RPF MOCK TEST - 11 (SOLUTION)

51. (B) Let speed of boat $=x$, speed of current $=y$ Downstream speed $=(x+y)$
Upstream speed $=(x-y)$
ATQ,
$\frac{21}{x+y}+\frac{21}{x-y}=10 \ldots$ (i)
$\frac{7}{x+y}=\frac{3}{x-y}$
$\Rightarrow \frac{x+y}{x-y}=\frac{7}{3}$, assume $x+y=7 \mathrm{k}$,
$(x-y)=3 \mathrm{k}$, put values in equation (i) then, $k=1, x+y=7, x-y=3$
Speed of boat $=\frac{7+3}{2}=5 \mathrm{~km} / \mathrm{hr}$
Speed of current $=\frac{7-3}{2}=2 \mathrm{~km} / \mathrm{hr}$
52. (D) ATQ,
$A=B+4000$
$B=C+5000$
$A+B+C=50,000$
$B+4000+B+B-5000=50000$
$\Rightarrow 3 \mathrm{~B}=51000$
$\Rightarrow B=\frac{51000}{3}=17000$
$\therefore A=17000+4000=₹ 21000$
Hence, A gets $=\frac{21000}{50000} \times 35000$

$$
\text { = ₹ } 14700
$$

53. (D) ATQ,
$x=y$
$\Rightarrow 2 \mathrm{t}=\frac{2 t-1}{3}$
$\Rightarrow 6 \mathrm{t}=2 \mathrm{t}-1$
$\Rightarrow 4 \mathrm{t}=-1$
$\Rightarrow \mathrm{t}=-\frac{1}{4}$
54. (C)

Both are running in the same direction, so relative speed $=(40-20)=20 \mathrm{~m} / \mathrm{min}$.

Actual distance between deer and tiger $=50 \times 8=400 \mathrm{~m}$
Time taken by tiger to overtake deer
$=\frac{400}{20}=20 \mathrm{~min}$
Distance travelled by tiger in $20 \mathrm{~min}=$ $20 \times 40=800 \mathrm{~m}$.
55. (B) Number of passengers after getting down and getting in at the first station
$=240-12+22=250$
Passengers left in the train after the
second station $=250-\frac{1}{5} \times 250=200$
Let x people get down at the third statioin, then
ATQ,
$200+32-x=240 \times \frac{80}{100}$
$\Rightarrow 232-x=192$
$\Rightarrow x=40$
56. (C) Cost price of an atricle $A=₹ 160$

Selling price of $A=160 \times \frac{120}{100}=₹ 192$
ATQ,
Cost price of $\mathrm{B}=₹ 192$
Selling price of $B=₹ 240$
Profit $=240-192=₹ 48$
Percentage profit $=\frac{48}{192} \times 100=25 \%$
57. (C) Let the marked price of shirt be ₹ x and that of trouser be $2 x$.
Let the discount on the trousers be $y \%$ Then,

$$
\begin{aligned}
& x \times \frac{40}{100}+2 x \times \frac{y}{100}=3 x \times \frac{30}{100} \\
& \Rightarrow 40 x+2 x y=90 x \\
& \Rightarrow 2 y=90-4 x 0 \\
& \Rightarrow y=\frac{50}{2}=25 \%
\end{aligned}
$$

58. (B) As $\mathrm{BC}|\mid \mathrm{AD}$ and the diagonals of a trapezium divide each other propertionally.
So, $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
$\Rightarrow \frac{3 x-1}{5 x-3}=\frac{2 x+1}{6 x-5}$

