SSC (GD)MOCK TEST - 12 (SOLUTION)

1. (B) As, $(1)^{3} \times 8=8$ Similarly, $(3)^{3} \times 8=\mathbf{2 1 6}$
.
(A) As, $\frac{14}{[14 \times 3+14 \div 2]^{T}}$

Similarly, $\frac{18}{18 \times 3+18 \div 2} \frac{\mathbf{6 3}}{\uparrow}$
3. (B)

As, $\frac{64}{[(6+4) \times 4]}$
Similarly, $\frac{56}{[(5+6) \times 4]}$
4. (D) As, SURE $\xrightarrow{4 \times 3+3} 15$

Similarly, SCHOOL_ $\quad 6 \times 3+3$
5. (C) Except 492765831, all others are written with the help of 8 digits.
6. (D) Except PHRASE, in all others vowel A used two times.
7. (B)

8. (B) As, 54-32 $=22$

Similarly, $48-26=22$
9.
(A) As, $\frac{-2+0}{2}=-1$
and, $\frac{-1+1}{2}=0$
Similarly, $\frac{10+2}{2}=6$
10. (B)

11. (C)
12. (B) $1,12,7,5,2,18,1$

13. (A)
14. (D) After changing the signs,

$$
\begin{aligned}
& 36 \times 6 \div 3+5-3=74 \\
\Rightarrow & 72+5-3=74 \\
\Rightarrow & \mathbf{7 4}
\end{aligned}=\mathbf{7 4}
$$

15. (D)
16. (C)

17. (A)

18. (D)

19. (B)
20. (A)
21. (B)
22. (C)
23. (D) From figure,

\oplus can't be made by the question figure.
24. (C) Seventh letter from the left is A and third letter to its right is \mathbf{k}.
25. (C)

I.
II. \checkmark

Hence, both conclusion follow.
51. (D) Let speed of boat $=x$, speed of current $=y$ Downstream speed $=(x+y)$ Upstream speed $=(x-y)$ ATQ,
$\frac{36}{x+y}+\frac{36}{x-y}=13 \ldots$ (i)
$\frac{7}{x+y}=\frac{3}{x-y}$
$\Rightarrow \frac{x+y}{x-y}=\frac{9}{4}$, assume $x+\mathrm{y}=9 \mathrm{k}$,
$(x-y)=4 \mathrm{k}$, put values in equation (i)
then, $k=1, x+y=9, x-y=4$

Speed of boat $=\frac{9+4}{2}=6.5 \mathrm{~km} / \mathrm{hr}$
Speed of current $=\frac{9-4}{2}=2.5 \mathrm{~km} / \mathrm{hr}$
52. (C) ATQ,
$x=y$
$\Rightarrow 3 \mathrm{t}=\frac{3 \mathrm{t}-1}{4}$
$\Rightarrow 8 \mathrm{t}=3 \mathrm{t}-1$
$\Rightarrow 5 t=-2$
$\Rightarrow \mathrm{t}=\frac{-2}{5}$
53. (C)

Both are running in the same direction, so relative speed $=(40-20)=20 \mathrm{~m} / \mathrm{min}$. Actual distance between deer and tiger $=50 \times 8=400 \mathrm{~m}$
Time taken by tiger to overtake deer
$=\frac{400}{20}=20 \mathrm{~min}$
Distance travelled by tiger in $20 \mathrm{~min}=$ $20 \times 40=800 \mathrm{~m}$.
54. (B) Number of passengers after getting down and getting in at the first station
$=240-12+22=250$
Passengers left in the train after the
second station $=250-\frac{1}{5} \times 250=200$
Let x people get down at the third statioin, then
ATQ,
$200+32-x=240 \times \frac{80}{100}$
$\Rightarrow 232-x=192$
$\Rightarrow x=40$
55. (D) Cost price of an atricle $\mathrm{A}=$ ₹ 180

