Campus

KD Campus Pvt. Ltd
PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

RPF (CONSTABLE) MOCK TEST - 11 (SOLUTION)

51. (A) $\frac{x}{y}+\frac{y}{x}=2 \Rightarrow \frac{x^{2}+y^{2}}{x y}=2$
$\Rightarrow x^{2}+y^{2}=2 x y$
$\Rightarrow x^{2}+y^{2}-2 x y=0$
$\Rightarrow(x-y)^{2}=0$
$\Rightarrow x-y=0$
$\therefore x-y^{2}-3 x y(x-y)=(x-y)^{3}=0$
52. (C)

$\frac{\sqrt{3}}{2} \times 16 \sqrt{3}=24 \mathrm{~cm}$
$\therefore \mathrm{OD}=$ Radius of in circle
$=\frac{1}{3} \times 24=8 \mathrm{~cm}$
\therefore Area of circle $=\pi \mathrm{r}^{2}$
$=\frac{22}{7} \times 8 \times 8=201.14 \mathrm{sq} \mathrm{cm}$.
53. (D) A's work $=(B+C)$'s work ATQ,
$(A+B)$'s can complete the work in 10 hr 48 minutes i.e. $=\frac{54}{5} \mathrm{hrs}$
C can complete the work in 54 hours.

We know that
A's efficiency $=(B+C)$'s efficiency
C's efficiency $=1$
then,
$\mathrm{A}-\mathrm{B}=1$
and $\mathrm{A}+\mathrm{B}=5$
\Rightarrow A's efficiency $=3$
and, B's efficiency $=2$
time taken by B is $=\frac{54}{2}=27 \mathrm{hr}$
54. (C) Mean of 10 observations - Mean of 9 observation $=10$ observation
\therefore 10th observation $=10 \times 17-16 \times 9$
$=170-144=26$
55. (D) ATQ,
$\frac{13}{4} \times \frac{2}{3}-\left(\frac{9}{4}-\frac{5}{3}\right) \times \frac{3}{4}$
$=\frac{13}{6}-\left(\frac{27-20}{12}\right) \times \frac{3}{4}$
$=\frac{13}{6}-\frac{7}{12} \times \frac{3}{4}=\frac{13}{6}-\frac{7}{16}$
$=\frac{104-21}{48}=\frac{83}{48}$
56. (A) $(3+2 \sqrt{2})(3-2 \sqrt{2})$
$=(3)^{2}-(2 \sqrt{2})^{2}=9-8=1$
$\Rightarrow 3+2 \sqrt{2}=\frac{1}{3-2 \sqrt{2}}$
Now, $(x+y)^{3}+(x-y)^{3}$
$=x^{3}+y^{3}+3 x^{2} y+3 x y^{2}+x^{2}-y^{2}-3 x^{2} y+3 x y^{2}$
$=2 x^{2}+6 x y^{2}$
$\therefore(3+2 \sqrt{2})^{-3}+(3-2 \sqrt{2})^{-3}$
$=\left(\frac{1}{3+2 \sqrt{2}}\right)^{3}+\left(\frac{1}{3-2 \sqrt{2}}\right)^{3}$
$=(3-2 \sqrt{2})^{3}+(3+2 \sqrt{2})^{3}$
$=2 \times(3)^{3}+6 \times 3 \times(2 \sqrt{2})^{3}$
$=2 \times 27+18 \times 8$
$=54+144=198$
57. (D) We know that,
$M_{1} D_{1}=M_{2} D_{2}$
$\Rightarrow 21 \times 21=\mathrm{M}_{2} \times 14$
$\Rightarrow M_{2}=\frac{12 \times 21}{14}=18$ pipes
58. (A) The sum of two sides of a triangle is always greater than the third side.
$(3,5,6),(3,6,8)$ and $(5,6,8)$
Hence, the maximum number of triangle is 3.
59. (D) Let two numbers x and y ATQ,
$\frac{6}{100}$ of $x=\frac{10}{100}$ of y
$\therefore \frac{x}{y}=\frac{10}{6}=\frac{5}{3}=5: 3$