KD Campus Pvt. Ltd

$\Rightarrow(3 x-1)(6 x-5)$
$=(5 x-3)(2 x+1)$
$\Rightarrow 18 x^{2}-15 x-6 x+5$
$=10 x^{2}+5 x-6 x+5$
$\Rightarrow 8 x^{2}-20 x+8=0$
$\Rightarrow 4 x^{2}-10 x+4=0$
$\Rightarrow 4 x^{2}-8 x-2 x+4=0$
$\Rightarrow 4 x(x-2)-2(x-2)=0$
$\Rightarrow(4 x-2)(x-2)=0$
$\Rightarrow x=\frac{1}{2}$ or $x=2$
But as $x=\frac{1}{2}$ will make OC negative $\therefore x=2$
59. (D) Total cost price $=150 \times 10+100=₹ 1600$

Total selling price $=150 \times 12 \times 120$

$$
=\text { ₹ } 2160
$$

Profit = ₹ 2160 - ₹ $1600=₹ 560$
Profit $\%=\frac{560}{1600} \times 100=35 \%$
60. (D) Required remainder $=$ Remainder obtained by dividing 2^{2} by 5 .
Remainder $=4$
61. (B) Slant height of the cone,
$l=\sqrt{(12)^{2}+(5)^{2}}=13 \mathrm{~cm}$
Lateral surface of the solid = Curved surface of cone + Curved surface of cylinder + Surface area of bottom
$=\pi r l+2 \pi r h+\pi r^{2}$, where h is the height of the cylinder.
$=p r(l+h+r)=\left[\frac{22}{7} \times 12 \times(13+18+12)\right] \mathrm{cm}^{2}$
$=\left(\frac{22}{7} \times 12 \times 43\right) \mathrm{cm}^{2}=\left(\frac{11352}{7}\right) \mathrm{cm}^{2}$
$=1357 \frac{5}{7} \mathrm{~cm}^{2}$
62. (C) ATQ,
$\frac{x+\frac{1}{x}}{2}=16$
$\Rightarrow x+\frac{1}{x}=32$
Required average
$=\frac{x^{2}+\frac{1}{x^{2}}}{2}=\frac{\left(x+\frac{1}{x}\right)^{2}-2}{2}$
$=\frac{(32)^{2}-2}{2}=511$
63. (B) Pipe A is opened at 3 pm , pipe B at 4 pm and the pipe C at 5 am .
Part of the tank filled by pipe A in 2 hours $=\frac{2}{3}$
Part of the tank filled by pipe B in 1 hour $=\frac{1}{4}$
Part of the tank filled by pipe B in 1 hour $=\frac{1}{4}$
Part of the tank filled till 5 pm
$=\frac{2}{3}+\frac{1}{4}=\frac{8+3}{12}=\frac{11}{12}$
Remaining part $=1-\frac{11}{12}=\frac{1}{12}$
New part empited when A, B and C are opened $=\frac{1}{3}+\frac{1}{4}-1=\frac{4+3-12}{12}=\frac{-5}{12}$
$\therefore \frac{5}{12}$ Part is emptied in 1 hoiur
$\therefore \frac{11}{12}$ is emptied in $=\frac{12}{5} \times \frac{11}{12}$ $=\frac{11}{5}$ hours
\therefore Required time $=5+2 \frac{1}{5}=7: 12 \mathrm{pm}$
64. (B) Let the required distance $\mathrm{be}=x \mathrm{~km}$