Selling price of A $=180 \times \frac{125}{100}=₹ 225$
ATQ,
Cost price of B = ₹ 225
Selling price of B = ₹ 270
Profit $=270-225=₹ 45$
Percentage profit $=\frac{45}{225} \times 100=20 \%$
56. (C) Let the marked price of shirt be ₹ $2 x$ and that of trouser be $3 x$.
Let the discount on the trousers be $\mathrm{y} \%$ Then,
$2 x \times \frac{60}{100}+3 x \times \frac{y}{100}=5 x \times \frac{40}{100}$
$\Rightarrow 120 x+3 x y=200 x$
$\Rightarrow 3 y=80$
$\Rightarrow y=\frac{80}{3}=26.67 \%$
57. (B) As $\mathrm{BC}|\mid \mathrm{AD}$ and the diagonals of a trapezium divide each other propertionally.
So, $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
$\Rightarrow \frac{3 x-1}{5 x-3}=\frac{2 x+1}{6 x-5}$
$\Rightarrow(3 x-1)(6 x-5)$
$=(5 x-3)(2 x+1)$
$\Rightarrow 18 x^{2}-15 x-6 x+5$
$=10 x^{2}+5 x-6 x+5$
$\Rightarrow 8 x^{2}-20 x+8=0$
$\Rightarrow 4 x^{2}-10 x+4=0$
$\Rightarrow 4 x^{2}-8 x-2 x+4=0$
$\Rightarrow 4 x(x-2)-2(x-2)=0$
$\Rightarrow(4 x-2)(x-2)=0$
$\Rightarrow x=\frac{1}{2}$ or $x=2$
But as $x=\frac{1}{2}$ will make OC negative
$\therefore x=2$
58. (D) Total cost price $=144 \times 15+200=₹ 2300$

Total selling price $=144 \times 12 \times 2.25$

$$
\text { = ₹ } 3888
$$

Profit $=₹ 3888-₹ 2300=₹ 1588$
Profit $\%=\frac{1588}{2300} \times 100=69.04 \%$
59. (C) Required remainder $=$ Remainder obtained by dividing 6^{2} by 7 .
Remainder $=1$
60. (B) Slant height of the cone,
$l=\sqrt{(8)^{2}+(6)^{2}}=10 \mathrm{~cm}$
Lateral surface of the solid $=$ Curved surface of cone + Curved surface of cylinder + Surface area of bottom
$=p r l+2 p r h+\mathrm{pr}^{2}$, where h is the height of the cylinder.
$=\pi r(l+h+r)=\left[\frac{22}{7} \times 16 \times(10+20+16)\right] \mathrm{cm}^{2}$

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$=\left(\frac{22}{7} \times 14 \times 46\right) \mathrm{cm}^{2}$
$=2024 \mathrm{~cm}^{2}$
61. (A) ATQ,
$\frac{x+\frac{1}{x}}{2}=24$
$\Rightarrow x+\frac{1}{x}=48$
Required average
$=\frac{x^{2}+\frac{1}{x^{2}}}{2}=\frac{\left(x+\frac{1}{x}\right)^{2}-2}{2}$
$=\frac{(48)^{2}-2}{2}=1151$
62. (C) Pipe A is opened at 9 am , pipe B at 10 am and the pipe C at 11 am .
Part of the tank filled by pipe A in 2
hours $=\frac{2}{3}$
Part of the tank filled by pipe B in 1
hour $=\frac{1}{4}$
Part of the tank filled by pipe B in 1
hour $=\frac{1}{4}$
Part of the tank filled till 5 pm
$=\frac{2}{3}+\frac{1}{4}=\frac{8+3}{12}=\frac{11}{12}$
Remaining part $=1-\frac{11}{12}=\frac{1}{12}$
New part empited when A, B and C are opened $=\frac{1}{3}+\frac{1}{4}-1=\frac{4+3-12}{12}=\frac{-5}{12}$
$\therefore \frac{5}{12}$ Part is emptied in 1 hour
$\therefore \frac{11}{12}$ is emptied in $=\frac{12}{5} \times \frac{11}{12}$ $=\frac{11}{5}$ hours
\therefore Required time $=11+2 \frac{1}{5}=01: 12 \mathrm{pm}$
63. (B) Average cost of 1 bag of rice
$=₹\left(\frac{8 \times 900+9 \times 1200+6 \times 1600}{8+9+6}\right)$
$=₹\left(\frac{7200+10800+9600}{23}\right)$
$=\frac{27600}{23}=₹ 1200$
64. (D) $\because \mathrm{PR} \| \mid \mathrm{TS}$
$\therefore \angle \mathrm{PRQ}=\angle \mathrm{USR}=45^{\circ}$
In $D P Q R$
$\angle \mathrm{PQR}=180^{\circ}-\left(45^{\circ}+80^{\circ}\right)=55^{\circ}$
$\therefore \angle \mathrm{TPU}=\angle \mathrm{PQR}=55^{\circ}$
[$\because \mathrm{PU}||\mathrm{RS}|| \mathrm{QS}]$
65. (A)

Number of days in which he was absent
$=\frac{40}{(33+7)} \times 7=7$ days
66. (C) LCM of 9,10 and $15=90$
\Rightarrow The multiple of 90 are also divisible by 9,10 and 15
$\therefore 21 \times 90=1890$ will be divisible by them
\therefore Now, 1897 will be the number that will give remainder 7 .
Required number $=1934-1897=37$
67. (B) Let the number be x.

