RPF MOCK TEST - 10 (SOLUTION)

51. (B)

$\mathrm{OC}=3 \mathrm{~cm}$
$\mathrm{OA}=6 \mathrm{~cm}$
$\therefore \mathrm{AC}=\sqrt{6^{2}-3^{2}}$
$\Rightarrow A C=\sqrt{36-9}$
$\Rightarrow \mathrm{AC}=\sqrt{27}=3 \sqrt{3}$
$\Rightarrow A B=6 \sqrt{3} \mathrm{~cm}$
52. (C) Let CP of article be x

SP at 15% gain $=\frac{115 x}{100}=\frac{23 x}{20}$
New CP $=₹ \frac{90 x}{100}$
New $S P=₹ \frac{90 x}{100} \times \frac{125}{100}=₹ \frac{9 x}{8}$
ATQ,
$\frac{23 x}{20}-\frac{9 x}{8}=4$
$\Rightarrow \frac{46 x-45 x}{40}=4$
$\Rightarrow x=40 \times 4=₹ 160$
53. (A) ATQ,
$a_{4}=a+(4-1) \times d$
$\Rightarrow 16=a+3 d$
$\Rightarrow a=16-3 d \ldots .$. (i)
Also, $80=\mathrm{a}+11 \mathrm{~d}$
After putting the value of a from equation (i) in equation (ii),
$\Rightarrow 16-3 d+11 d=80$
$\Rightarrow 8 \mathrm{~d}=80-16=64$
$\Rightarrow d=8$
$\Rightarrow a=16-24=-8$
54. (C) Let large number $=x$

Smaller number $=520-x$
ATQ,
$\frac{96 x}{100}=\frac{(520-x)}{100} \times 112$
$\Rightarrow 96 x=520 \times 112-112 x$
$\Rightarrow 112 x+96 x=520 \times 112$
$\Rightarrow 208 x=520 \times 112$
$\Rightarrow x=\frac{520 \times 112}{208}=280$
\therefore Smaller number $=520-280=240$
55. (B) Let the CP of each shirt be ₹ 100 , then SP = ₹ 140
\therefore New SP $=\frac{140 \times 90}{100}=₹ 126$
\therefore When SP is ₹ 126
$\mathrm{CP}=₹ 100$
\therefore When SP is $\frac{13608}{72}$
then, $\mathrm{CP}=\frac{100}{126} \times \frac{13608}{72}=₹ 150$
56. (D) Let the first investment be $3 x$

Then, second investment be $5 x$ combined loss \%
$=\frac{3 x \times \frac{15}{100}-5 x \times \frac{10}{100}}{3 x+5 x} \times 100$
$=\frac{\frac{45 x}{100}-\frac{50 x}{100}}{8 x} \times 100$
$=\frac{-5 x}{8 x \times 100} \times 100$
$=\frac{-5}{8}$ percent or $\frac{5}{8} \%$ loss $\quad[-$ ve sign shows loss.]
57. (C) ATQ,
$x^{2}+4 y^{2}+z^{2}-2 x-4 y-2 z+3=0$
$\Rightarrow x^{2}-2 x+1+4 y^{2}-4 y+1+z^{2}-2 z+1=0$
$\Rightarrow(x-1)^{2}+(2 y-1)^{2}+(z-1)^{2}=0$
$\Rightarrow x-1=0 \Rightarrow x=1$
$2 y-1=0 \Rightarrow y=\frac{1}{2}$
$z-1=0 \Rightarrow z=1$
$\Rightarrow x+y+z=1+\frac{1}{2}+1=2 \frac{1}{2}$
58. (A) ATQ,
$x=\sqrt{2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4 \ldots \ldots}}}}$
On squaring,
$x^{2}=2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4 \ldots \ldots .}}}$
On cubing,
$x^{6}=8 \times 4 x$
$\Rightarrow x^{5}=32=2^{5} \Rightarrow x=2$
59. (C) Let the merchant bought 100 metres of cloth for ₹ 100
\therefore Total SP $=₹\left(\frac{50 \times 140}{100}+\frac{25 \times 60}{100}+25\right)$
$=₹(70+15+25)=₹ 110$
\therefore Gain percent $=10 \%$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
60. (B) $(2$ men +3 women $) \times 10$
$=(3$ men +2 women $) \times 8$
$\Rightarrow 20$ men +30 women
$=24$ men +16 women
$\Rightarrow 4$ men $=14$ women
$\Rightarrow 2$ men $=7$ women
$\therefore 2$ men +3 women $=10$ women
$\therefore 2$ men +1 women $=8$ women
$\therefore \mathrm{M}_{1} \mathrm{D}_{1}=\mathrm{M}_{2} \mathrm{D}_{2}$
$\Rightarrow 10 \times 10=8 \times \mathrm{D}_{2}$
$\Rightarrow \mathrm{D}_{2}=\frac{25}{2}=12 \frac{1}{2}$ days
61. (B) ATQ,
$\frac{\mathrm{SI}}{\mathrm{CI}}=\frac{r t}{100\left[\left(1+\frac{r}{100}\right)^{t}-1\right]}$
$=\frac{4 \times 2}{100\left[\left(1+\frac{4}{100}\right)^{2}-1\right]}=\frac{2}{25\left(\frac{676}{625}-1\right)}$
$=\frac{2 \times 625}{25 \times 51}$
$\frac{\mathrm{SI}}{\mathrm{CI}}=\frac{50}{51}=50: 51$
62. (C) Let the first CP of the commodity be ₹ 100
\therefore First $\mathrm{SP}=₹ 110$
Second CP = ₹ 90
Gain $=\frac{50}{3} \%$
\therefore Second $\mathrm{SP}=\left(100+\frac{50}{3}\right) \%$ of ₹ 90
$=\left(90 \times \frac{350}{300}\right)=₹ 105$
Difference of SP = ₹ $(110-105)=₹ 5$
\because If the difference is ₹ 5 , then $\mathrm{CP}=₹ 100$
\therefore If the difference be ₹ 2
then, $\mathrm{CP}=\frac{100}{5} \times 2=₹ 40$
63. (B) For first 6 year
$\frac{x \times r \times 6}{100}=₹ 250$
Next 6 year, principle is double i.e.
$\frac{2 x \times r \times 6}{100}=2 \times 250=₹ 500$
\Rightarrow Total interest at the end of 12 years
is $250+500=₹ 750$