Campus

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033

\therefore Difference of two numbers

$$
=\frac{(5-3)}{(5+3)} \times 2400=600
$$

60. (A) Here, $\angle \mathrm{PSQ}=180^{\circ}-\left(110^{\circ}+30^{\circ}\right)$
$\Rightarrow \angle \mathrm{PSQ}=40^{\circ}$
and, $\angle \mathrm{QSR}=75^{\circ}-40^{\circ}=35^{\circ}$
Now, $\angle \mathrm{QSR}+\angle \mathrm{SRT}=180^{\circ}$
$[\because \mathrm{SQ}|\mid \mathrm{RT}]$
$\Rightarrow 35^{\circ}+60^{\circ}+x=180^{\circ}$
$\Rightarrow x=180^{\circ}-95^{\circ}$
$\Rightarrow x=85^{\circ}$
61. (B) ATQ,

Product of length and bradth of wall paper $=$ perimeter of room
\Rightarrow Length $\times 2=2($ Length + Breadth $) \times$ height
\Rightarrow Length $=\frac{2 \times 4(8.3+4.2)}{2}=50 \mathrm{~m}$
62. (A) [It is to be noted that in cricket score of not out innings is not counted in total innings while its score is calculated in total score]
Now, total score of five innings
$=68+72+3+42+26=211$
But he has remained not out in one innings, therefore total innings counted $=4$
\therefore Required average $=\frac{211}{4}=52.75$
63. (B) Given,
$\Rightarrow \mathrm{P}\left(1+\frac{r}{100}\right)^{4}=3760$
$\Rightarrow \mathrm{P}\left(1+\frac{r}{100}\right)^{5}=3854$
ATQ,
$\Rightarrow \frac{\mathrm{P}\left(1+\frac{r}{100}\right)^{5}}{\mathrm{P}\left(1+\frac{r}{100}\right)^{4}}=\frac{3854}{3760}$
$\Rightarrow 1+\frac{r}{100}=\frac{3854}{3760}$
$\Rightarrow \frac{r}{100}=\frac{3854}{3760}-1=\frac{94}{3760}$
$\Rightarrow r=\frac{94}{3760} \times 100=2.5 \%$
64. (A) Per quintal cost of two different sorts of rice $=\frac{4642.50}{60}=77.375$ per quintal

Now,

The quantity of better sort $=\frac{60}{12} \times 5=25$ quintals and the quantity of worse sort
$=\frac{60}{12} \times 7=35$ quintals
65. (A) ATQ,

SI at the rate of 4% for 2 year
$\frac{\mathrm{P} \times 4 \times 2}{100}=\frac{8 \mathrm{P}}{100}$
SI at the rate of 6% for next 4 year
$=\frac{\mathrm{P} \times 6 \times 4}{100}=\frac{24 \mathrm{P}}{100}$
For next 3 year
SI $=\frac{\mathrm{P} \times 8 \times 3}{100}=\frac{24 \mathrm{P}}{100} \ldots$
Total SI $=\frac{8 \mathrm{P}}{100}+\frac{24 \mathrm{P}}{100}+\frac{24 \mathrm{P}}{100}=₹ 1120$
$\Rightarrow \mathrm{P}=\frac{1120 \times 100}{56}=₹ 2000$
66. (C) ATQ,
$(5 x \times 5)+(7 x \times 2)+(9 x \times 1)=576$
$\Rightarrow 48 x=576$
$\Rightarrow x=12$
\therefore Value of $₹ 2$ coin $=14 \times 12=168$
\therefore Number of $₹ 2$ coin $=\frac{120}{2}=84$
67. (D) Let required number of wickets $=x$

ATQ,
$13.2 \times x+24=(x+5)(13.2-0.4)$
$\Rightarrow 13.2 x+24=12.5 x+64$
$\Rightarrow 0.4 x=40$
$\Rightarrow x=100$
68. (D) Given equations are:
$3 x+4 y=5$
$x+2 y=2$
On solving of (i) and (ii)
We find $x=1, y=\frac{1}{2}$
$\therefore x+y=1+\frac{1}{2}=\frac{3}{2}$