Difference of time $=6+6=12$ minutes

$$
=\frac{1}{5} \mathrm{hr}
$$

ATQ,
$\frac{x}{\frac{5}{2}}-\frac{x}{\frac{7}{2}}=\frac{1}{5}$
$\Rightarrow \frac{2 x}{5}-\frac{2 x}{7}=\frac{1}{5}$
$\Rightarrow \frac{14 x-10 x}{35}=\frac{1}{5}$
$\Rightarrow \frac{4 x}{35}=\frac{1}{5} \Rightarrow x=\frac{35}{20}=\frac{7}{4} \mathrm{~km}$
65. (B) Average cost of 1 bag of rice
$=₹\left(\frac{7 \times 800+8 \times 1000+5 \times 1200}{7+8+5}\right)$
$=₹\left(\frac{5600+8000+6000}{20}\right)$
$=\frac{19600}{20}=₹ 980$
66. (D) Let 1 kg of each of the alloys A and B be mixed together.
In alloy A,
Quantity of gold $=\frac{5}{8} \mathrm{~kg}$
Quantity of copper $=\frac{3}{8} \mathrm{~kg}$
In alloy B,
Quantity of gold $=\frac{5}{16} \mathrm{~kg}$
Quantity of Copper $=\frac{11}{16} \mathrm{~kg}$
\therefore Required ratio $=\left(\frac{5}{8}+\frac{5}{16}\right):\left(\frac{3}{8}+\frac{11}{16}\right)$
$=\frac{15}{16}: \frac{17}{16}=15: 17$
67. (B) $\because \mathrm{PR}|\mid \mathrm{TS}$
$\therefore \angle \mathrm{PRQ}=\angle \mathrm{USR}=50^{\circ}$
In $\triangle \mathrm{PQR}$
$\angle \mathrm{PQR}=180^{\circ}-\left(50^{\circ}+60^{\circ}\right)=70^{\circ}$
$\therefore \angle \mathrm{TPU}=\angle \mathrm{PQR}=70^{\circ}$
$[\because \mathrm{PU}||\mathrm{RS}|| \mathrm{QS}]$
68. (A)

Number of days in which he was absent
$=\frac{40}{(33+7)} \times 7=7$ days
69. (C) LCM of 9,10 and $15=90$
\Rightarrow The multiple of 90 are also divisible by 9,10 or 15 .
$\therefore 21 \times 90=1890$ will be divisible by them
\therefore Now, 1897 will be the number that will give remainder 7 .
Required number $=1936-1897=39$
70. (B) Let the number be x.

Then,
$\frac{3}{4} x-\frac{3}{14} x=150$
$\Rightarrow \frac{21 x-6 x}{28}=150$
$\Rightarrow 15 x=28 \times 150$
$\Rightarrow x=\frac{28 \times 150}{15}=280$

Campus

KD Campus Pvt. Ltd

77. (C) Diameter of circle $=$ breadth of park $=$ 28 m
\therefore Radius of circle $=\frac{28}{2}=14 \mathrm{~m}$.
\therefore Area of circle $=\pi \mathrm{r}^{2}=\frac{22}{7} \times 14 \times 14$

$$
=616 \mathrm{~cm}^{2}
$$

Required area $=40 \times 28-616=504 \mathrm{~cm}^{2}$
78. (C) Area of $z=\frac{\pi 8^{3}}{3}$
$\therefore \pi r^{2}=\frac{\pi 8^{2}}{3} \Rightarrow r^{2}=\frac{8^{2}}{3}$
$\therefore \mathrm{r}=\frac{8}{\sqrt{3}}$

area of middle circle $=\frac{\pi 8^{2}}{3}$
$\therefore \pi \mathrm{R}^{2}-\pi \mathrm{r}^{2}=\frac{\pi 8^{2}}{3}$
$R^{2}-r^{2}=\frac{8^{2}}{3}$
$\therefore \mathrm{R}^{2}-\frac{8^{2}}{3}=\frac{8^{2}}{3}$
$\Rightarrow R^{2}=\frac{8^{2}}{3}+\frac{8^{2}}{3}=\frac{64}{3}+\frac{64}{3}=\frac{128}{3}$
$\therefore \mathrm{R}=\sqrt{\frac{128}{3}}=\frac{8 \sqrt{2}}{\sqrt{3}}$
\therefore The ratio of radii $=8: \mathrm{R}: \mathrm{r}$
$=8: \frac{8 \sqrt{2}}{\sqrt{3}}: \frac{8}{\sqrt{3}}$
$=1: \frac{\sqrt{2}}{\sqrt{3}}: \frac{1}{\sqrt{3}}=\sqrt{3}: \sqrt{2}: 1$
\therefore The ratio in acending order $=1: \sqrt{2}: \sqrt{3}$
79. (C) Installment (I) $=₹ 1210, R=10 \%$

