

IBPS PO PHASE -I MOCK TEST - 177 (SOLUTION)

1. (3)
2. (2)
3. (4)
4. (2)
(6-10) :
$\$ \Rightarrow \quad=\quad \Rightarrow \quad<$
$\% \Rightarrow \quad$ © $\Rightarrow \geq$
\# $\Rightarrow \leq$
5. (3) $\mathrm{Z} \geq$ P $>$ Q $<$ F \leq S
I. $\mathrm{S}>\mathrm{Q} \rightarrow$ True
II. $Z>Q \rightarrow$ True
III.F $>\mathrm{P} \rightarrow$ False

Hence, Only I and II follow
7. (4) $\mathrm{I}<\mathrm{R}=\mathrm{H}>\mathrm{S} \geq \mathrm{A}$
I. $\mathrm{A}<\mathrm{H} \rightarrow$ True
II. $\mathrm{H}>\mathrm{I} \rightarrow$ True
III. $\mathrm{R}>\mathrm{A} \rightarrow$ True

Hence, All I, II and III follow
8. (4) $\mathrm{L}>\mathrm{N} \leq \mathrm{T}=\mathrm{D}<\mathrm{A}$
I. $\mathrm{L}>\mathrm{A} \rightarrow$ False
II. L $\leq \mathrm{A} \rightarrow$ False
III. A $>\mathrm{N} \rightarrow$ True

Hence, Only III follows
9. (1) $\mathrm{M} \leq \mathrm{Q}=\mathrm{K}<\mathrm{A} \leq \mathrm{V}$
I. $\mathrm{K} \geq \mathrm{M} \rightarrow$ True
II. $\mathrm{A}>\mathrm{Q} \rightarrow$ True
III. A > M \rightarrow True

Hence, All I, II and III follow
10. (1) $\mathrm{E}=\mathrm{C}<\mathrm{A} \geq \mathrm{R} \leq \mathrm{S}$
I. $\mathrm{S}>\mathrm{A} \rightarrow$ False
II. $\mathrm{R}<\mathrm{C} \rightarrow$ False
III. $\mathrm{R} \leq \mathrm{E} \rightarrow$ False

Hence, None follows
(11-15) :

11. (2)
12. (3)
14. (1)
15. (5)
(16-18) :
16. (4) From both I and II statement, M is grandfather or grandmother of X.

17. (4) From statement I and II, we cannot determined W's direction thus statement I and II not sufficient to give answer the questions.
18. (4) From statement I and II, we cannot determined Lovely rank in her class thus both statement not sufficient to given answer the question.
(19-20) :

19. (4)
20. (2)
(21-25) :

Floor	People	Bike/Car	Colour
9	B	Car	Golden
8	H	Car	Silver
7	G	Car	White
6	A	Bike	Yellow
5	F	Bike	Black
4	E	Car	Purple
3	I	Bike	Green
2	D	Car	Orange
1	C	Bike	Red

21. (4)
22. (4)
23. (4)
24. (4)
25. (3)
(26-28) :

26. (5)
27. (2)
28. (4)
29. (5)
30. (4)
31. (1)
32. (1)
(33-35) :

33. (5)
34. (3)
35. (4)

Maths
36. (4) In ASSISTANT A $\rightarrow 2, \mathrm{~S} \rightarrow 3, \mathrm{~T} \rightarrow 2$,