Then,
$\frac{5}{6} x-\frac{5}{16} x=275$
$\Rightarrow \frac{40 x-15 x}{48}=275$
$\Rightarrow 25 x=48 \times 275$
$\Rightarrow x=528$
68. (D) If the remainder be x, then ($11284-x$) and $(7655-x)$ are divisible by three digit number. i.e. $(11284-x)-(7655-x)$ $=3629$ is divisible by that number. $3629=19 \times 191$
Hence, required number $=191$
Sum of digits $=1+9+1=11$
69. (A) ATQ,
$x \propto \frac{1}{y^{2}-1}$
$\Rightarrow x=\frac{k}{y^{2}-1}$
Where k is a constant.
When $y=10, x=24$, then
$\therefore 24=\frac{k}{10^{2}-1} \Rightarrow 24=\frac{k}{99}$
$K D$
Campus
KD Campus Pvt. Ltd
PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
$\Rightarrow \mathrm{k}=24 \times 99$
When $\mathrm{y}=5$, then
$x=\frac{k}{y^{2}-1}=\frac{24 \times 99}{5^{2}-1}=\frac{24 \times 99}{24}=99$
70. (B) Given $\mathrm{a}=-8, \mathrm{~b}=-9$ and $\mathrm{c}=12$
$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}=(-8)+(-9)+12=-5$
$=\frac{a^{3}+b^{3}+c^{3}-3 a b c}{a b+b c+c a-a^{2}-b^{2}-c^{2}}$
$=\frac{(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)}{-\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)}$
$=\frac{-5}{-1}=5$
71. (C) Diameter of circle $=$ breadth of park $=$ 28 m
\therefore Radius of circle $=\frac{28}{2}=14 \mathrm{~m}$.
\therefore Area of circle $=\mathrm{pr}^{2}=\frac{22}{7} \times 14 \times 14$

$$
=616 \mathrm{~m}^{2}
$$

Required area $=36 \times 28-616=392 \mathrm{~m}^{2}$
72. (B) $\mathrm{SI}=₹(7200-6000)=₹ 1200$

$$
\therefore \mathrm{SI}=\frac{\mathrm{PRT}}{100} \Rightarrow 1200=\frac{6000 \times \mathrm{R} \times 4}{100}
$$

$\Rightarrow R=\frac{1200 \times 100}{6000 \times 4}=5 \%$
New rate $(\mathrm{R})=5 \times 1.5=7.5 \%$
Then, $\mathrm{SI}=\frac{6000 \times 7.5 \times 5}{100}=₹ 2250$
\therefore Amount $=₹(6000+2250)=₹ 8250$
73. (D)
74. (B) Let the expenditure $=x$

In 1993,
$130=\frac{\mathrm{I}_{1} \cdot x}{x} \propto 100 \Rightarrow \frac{130 x}{100}+x=\mathrm{I}_{1}$
$\Rightarrow \mathrm{I}_{1}=\frac{230 x}{100}$
and, in 1997,
$150=\frac{\mathrm{I}_{2} \cdot x}{x} \propto 100 \Rightarrow \frac{150 x}{100}+x=\mathrm{I}_{2}$
$\Rightarrow \mathrm{I}_{2}=\frac{250 x}{100}$
\therefore Required ratio $=\frac{\frac{230 x}{100}}{\frac{250 x}{100}}=23: 25$
75. (A) Required Average profit

$$
\begin{aligned}
& =\frac{100+130+90+140+150+120}{6} \\
& =\frac{730}{6}=121 \frac{2}{3}
\end{aligned}
$$

Advance Maths
$\{$ f(Hindi) for general Competitions

Revised 2017

KD Publication

76. (C) Change 'is' into 'are', as 'the problems' are plural in number and take plural verb.
77. (B) Add 'the' before 'fence', as 'sitting on the fence' is the correct idiomatic expression.
78. (B) Replace 'with' by 'to', as adjacent takes the preposition 'to' with it.
98. (A) The correct idiom is 'hard put to' which means 'struggling to do or accomplish something'.
99. (D) 'It is a high time', or 'It is time' phrases takes V_{2} (past form) of verb after it, and past form of 'Burst' remains same.
100. (C) (Make/made + obj. $+\mathrm{V}_{1}$) i.e. when used in active voice takes bare infinitive.