Campus

KD Campus Pvt. Ltd

PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033
69. (A) ATQ,

Distance covered by first train in 2 hours
$=40 \times 2=80 \mathrm{~km}$
\therefore Required time $=\frac{140-80}{40+50}$

$$
=\frac{60}{90}=40 \mathrm{~min}
$$

\therefore They will meet at 10.40 cm
70. (B) ATQ,
$10 \mathrm{~W} \times 7 \mathrm{D}=10 \mathrm{C} \times 14 \mathrm{D}$
$\Rightarrow 1 \mathrm{~W}=2 \mathrm{C}$
$\therefore 5 W+10 \mathrm{C}=20 \mathrm{C}$
$\because 10 \mathrm{C}$ takes 14 days to complete the work Hence, 20C take 7 days
71. (C) ATQ,

At loss At cost

Ratio of quantity of tea sold at loss and cost price $=3: 2$
\therefore Quantity sold at cost price $=\frac{2}{5} \times 40=16 \mathrm{~kg}$
72. (A) $\theta=25^{\circ}=\frac{25 \times \theta}{180}$ radian
$=\frac{5 \theta}{36}$ radian and, $\theta=\frac{\mathrm{s}}{\mathrm{r}}$
$\Rightarrow \mathrm{r}=\frac{40}{\frac{5 \theta}{36}}=\frac{40 \times 36}{5 \theta}=\frac{40 \times 36 \times 7}{5 \times 22} \mathrm{~m}$
$=91.64 \mathrm{~m}$
73. (D) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AED}$,
$\angle \mathrm{BAC}=\angle \mathrm{DAE}$
$=180^{\circ}-\left(75^{\circ}+65^{\circ}\right)=40^{\circ}$
$\angle \mathrm{AED}=75^{\circ}=\angle \mathrm{ABC}$
$\therefore \triangle \mathrm{AED} \sim \triangle \mathrm{ABC}$
$\therefore \frac{\mathrm{DE}}{\mathrm{BC}}=\frac{\mathrm{AE}}{\mathrm{AB}}=\frac{\mathrm{AD}}{\mathrm{AC}} \Rightarrow \frac{2}{3}=\frac{12}{\mathrm{AB}}$
$\Rightarrow \mathrm{AB}=18 \mathrm{~cm}$
74. (D) Let Monika got $\mathrm{x} \%$ of the remaining 40 questions
ATQ,
$\frac{x}{100} \times 40+\frac{65}{100} \times 40=\frac{75}{100} \times 80$
$\Rightarrow \frac{40 x+2600}{100}=\frac{6000}{100}$
$\Rightarrow 40 x+2600=6000$
$\Rightarrow 40 x=3400$
$\therefore x=\frac{3400}{40}=85 \%$
75. (C) Given
$a=7+4 \sqrt{3}$
$\frac{1}{a}=\frac{1}{7+4 \sqrt{3}}=\frac{1}{7+4 \sqrt{3}} \times \frac{7-4 \sqrt{3}}{7-4 \sqrt{3}}$
$=7-4 \sqrt{3}$
$a+\frac{1}{a}=4+4 \sqrt{3}+7-4 \sqrt{3}=14$
$\frac{a^{6}+a^{4}+a^{2}+1}{a^{3}}=\frac{a^{6}}{a^{3}}+\frac{a^{4}}{a^{3}}+\frac{a^{2}}{a^{3}}+\frac{1}{a^{3}}$
$=a^{3}+\frac{1}{a^{3}}+a+\frac{1}{a}$
$=\left(a+\frac{1}{a}\right)^{3}-3\left(a+\frac{1}{a}\right)+\left(a+\frac{1}{a}\right)$
$=(14)^{3}-2 \times 14=2772$
76. (A) Let the number of grapes eaten on the first day be x.
$\therefore x+x+6+x+12+x+18+x+24=100$
$\Rightarrow 5 x+60=100$
$\Rightarrow 5 x=100-60=40$
$\Rightarrow x=\frac{40}{5}=8$
77. (B) Let the sum invested at 9% be ₹ x and that invested at 11% be $₹(100000-x)$ Then,
$\left(\frac{x \times 9 \times 1}{100}\right)+\left[\frac{(100000-x) \times 11 \times 1}{100}\right]$
$=\left(100000 \times \frac{39}{4} \times \frac{1}{100}\right)$
$\Rightarrow \frac{9 x+1100000-11 x}{100}=\frac{39000}{4}=9750$
$\Rightarrow 2 x=(1100000-975000)=125000$
$\Rightarrow x=62500$
\therefore Sum invested at $9 \%=₹ 62,500$
Sum invested at $11 \%=(100000-62500)$
= ₹ 37,500
78. (C) $\frac{\frac{13}{4}-\frac{5}{6} \times \frac{4}{5}}{\frac{13}{3} \div \frac{1}{5}-\left(\frac{3}{10}+\frac{106}{5}\right)}-\left(\frac{3}{2} \times \frac{5}{3}\right)$