I $\rightarrow 1$
In STATISTICS A $\rightarrow 1, \mathrm{~S} \rightarrow 3, \mathrm{~T} \rightarrow 3$,
I $\rightarrow 2$
$P($ same letter $)=P[A]+P(S)+P(S)+P(T)$
$+\mathrm{P}(\mathrm{I})=\frac{2}{9} \times \frac{1}{10}+\frac{3}{9} \times \frac{3}{10}+\frac{2}{9} \times \frac{3}{10}+\frac{1}{9} \times \frac{2}{10}$
$=\frac{19}{90}$
37. (3) Total number of ways by which 4-digit number can be formed $={ }^{5} \mathrm{P}_{4}=120$
Number which are divisible by 5
$={ }^{4} \mathrm{P}_{3}=24$
Required Probability $=\frac{24}{120}=\frac{1}{5}$
38. (4) Let the number of minutes taken to empty the cistern be x minutes.
According to the question,
$\Rightarrow \frac{x}{6}-\frac{x+5}{12}-\frac{x+5}{12}=0$
$\Rightarrow \frac{x}{6}-\frac{x}{12}-\frac{5}{12}-\frac{x}{15}-\frac{5}{15}=0$
$\Rightarrow \frac{x}{6}-\frac{x}{12}-\frac{x}{15}=\frac{5}{12}+\frac{5}{15}$
$\Rightarrow \frac{10 x-5 x-4 x}{60}=\frac{25+20}{60}$
$\Rightarrow \frac{x}{60}=\frac{45}{60}=\mathrm{x}=45$ minutes
39. (2) A can fill the tank $=30$ minutes B can fill the tank $=20$ minutes
C can fill the tank $=10$ minutes
LCM of $(30,20,10)=60$

Given, A, B and C are discharging chemical's P, Q and R respectively.
In 3 minutes, A discharge $P=3 \times 2=6$ 3 minutes, B discharge $\mathrm{Q}=3 \times 3=9$
3 minutes, C discharge $R=6 \times 3=18$
Total Quantity of chemical in 3 minutes $=18+9+6=33$

Ratio of R after 3 minutes $=\frac{18}{33}=\frac{6}{11}$
40. (2) Let C alone can complete work in C days
$\Rightarrow \frac{20}{80}+\frac{60}{120}+\frac{28}{C}=1$
$\Rightarrow \frac{28}{\mathrm{C}}=\frac{1}{4}$
or, $\mathrm{C}=112$ days
41. (4) Required number of students (boys and girls) $=\left(\frac{26}{100} \times 6000-900\right)+600+$
$\left(\frac{29}{100} \times 6000-1200\right)=3900-2100$
$=1800$
42. (3) Required ratio
$=\frac{900+\frac{9}{100} \times 6000-400}{29 \times \frac{6000}{100}}$
= $52: 87$

KD Campus

43. (4) Required difference $=1200-360=840$
44. (2) No. of girls in School $\mathrm{E}=1740-1200$
$=540$
Now,
$540=$ Total no. of students in school B
45. (5) Required $\%=\frac{720-500}{540} \times 100 \approx 40 \%$
46. (5) I. $2 x^{2}-11 x+15=0$
$\Rightarrow 2 \mathrm{x}^{2}-6 \mathrm{x}-5 \mathrm{x}+15=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}-3)-5(\mathrm{x}-3)=0$
$\Rightarrow(2 x-5)(x-3)=0$
$\Rightarrow \mathrm{x}=3, \frac{5}{2}$
II. $5 y^{2}-13 y-6=0$
$\Rightarrow 5 y^{2}-15 y+2 y-6=0$
$\Rightarrow 5 y(y-3)-2(y-3)=0$
$\Rightarrow(y-3)(5 y+2)=0$
$\Rightarrow \mathrm{y}=3,-\frac{2}{5}$
47. (1) I. $4 x+3 y=12$
II. $3 x+5 y=8$