MEANINGS IN ALPHABETICAL ORDER

Word

Inveigle

Persuade Iniquitous
Vile
Doyen
Miscreant
Rogue
Pall
Prominent
Imbecile
Sapient
Manifold
Fluvial

Meaning in English

to persuade to do something by means of flattery or deception. cause (someone) to believe something grossly unfair and morally wrong Morally bad, wicked most respected or prominent a person who has done something wrong dishonest or unprincipled man to grow less in scope or intensity important, famous stupid, fool having deep knowledge or understanding having many different forms or elements of or found in river

Meaning in Hindi

ध' खा दे ना

मना ना सझझा ना
अ य यू प"
नी च, हिт नाँ ना
अनु $\% T$ वी
नी च
दु ठट
ढं कना
मु ख
मू ख
ज्ञानपू प‘
विविध
नदी संबं धे

SSC (GD) MOCK TEST - 12 (ANSWER KEY)

Answer key

1. (B)	11. (C)	21. (B)	31. (A)	41. (D)	51. (D)	61. (A)	71. (C)
2. (A)	12. (B)	22. (C)	32. (C)	42. (D)	52. (C)	62. (C)	72. (B)
3. (B)	13. (A)	23. (D)	33. (C)	43. (A)	53. (C)	63. (B)	73. (D)
4. (D)	14. (D)	24. (C)	34. (D)	44. (B)	54. (B)	64. (D)	74. (B)
5. (C)	15. (D)	25. (C)	35. (D)	45. (A)	55. (D)	65. (A)	75. (A)
6. (D)	16. (C)	26. (A)	36. (C)	46. (B)	56. (C)	66. (C)	
7. (B)	17. (A)	27. (D)	37. (D)	47. (D)	57. (B)	67. (B)	
8. (B)	18. (D)	28. (D)	38. (D)	48. (B)	58. (D)	68. (D)	
9. (A)	19. (B)	29. (D)	39. (B)	49. (A)	59. (C)	69. (A)	
10. (B)	20. (A)	30. (D)	40. (A)	50. (A)	60. (B)	70. (B)	

Hindi

English

| 76. (C) | 85. (C) | 94. (B) | 76. (C) | 86. (C) | 96. (D) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 77. (C) | 86. (A) | 95. (B) | 77. (B) | 87. (C) | 97. (B) |
| 78. (C) | 87. (B) | 96. (A) | 78. (B) | 88. (C) | 98. (A) |
| 79. (D) | 88. (A) | 97. (D) | 79. (B) | 89. (B) | 99. (D) |
| 80. (C) | 89. (C) | 98. (B) | 80. (B) | 90. (A) | 100.(C) |
| 81. (A) | 90. (C) | 99. (C) | 81. (B) | 91. (B) | |
| 82. (B) | 91. (A) | 100.(D) | 82. (D) | 92. (D) | |
| 83. (B) | 92. (C) | | 93. (C) | | |
| 84. (A) | 93. (D) | | 84. (B) | 94. (D) | |

| 76. (C) | 85. (C) | 94. (B) | 76. (C) | 86. (C) | 96. (D) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 77. (C) | 86. (A) | 95. (B) | 77. (B) | 87. (C) | 97. (B) |
| 78. (C) | 87. (B) | 96. (A) | 78. (B) | 88. (C) | 98. (A) |
| 79. (D) | 88. (A) | 97. (D) | 79. (B) | 89. (B) | 99. (D) |
| 80. (C) | 89. (C) | 98. (B) | 80. (B) | 90. (A) | 100.(C) |
| 81. (A) | 90. (C) | 99. (C) | 81. (B) | 91. (B) | |
| 82. (B) | 91. (A) | 100.(D) | 82. (D) | 92. (D) | |
| 83. (B) | 92. (C) | | 93. (C) | | |
| 84. (A) | 93. (D) | | 84. (B) | 94. (D) | |

\square

\square