We know (for two installment)
$I=\frac{\text { Principle }}{\left(\frac{100}{100+\mathrm{R}}\right)+\left(\frac{100}{100+\mathrm{R}}\right)^{2}}$

$$
\begin{aligned}
& \Rightarrow 1210=\frac{\text { Principle }}{\frac{10}{11}+\frac{100}{121}} \\
& \Rightarrow \text { Principle }=1210 \times\left(\frac{110+100}{121}\right) \\
& =\frac{1210 \times 210}{121}
\end{aligned}
$$

$$
\text { Principle = ₹ } 2100
$$

80. (A)

On solving equation (i) and (ii)
$10 w=700-440=260$
$\therefore 1 \mathrm{w}=\frac{260}{10}=₹ 26$
Now, $5 \mathrm{~m}+5 \mathrm{w}=220$
$5 \mathrm{~m}+5 \times 26=220$
$\therefore 1 \mathrm{~m}=\frac{220-130}{5}=\frac{90}{5}=₹ 18$
Now, the required number of days
$=\frac{1060}{(6 \times 18+4 \times 26)}=\frac{1060}{212}=5$ days
81. (C) Let the share of $\mathrm{B}=₹ x$

Then share of $\mathrm{A}=₹(3903-x)$
ATQ,
$(3903-x)\left(1+\frac{4}{100}\right)^{7}=x\left(1+\frac{4}{100}\right)^{9}$
$\Rightarrow(3903-x)=x\left(\frac{26}{25}\right)^{2}=\frac{676 x}{625}$
$\Rightarrow 3903 \times 625-625 x=676 x$
$\Rightarrow 1301 x=3903 \times 625$
$\Rightarrow x=\frac{3903 \times 625}{1301}=₹ 1875$
\therefore Share of B = ₹ 1875
82. (B) $\mathrm{SI}=₹(7200-6000)=₹ 1200$
$\therefore \mathrm{SI}=\frac{\mathrm{PRT}}{100} \Rightarrow 1200=\frac{6000 \times \mathrm{R} \times 4}{100}$
$\Rightarrow R=\frac{1200 \times 100}{6000 \times 4}=5 \%$
New rate $(R)=5 \times 1.5=7.5 \%$
Then, SI $=\frac{6000 \times 7.5 \times 5}{100}=₹ 2250$
\therefore Amount $=₹(6000+2250)=₹ 8250$
83. (D)
84. (B) Let the expenditure $=x$

In 2002,
$65=\frac{\mathrm{I}_{1}-x}{x} \times 100 \Rightarrow \frac{65 x}{100}+x=\mathrm{I}_{1}$
$\Rightarrow I_{1}=\frac{165 x}{100}$
and, in 2005,
$75=\frac{\mathrm{I}_{2}-x}{x} \times 100 \Rightarrow \frac{75 x}{100}+x=\mathrm{I}_{2}$
$\Rightarrow I_{2}=\frac{175 x}{100}$
\therefore Required ratio $=\frac{\frac{165 x}{100}}{\frac{175 x}{100}}=33: 35$
85. (A) Required Average profit
$=\frac{50+65+45+70+75+60}{6}$
$=\frac{365}{6}=60 \frac{5}{6}$
86. (C)
87. (B) As, $(1)^{3} \times 8=8$

Similarly, $(3)^{3} \times 8=\mathbf{2 1 6}$
88. (A) As, 14

$$
\frac{14}{14 \times 3+14 \div 2} \frac{49}{\uparrow}
$$

Similarly, $\frac{18}{18 \times 3+18 \div 2 \overbrace{}^{\frac{63}{1}}}$
89. (B)

$$
\frac{64}{(6+4) \times 4}
$$

Similarly

$$
\frac{56}{[(5+6) \times 4}
$$

90. (D) As, SURE $\xrightarrow{4 \times 3+3} 15$

Similarly, SCHOOL $\xrightarrow{6 \times 3+3} \mathbf{2 1}$
91. (D) Amjad Ali Khan, is a Sarod player. While all others are Tabla player.
92. (C) Except 492765831, all others are written with the help of 8 digits.
93. (A) Except 181, all others are divisible by 13.
94. (D) Except PHRASE, in all others vowel A used two times.
95. (B)