Multiplying eq. (I) by 3 and eq. (II) by 4 and then subtracting (I) from (II) we get,
$\Rightarrow(20-9) \mathrm{y}=32-36$
$\Rightarrow \mathrm{y}=-\frac{4}{11}$
Put, $\mathrm{y}=-\frac{4}{11}$ in equ. (I)
$\Rightarrow 4 \mathrm{x}-\frac{12}{11}=12$
$\Rightarrow 4 \mathrm{x}=\frac{144}{11}$
$\Rightarrow \mathrm{x}=\frac{36}{11}$
$\Rightarrow x>y$
48. (2) I. $x^{2}+26 x+168=0$
$\Rightarrow x^{2}+12 x+14 x+168=0$
$\Rightarrow(\mathrm{x}+12)(\mathrm{x}+14)=0$
$\Rightarrow \mathrm{x}=-12,-14$
II. $y^{2}-32 y-144=0$
$\Rightarrow \mathrm{y}^{2}-36 \mathrm{y}+4 \mathrm{y}-144=0$
$\Rightarrow(y-36)(y+4)=0$
$\Rightarrow y=36,-4$
$\Rightarrow \mathrm{y}>\mathrm{x}$
49. (5) I. $7 x^{2}-19 x+12=0$
$\Rightarrow 7 \mathrm{x}^{2}-7 \mathrm{x}-12 \mathrm{x}+12=0$
$\Rightarrow 7 \mathrm{x}(\mathrm{x}-1)-12(\mathrm{x}-1)=0$
$\Rightarrow(\mathrm{x}-1)(7 \mathrm{x}-12)=0$
$\Rightarrow \mathrm{x}=1, \frac{12}{7}$
II. $4 y^{2}-21 \mathrm{y}+17=0$
$\Rightarrow 4 y^{2}-4 y-17 y+17=0$
$\Rightarrow 4 y(y-1)-17(y-1)=0$
$\Rightarrow(\mathrm{y}-1)(4 \mathrm{y}-17)=0$
$\Rightarrow \mathrm{y}=1, \frac{17}{4}$
No relation
50. (1) I. $8 y^{2}+34 y+36=0$
$\Rightarrow 4 y^{2}+17 y+18=0$
$\Rightarrow 4 y^{2}+8 y+9 y+18=0$
$\Rightarrow 4 y(y+2)+9(y+2)=0$
$\Rightarrow(y+2)(4 y+9)=0$
$\Rightarrow y=-2,-\frac{9}{4}$
II. $6 x^{2}-28 x+32=0$
$\Rightarrow 3 \mathrm{x}^{2}-14 \mathrm{x}+16=0$
$\Rightarrow 3 \mathrm{x}(\mathrm{x}-2)-8(\mathrm{x}-2)=0$
$\Rightarrow(x-2)(3 x-8)=0$
$\Rightarrow \mathrm{x}=2, \frac{8}{3}$
$\Rightarrow x>y$
51. (4) $15 \times 2+1=31$
$31 \times 2-1=61$
$61 \times 2+1=123$
$123 \times 2-1=245$
$245 \times 2+1=491$
52. (4) $100+8=108$
$108-16=92$
$92+32=124$
$124-64=60$
$60+128=188$
53. (1) $12+22=5$
$22+32=13$
$32+42=25$
$42+52=41$
$52+62=61$
$62+72=85$
Clearly, '3' in the given series in question is wrong and it should be replaced by 5. Hence the answer would be 3 .
54. (4) $(17+1) \times 1=18$
$(18+2) \times 2=40$

KD Campus

$(40+3) \times 3=129$
$(129+4) \times 4=532$
$(532+5) \times 5=2685$
55. (4)
56. (5) From statement I,

Let the length of the train be $\mathrm{x} m$
Length of platform $=\frac{3 \mathrm{x}}{2} \mathrm{~m}$
From statement II,
Speed of train $=\frac{\frac{3 x}{2}+x}{25}=\frac{5 x}{50}=\frac{x}{10} \mathrm{~m} / \mathrm{s}$
But x is not known.
Hence, we proceed.
From statement III,
Speed of train $=\frac{\mathrm{x}}{10}$
Clearly, we reach at no unique conclusion. Hence, question cannot be answered even with the information in all three statements.
57. (1) Let C.P. $=x$

From A,

$$
=\frac{x-500}{x} \times 100-\frac{x-600}{x} \times 100=10
$$

From B,
$=\frac{99}{100} \times \frac{110}{100} \mathrm{x}=\mathrm{x}-10$
From C,
Table + chair $=25 \%$ profit
58. (4) I. S.I. $=\frac{P \times R \times 3}{100}=4500$
II. $\mathrm{R}=10 \%$ per annum
III. C.I. - S.I. $=465$
$\mathrm{P}=\frac{\mathrm{R}^{2}}{100^{2}}=\frac{300+\mathrm{R}}{100}$
(for 3 years)
From above statement, we can find compound interest from any two of above 3 statements.
59. (2) Suppose he bought x kg.

