^{4}+\frac{1}{x^{4}}\right)\left(x^{8}+\frac{1}{x^{8}}\right)\left(x^{16}+\frac{1}{x^{16}}\right)\left(x^{32}+\frac{1}{x^{32}}\right)}{\left(x^{2}+\frac{1}{x^{2}}\right)}$
\Rightarrow Using identity $(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
$\underline{\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{2}-\frac{1}{x^{2}}\right)\left(x^{4}+\frac{1}{x^{4}}\right)\left(x^{8}+\frac{1}{x^{8}}\right)\left(x^{16}+\frac{1}{x^{16}}\right)\left(x^{32}+\frac{1}{x^{32}}\right)}$
\Rightarrow Using identity (i) again and again, we
finally get $\frac{\left(x^{64}-\frac{1}{x^{64}}\right)}{\left(x^{2}+\frac{1}{x^{2}}\right)}$.
59. (A) We know that $\left(x^{3}-\frac{1}{x^{3}}\right)=14$
$\Rightarrow\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}+x \times \frac{1}{x}\right)=14$
$\Rightarrow\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-2+2+1\right)=14$
[Adding and subtracting 2]
$\Rightarrow\left(x-\frac{1}{x}\right)\left[\left(x^{2}-\frac{1}{x}\right)^{2}+3\right]=14$
Let $\left(x-\frac{1}{x}\right)=\mathrm{m}$
$m\left(m^{2}+3\right)=14$
$\Rightarrow \mathrm{m}^{3}+3 \mathrm{~m}=14$
Let $\mathrm{m}=2$
$\Rightarrow 2^{3}+3 \times 2=14$
This will satisfy the equation $\& \mathrm{~m}$
$=\left(x-\frac{1}{x}\right)=2$
60. (A) $x+3=0$
$\Rightarrow \quad x=-3$
putting in equation $x^{2}+a x+b$ with a remainder of (-1).
$\therefore \quad(-3)^{1}+(-3) \mathrm{a}+\mathrm{b}=1$
$\Rightarrow 9-3 a+b=-1$
$\Rightarrow 3 a-b=10$
$x-3=0$
\Rightarrow Putting in equation $x^{2}+b x+a$ with a remainder of 39 .
$(3)^{2}+(3) b+a=39$
$\Rightarrow 9+3 b+a=39$
$\Rightarrow 3 b+a=30$
$\Rightarrow 9 b+3 a=90$
Solving (i) and (ii), $a=6, b=8$
$\therefore \quad$ Sum of a and $b=6+8=14$
61. (C) From (C), total number of mangoes $=24,000$
$1^{\text {st }}$ day selling $=12,000$
$1^{\text {st }}$ night mangoes rotten [10% of 12,000] = 1200
Mangoes left after $1^{\text {st }}$ night $=10,800$
$2^{\text {nd }}$ day selling $=5,400$
$2^{\text {nd }}$ night mangoes rotten (i.e., 10% of $5,400)=540$
Mangoes left after $2^{\text {nd }}$ night $=4860$
$3^{\text {rd }}$ day selling $=2430$
$3^{\text {rd }}$ night mangoes rotten (i.e. 10% of 2430) $=243$
$\therefore \quad$ Mangoes rotten in 3 nights $=1200+540$ +243 = 1983
62. (B) 3% less commission is offered upto 9000.
$\therefore \quad$ With addition of 3% over 9,000 . We will calculate the commission on 15% (i.e. $12 \%+3 \%)$
3% of $9000=\frac{3}{100} \times 9000=270$
Total commission of sales person $=1980$
$+270=2250$
$\therefore \quad 15 \%$ of total sales $=2250$
$\therefore \quad 100 \%$ of total sales $=\frac{2250}{15} \times 100$
$=15,000$
63. (C) According to questions