96. (B) As, 54-32 = 22

Similarly, 48-26=22
97. (A) As, $\frac{-2+0}{2}=-1$
and, $\frac{-1+1}{2}=0$
Similarly, $\frac{10+2}{2}=\mathbf{6}$
98. (D)
99. (B)
100. (C) Seventh letter from the left is A and third letter to its right is \mathbf{k}.
101. (D) From figure,

\therefore

can't be made by the question fig-
ure.
102. (C)
103. (C)
104. (A)

105. (B)

106. (B)

107. (C)
108. (C)

109. (D) mopn/mopn/mopn/mopn
110. (C)

I. \checkmark
II. \checkmark

Hence, both conclusion follow.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

111. (A)
112. (D) As, S E Q U E N C E
$\frac{\downarrow \text { Opp. }}{\text { H V J F V M X V }}$

Similarly,
C H I L D R E N

113. (B) $1,12,7,5,2,18,1$ $\begin{array}{lllllll}\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \mathbf{A} & \mathbf{L} & \mathbf{G} & \mathbf{E} & \mathbf{B} & \mathbf{R} & \mathbf{A}\end{array}$
114. (C)
115. (B) $36-6+3+3 \times 5 \div 3=74$
116. (D) After changing the signs,

$$
\begin{aligned}
& 36 \times 6 \div 3+5-3=74 \\
\Rightarrow & 72+5-3=74 \\
\Rightarrow & \mathbf{7 4}=\mathbf{7 4}
\end{aligned}
$$

117. (B)
118. (A)
119. (B)
120. (D)

Answer key

1. (D)	16. (C)	31. (C)	46. (C)	61. (B)	76. (D)	91. (D)	106. (B)
2. (D)	17. (C)	32. (D)	47. (D)	62. (C)	77. (C)	92. (C)	107. (C)
3. (A)	18. (A)	33. (B)	48. (C)	63. (B)	78. (C)	93. (A)	108. (C)
4. (D)	19. (A)	34. (D)	49. (C)	64. (B)	79. (C)	94. (D)	109.(D)
5. (C)	20. (D)	35. (D)	50. (D)	65. (B)	80. (A)	95. (B)	110.(C)
6. (C)	21. (B)	36. (A)	51. (B)	66. (D)	81. (C)	96. (B)	111.(A)
7. (D)	22. (A)	37. (B)	52. (D)	67. (B)	82. (B)	97. (A)	112.(D)
8. (C)	23. (B)	38. (A)	53. (D)	68. (A)	83. (D)	98. (D)	113.(B)
9. (C)	24. (B)	39. (C)	54. (C)	69. (C)	84. (B)	99. (B)	114. (C)
10. (A)	25. (B)	40. (B)	55. (B)	70. (B)	85. (A)	100.(C)	116.(D)
11. (A)	26. (C)	41. (A)	56. (C)	71. (D)	86. (C)	101.(D)	117.(B)
12. (C)	27. (A)	42. (A)	57. (C)	72. (A)	87. (B)	102. (C)	115.(B)
13. (B)	28. (C)	43. (C)	58. (B)	73. (A)	88. (A)	103. (C)	118.(A)
14. (C)	29. (D)	44. (B)	59. (D)	74. (B)	89. (B)	104.(A)	119.(B)
15. (D)	30. (D)	45. (A)	60. (D)	75. (D)	90. (D)	105.(B)	120.(D)

Note:- If your opinion differs regarding any answer, please message the mock test
and question number to 8860330003
Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