Then old cost price of commodity per kg
$=\frac{4500}{x}$
$\Rightarrow\left(\frac{4500}{x}\right)+5=\frac{4500}{(x-10)}$

Solving for x ,
And selecting positive values, we get
$\mathrm{x}=100$
Hence, Quantity II > Quantity I
60. (3) Quantity-I

Total number of students in class IX $=600$
Total number of girls in class IX
$=\frac{600}{100} \times 25=150$
Total number of boys in class IX $=600-$ $150=450$
Then,
The total number of boys in class X
$=450-200=250$
Total number of students in class $X=450$
Total number of girls in class X
$=450-250=200$
Quantity-II : 200
So, Quantity-I = Quantity II
61. (1) Speed $=\frac{\text { distance }}{\text { time }}$

Let the speed and length of $1^{\text {st }}$ train be 's 1 ' and ' 71 ' respectively.
Let the speed and length of $2^{\text {nd }}$ train be 's2' and 'l2' respectively.
Given, train going in the opposite direction cross each other in 12 sec .
Relative speed between the trains going in opposite direction $=s 1+s 2$
Total distance travelled $=l 1+l 2$
$\therefore \mathrm{s} 1+\mathrm{s} 2=\frac{(l 1+l 2)}{12}$
Quantity I : Length of train 1 if it crosses the pole in 9 sec
$\Rightarrow \mathrm{s} 1=\frac{l 1}{9}$
Quantity II : Length of train 2 if it crosses the pole in 24 sec
$\Rightarrow \mathrm{s} 2=\frac{l 2}{24}$
Substituting value of $s 1$ and $s 2$ in eq1
$\Rightarrow \frac{l 1}{9}+\frac{l 2}{24}=\frac{l 1}{12}+\frac{l 2}{12}$
$\Rightarrow \frac{l 1}{36}+\frac{l 2}{24}$
$\Rightarrow l 1=1.512$
Thus, $l 1>l 2$

KD Campus

62. (1) In a race of $1 \mathrm{~km} P$ defeats Q by 50 m .
\therefore When P runs 1 km Q runs $=950 \mathrm{~m}$...(1)
In a race of $1 \mathrm{~km} Q$ defeats R by 20 m
\therefore When Q runs $1 \mathrm{~km}(1000 \mathrm{~m}) \mathrm{R}$ runs
$=980 \mathrm{~m}$
\therefore When Q runs 950 mR runs
$=980 \times \frac{950}{1000} \mathrm{~m}=931 \mathrm{~m}$
From (1) and (2) we get,
When P runs $1 \mathrm{~km} R$ runs $=931 \mathrm{~m}$
\therefore When P runs 3 km R runs
$=3 \times 931 \mathrm{~m}=2793 \mathrm{~m}$
\therefore In a race of 3 km P defeats R by $=(3000-2793)=207 \mathrm{~m}$
63. (1) $\mathrm{SP}=\frac{120}{100} \times \mathrm{CP}$
$S P-420=\frac{125}{100} \times \frac{80 C P}{100}$
$\Rightarrow \frac{120}{100} \times \mathrm{CP}-420=\mathrm{CP}$
$\Rightarrow \frac{20 \mathrm{CP}}{100}=420$
$\Rightarrow \mathrm{CP}=\mathrm{Rs} 2100$
64. (3) Let the investment made by A be 'a'.