Campus

KD Campus Pvt. Ltd

 PLOT NO. 2 SSI, OPP METRO PILLAR 150, GT KARNAL ROAD, JAHANGIRPURI DELHI: 110033$=\frac{\frac{13}{4}-\frac{2}{3}}{\frac{13 \times 5}{3}-\left(\frac{3+212}{10}\right)}-\frac{5}{2}=\frac{\frac{39-8}{12}}{\frac{65}{3}-\frac{215}{10}}-\frac{5}{2}$
$=\frac{\frac{31}{12}}{\frac{650-645}{30}}-\frac{5}{2}=\frac{31}{12} \times \frac{30}{5}-\frac{5}{2}$
$=\frac{31}{2}-\frac{5}{2}=\frac{31-5}{2}=\frac{26}{2}=13$
79. (C) ATQ,
$12 \mathrm{C} \times 16=8 \mathrm{~A} \times 12$
$\Rightarrow \frac{\mathrm{C}}{\mathrm{A}}=\frac{1}{2}$
\therefore Total work $=12 \times 1 \times 16=196$ unit Work done by 16 adults in 3 days $=16 \times$ $2 \times 3=96$ units
\therefore Required number of days $=\frac{192-96}{6 \times 2+4 \times 1}=6$
80. (A) Let the ratio be $x:(x+40)$

Then, $\frac{x}{(x+40)}=\frac{2}{7}$
$\Rightarrow 7 x=2 x+80$
$\Rightarrow x=16$
\Rightarrow Required ratio $=16: 56$
81. (B) Let x is the number of individuals who were covered. Then,
Percentage of uncertain individuals
$=[100-(20+60)] \%=20 \%$
$\therefore 60 \%$ of $x-20 \%$ of $x=720$
$\Rightarrow 40 \%$ of $x=720$
$\Rightarrow \frac{40}{100} x=720 \Rightarrow x=\left(\frac{720 \times 100}{40}\right)=1800$
82. (A) $\angle \mathrm{COB}=360^{\circ}-\left(110^{\circ}+90^{\circ}\right)=160^{\circ}$
$\Rightarrow x=\angle \mathrm{CAB}=\frac{1}{2} \angle \mathrm{COB}=\frac{1}{2} \times 160^{\circ}=80^{\circ}$
83. (C) Percentage of students failed in 1984
$=\frac{35}{200} \times 100=17 \frac{1}{2} \%$
84. (C) Total passed students,
$=140+150+165=455$
Total students $=170+195+200=565$
\therefore Required percentage $=\frac{455}{565} \times 100$
$=\frac{9100}{113}=80 \frac{60}{113} \%$
85. (D) Required percentage $=\frac{140}{170} \times 100$

$$
=\frac{1400}{17}=82 \frac{6}{17} \%
$$

86. (A) Information about Mughals is present in History and Information about Rivers is present in Geography.
87. (D) As,

$$
7 \times 8=56
$$

$8 \times 9=72$
Similarly, $9 \times 10=90$

$$
10 \times 11=110
$$

88. (B)

Similarly,

89. (B)

Similarly,

90. (A)

91. (D) Except clash, others are synonym of oneanother.
92. (D) Except Bhilai, others are the nuclear power station.
93.