Total mixture she sold:
$\Rightarrow 5 \%$ of $750+10 \%$ of $750+15 \%$ of $750+$ $\ldots .+95 \%$ of $750+100 \%$ of 750
$\Rightarrow 750 \times \frac{5}{100}[1+2+3+\ldots 19+20]=\frac{21}{2} \times$ $750=7875$ ltr.
Ratio of total mixture she sold to the milk
$\Rightarrow 7875: 750$
\Rightarrow 21:2
$\therefore \quad$ Ratio of milk to water she sold $=2: 19$
64. (A) We know that $\mathrm{PT}^{2}=\mathrm{PA} \times \mathrm{PB}$
$\Rightarrow(6)^{2}=(5) \times(5+\mathrm{AB})$
$\Rightarrow \frac{36}{5}=5+\mathrm{AB}$
$\Rightarrow 7.2-5=\mathrm{AB}$
$\Rightarrow \mathrm{AB}=2.2 \mathrm{~cm}$.
65. (C) Longest rod that can be placed in a room
$=\sqrt{l^{2}+b^{2}+h^{2}}=\sqrt{24^{2}+18^{2}+16^{2}}$
$=\sqrt{576+324+256}=\sqrt{1156}=34 \mathrm{~m}$
66. (B) Let length, breadth and height be in ratio $4 x: 3 x: 2 x$
\therefore Total surface area of block $=2(l b+b h+h t)$
$\Rightarrow 8788=2\left(12 x^{2}+6 x^{2}+8 x^{2}\right)$
$\Rightarrow 26 x^{2}=4394$
$\Rightarrow x^{2}=169$
$\Rightarrow x=13$
$\therefore \quad$ Length of block $=4 \mathrm{x}=4 \times 13=52 \mathrm{~cm}$
67. (D) Area of shaded portion $=$ Area of quadrant - Area of triangle

$$
\begin{aligned}
& =\frac{1}{4} \times \pi \times 3.5 \times 3.5-\frac{1}{2} \times 3.5 \times 2 \\
& =\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5-3.5 \\
& =9.625-3.5 \Rightarrow 6.125 \mathrm{~cm}^{2}
\end{aligned}
$$

68. (C) $\operatorname{Tan} 60^{\circ}=\tan \left(20^{\circ}+40^{\circ}\right)=\frac{\tan 20^{\circ}+\tan 40^{\circ}}{1-\tan 20^{\circ} \tan 40^{\circ}}$ $\sqrt{3}\left(1-\tan 20^{\circ} \tan 40^{\circ}\right)=\tan 20^{\circ}+\tan 40^{\circ}$ $\sqrt{3}=\tan 20^{\circ}+\tan 40^{\circ}+\sqrt{3} \tan 20^{\circ} \tan 40^{\circ}$
69. (C) $\tan 9^{\circ}+\tan (90-9)^{\circ}-\left[\tan 27^{\circ}+\tan (90-27)^{\circ}\right]$ $=\tan 9^{\circ}+\cot 9^{\circ}-\left(\tan 27^{\circ}+\cot 27^{\circ}\right)$
$\Rightarrow \frac{\sin 9^{\circ}}{\cos 9^{\circ}}+\frac{\cos 9^{\circ}}{\sin 9^{\circ}}-\left[\frac{\sin 27^{\circ}}{\cos 27^{\circ}}+\frac{\cos 27^{\circ}}{\sin 27^{\circ}}\right]$
$\Rightarrow \frac{1}{\cos 9^{\circ} \cdot \sin 9^{\circ}}-\left[\frac{1}{\cos 27^{\circ} \cdot \sin 27^{\circ}}\right]$
$\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \frac{2}{2 \cdot \cos 9^{\circ} \sin 9^{\circ}}-\left[\frac{2}{2 \cdot \cos 27^{\circ} \cdot \sin 27^{\circ}}\right]$
$\Rightarrow \frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}[\because \sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A}]$
$\Rightarrow \frac{2\left[\sin 54^{\circ}-\sin 18^{\circ}\right]}{\sin 18^{\circ} \cdot \sin 54^{\circ}}$
\Rightarrow Using $\left[\sin C-\sin D=2 \cos \left(\frac{C+D}{2}\right) . \sin \right.$

$$
\left.\left(\frac{C-D}{2}\right)\right]
$$

$\Rightarrow \frac{2.2 \sin 18^{\circ} \cdot \cos 36^{\circ}}{\sin 18 \cdot \cos 36}=4\left[\because \sin (90-54)=\cos 36^{\circ}\right]$
70. (A)