Given, B invested Rs. 9600, C invested Rs. 10800. Time for which A, B and C invested the amount is in the ratio $2: 3: 5$.
Ratio of profits $=$ Ratio of investment made
\Rightarrow Ratio of profit $=\mathrm{a} \times 2: 9600 \times 3: 10800$ $\times 5$
\Rightarrow Ratio of profit =a:14400:27000
Given, B received Rs. 2800 as profit out of a total profit of Rs. 10850 for his investment.
$\therefore \frac{14400}{\mathrm{a}+14400+27000} \times 10850=2800$
$\Rightarrow 55800=\mathrm{a}+14400+27000$
$\Rightarrow \quad a=$ Rs. 14400
65. (1) Amount of work done by 18 boys and 24 girls in 12 days $=\frac{12}{16}=\frac{3}{4}$

Remaining work $=1-\frac{3}{4}=\frac{1}{4}$
Now 12 boys complete $\frac{1}{4}$ work in 9 days

Therefore 18 boys can complete the entire work in $9 \times 4 \times \frac{12}{18}=24$ days
24 girls have to complete the job
$=\frac{1}{16}-\frac{1}{24}=\frac{1}{48}=48$ days
66. (4) Number of boys in Course A
$=\frac{20}{100} \times 1200-\frac{30}{100} \times 800$
$=240-240=0$
Number of boys in Course B
$=\frac{15}{100} \times 1200-\frac{10}{100} \times 800$
$=180-80=100$
Number of boys in Course C
$=\frac{5}{100} \times 1200-\frac{2}{100} \times 800$
$=60-16=44$
Number of boys in Course D
$=\frac{35}{100} \times 1200-\frac{30}{100} \times 800$
$=420-240=180$
Number of boys in Course E
$=\frac{12}{100} \times 1200-\frac{14}{100} \times 800$
$=144-112=32$
Number of boys in Course F
$=\frac{13}{100} \times 1200-\frac{14}{100} \times 800$
$=156-112=44$
So, the minimum number is in Course A.
67. (2) Number of girls in Course C
$=\frac{2}{100} \times 800=16$
68. (1) Number of girls in Course D
$=\frac{30}{100} \times 800=240$
Number of boys in Course D
$=\frac{35}{100} \times 1200-\frac{30}{100} \times 800$
$=420-240=180$
Required ratio $=180: 240=3: 4$
69. (3) Number of boys in Course C $=\frac{5}{100} \times 1200-\frac{2}{100} \times 800$

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=60-16=44$
Number of boys in Course F
$=\frac{13}{100} \times 1200-\frac{14}{100} \times 800$
$=156-112=44$
So, number are same in C and F .
70. (1) Number of girls in Course E
$=\frac{14}{100} \times 800=112$
Number of boys in Course E
$=\frac{12}{100} \times 1200-112=144-112=32$
\therefore Required percentage
$=\frac{112-32}{32} \times 100=250 \%$

ENGLISH LANGUAGE

91. (4) Change 'live' into 'living'.
92. (4) Change it into 'before the commence ment of olympics games next year.
93. (3) Change 'them' into 'those'.
94. (2) Replace 'in that' by 'by which'.
95. (4) Change 'their' into 'its'.
96. (2) Add 'a' before 'chairman'.
97. (5) No error.

98 (4) Add 'to' after 'reach'.
99. (3) Replace 'about' by 'for'.
100. (1) Add an apostrophe 's' to 'state'.

For all Bank PO/ Clerk Exams

Reasoning Sitting Arrangement

तर्कशवित बैठक व्यवस्शा

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Prescribe
advise and authorize the use of (a medicine or
लिखि तर्मसे सना ह
For all Bank PO/ Clerk Exams

IBPS PO PHASE -I MOCK TEST - 177 (ANSWER KEY)

$\begin{array}{lllllll}\text { 1. } & \text { (3) } & \text { 26. } & \text { (5) } & \text { 51. } & (4) & \text { 76. (4) } \\ \text { 2. } & (4) & \text { 27. } & (2) & \text { 52. } & (4) & \text { 77. }\end{array}$ (3) $)$

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- Whatapp with Mock Test No. and Question No. at 7053606571 for any of te doubts. Join the group and you may also share your suggestions and experience of sunday Mock Test.

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