94. (D) $583 \Rightarrow 8-5=3$
$275 \Rightarrow 7-2=5$
$286 \Rightarrow 8-2=6$
$427 \Rightarrow 2-4 \neq 7$
95. (C) Except 83, other are composite number.
96. (D) As, $13 \Rightarrow 13^{2}=169$ and $31^{2}=961$
and, $15 \Rightarrow 15^{2}=225$ and $51^{2}=2601$
Similarly, $12 \Rightarrow 12^{2}=144$ and $21^{2}=441$
97. (C) As, $7^{3}-7=336$ and, $11^{2}-11=110$
Similarly, $8^{3}-8=\mathbf{5 0 4}$
98. (B)
99. (C) The date which will be a holiday $=1,7$, $8,14,15,21,22,28,29$
\therefore Required number of days $=\mathbf{9}$

100. (C)

101. (D)
102. (B)
103. (B)
104. (A) Padma Shri \rightarrow Padma Bhushan \rightarrow Padma Vibhushan \rightarrow Bharat Ratna
105. (A)

106. (C)

107. (A) Last day must be Sunday.
108. (B)

109. (B) AB / AABB / AA ABBB
110. (D) Neither I nor II follows.
111. (D) As,

$$
\begin{array}{ccccc}
D & \text { I } & G & I & T \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
@ & \# & \wedge & \# & *
\end{array}
$$

and, $\begin{array}{lll}\text { E } & \text { A } & R \\ \downarrow & \downarrow & \downarrow \\ ? & ! & <\end{array}$
Similarly, $\begin{array}{ccccc}\mathbf{T} & \mathbf{I} & \mathbf{G} & \mathbf{E} & \mathbf{R} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \text { \# } & \# & \wedge & ?\end{array}$
112. (C)ATQ,
$3 \mathrm{E}+5 \mathrm{P}=105 \ldots . .(\mathrm{i})$

$$
\begin{equation*}
4 \mathrm{E}+6 \mathrm{P}=130 \tag{ii}
\end{equation*}
$$

On solving equation (i) and (ii), we get

$$
\mathrm{E}=10 \text { and } \mathrm{P}=15
$$

\therefore Price of one eraser $=₹ \mathbf{1 0}$
113. (C)

$$
\mathrm{OC}=\sqrt{24^{2}+7^{2}}=25 \mathrm{~km}
$$

\therefore Minimum distance between the movie hall and his office = $\mathbf{2 5} \mathbf{~ k m}$
114. (C)
115. (A)
116.(C) 411 B 3 A 29 C 53 D 20

After changing the signs as per the given details,

$$
411 \div 3-29+53 \times 20
$$

$=137-29+1060$
= 1168
117. (D)
118. (C)
119. (A) Number of squares is $\mathbf{1 4}$
120. (C)

Answer key

1. (A)	16. (B)	31. (B)	46. (A)	61. (B)	76. (A)	91. (D)	106. (C)
2. (D)	17. (B)	32. (B)	47. (B)	62. (A)	77. (B)	92. (D)	107. (A)
3. (A)	18. (D)	33. (D)	48. (B)	63. (B)	78. (C)	93. (D)	108. (B)
4. (C)	19. (B)	34. (C)	49. (C)	64. (A)	79. (C)	94. (D)	109. (B)
5. (A)	20. (A)	35. (B)	50. (B)	65. (A)	80. (A)	95. (C)	110. (D)
6. (B)	21. (D)	36. (A)	51. (A)	66. (C)	81. (B)	96. (D)	111.(D)
7. (C)	22. (B)	37. (A)	52. (C)	67. (D)	82. (A)	97. (C)	112. (C)
8. (A)	23. (B)	38. (B)	53. (D)	68. (D)	83. (C)	98. (B)	113. (C)
9. (D)	24. (C)	39. (B)	54. (C)	69. (A)	84. (C)	99. (C)	114. (C)
10. (B)	25. (D)	40. (A)	55. (D)	70. (B)	85. (D)	100. (C)	115. (A)
11. (B)	26. (D)	41. (A)	56. (A)	71. (C)	86. (A)	101. (D)	116.(C)
12. (D)	27. (C)	42. (A)	57. (D)	72. (A)	87. (D)	102. (B)	117. (D)
13. (C)	28. (A)	43. (C)	58. (A)	73. (D)	88. (B)	103. (B)	118. (C)
14. (D)	29. (B)	44. (C)	59. (D)	74. (D)	89. (B)	104. (A)	119. (A)
15. (C)	30. (B)	45. (B)	60. (A)	75. (C)	90. (A)	105. (A)	120. (C)