Shreya + Disha
$\begin{array}{ccc}+ \text { Kiran } & \text { Shreya } & \text { Disha } \\ 3 \text { days } & 7 \text { days } \\ 8 & 24 \text { days }_{2}^{24}\end{array}$
$\therefore \quad$ Kiran efficiency $=$ Sum of all efficiency efficiency of (shreya + Disha)
$=56-24-21=11$
$\therefore \quad$ Money given to Kiran
$=\frac{\text { Amount }}{\text { Total efficiency }} \times$ eff. of Kiran
$=\frac{56,000}{56} \times 11$
$\Rightarrow 11,000$
71. (B) $\mathrm{A}+\mathrm{B}+\mathrm{C}$

A + C

$\therefore \quad B$ efficiency $=3-2=1$ and, efficiency of B is 25% less than A.
$\therefore \quad$ A efficiency $=\frac{4}{3}$ of B's efficiency
$\therefore \quad A=\frac{4}{3} \times 1=\frac{4}{3}$
$\therefore \quad$ C efficiency $=2-\left(\frac{4}{3}\right)=\frac{2}{3}$
\therefore Time taken by C to do work $=\frac{24}{\left(\frac{2}{3}\right)}$

$$
=36 \text { days }
$$

72. (C)
73. (A) No. of students appearing from Bihar in $2016=20 \%$ of 2.40 lakhs $=48000$ No. of students appearing from WB in 2015
$=20 \%$ of $2.50=50000$ lakhs
Reqd. $\%=\frac{48000}{50000} \times 100=96 \%$
74. (D)
75. (C) Reqd. $\%=\frac{30000}{240000} \times 100=12.50 \%$

MEANINGS IN ALPHABETICAL ORDER

Word

Fervent
Behemoth
Salubrious
Vicarious

Retrospect
Petrology
Archaeology

Microbiology

Epidemiology

Drove

Kennel
Eccentric
Egregious
Exacerbate

Meaning in English

having or displaying passionate intensity
something large and powerful
healthy or pleasant
experienced in the imagination through the feelings or actions of another person in considering the past or a past event the branch of science concerned with the origin, structure, and composition of rocks the study of human history and prehistory through the excavation of sites and the analysis of artefacts and other physical remains the branch of science that deals with microorganisms the branch of medicine which deals with the incidence, distribution, and possible control of diseases and other factors relating to health a large group of people or animals moving from one place to another a small shelter for a dog unconventional and slightly strange outstandingly bad; shocking make something worse

Meaning in Hindi
उ $\overline{\mathrm{c}}$ सु कता $\% \mathrm{~T}$ रा
विश T लका य
स्वा ₹ थय्म द
प्र तिस थT T निक

पु नरा वला' कन
चौ लविज्ञा न
पु रा तः व विज्ञ F

की टापज - विज्ञान
महा मा री विज्ञ F

सू ह

कु ₹ TT- हार
विप T गा मी
बे हद ख रा ब
ख रा ब करना

SSC MOCK TEST - 184 (ANSWER KEY)

76. (A) 'Integrate' is a verb which is not appropriate here. 'Integration' is the right word, and it is a noun.

Integration: the act or process of integrating
77. (B) It is not 'merge to'. It should be 'merge with'. The correct preposition is 'with'.
78. (A) The word 'intimate' is wrong. It is 'innate ability'.
Innate: inborn, natural.

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.