Campus

KD Campus Pvt. Ltd

69. (A) Let the duration of flight be t hours.
$S=\frac{D}{T}$
And, $\mathrm{S}_{1}-\mathrm{S}_{2}=200 \mathrm{~km} / \mathrm{h}$
ATQ,
$\frac{600}{t}-\frac{600}{t+\frac{1}{2}}=200$
$\Rightarrow(2 \mathrm{t}+1) 600-\mathrm{t} \times 1200=200 \mathrm{t}(2 \mathrm{t}+1)$
$\Rightarrow 3(2 \mathrm{t}+1)-6 \mathrm{t}=2 \mathrm{t}^{2}+\mathrm{t}$
$\Rightarrow 2 \mathrm{t}^{2}+\mathrm{t}-3=0$
$\Rightarrow 2 \mathrm{t}^{2}+3 \mathrm{t}-2 \mathrm{t}-3=0$
$\Rightarrow \mathrm{t}(2 \mathrm{t}+3)-1(2 \mathrm{t}+3)=0$
$\Rightarrow(2 \mathrm{t}+3)(\mathrm{t}-1)=0 \Rightarrow \mathrm{t}=-3,1$
$\mathrm{t}=1 \mathrm{hr}$ (ignore the -ve value of t)
70. (A) ATQ,
$x+y=2 z$
$\Rightarrow x=2 z-y$
$\Rightarrow x-z=2 z-y-z=z-y$
$\therefore \frac{x}{x-z}+\frac{z}{y-z}=\frac{x}{x-z}-\frac{z}{z-y}$
$=\frac{x}{x-z}-\frac{z}{x-z}=\frac{x-z}{x-z}=1$
71. (D) Let the person buy 30 pencils.
(as LCM of $6 \& 5$ is 30)
CP of 6 pencils = ₹ 5
CP of 30 pencils $=\frac{5}{6} \times 30=₹ 25$
SP of 6 pencils = ₹ 6
SP of 30 pencils $=\frac{6}{5} \times 30=₹ 36$
\therefore Gain $=₹(36-25)=11$
Gain percent $=\frac{11}{25} \times 100=44 \%$
72. (C) ATQ,

$$
\begin{aligned}
& =\sqrt{\frac{\sqrt{36}-\sqrt{24}+\sqrt{24}-\sqrt{16}}{5+\sqrt{24}}} \\
& =\sqrt{\frac{6-4}{5+\sqrt{24}}}=\sqrt{\frac{2}{5+\sqrt{24}}}=\sqrt{\frac{2}{5+\sqrt{6 \times 4}}} \\
& =\sqrt{\frac{2}{5+2 \sqrt{6}}}=\sqrt{\frac{2}{5+2 \sqrt{6}} \times \frac{5-2 \sqrt{6}}{5-2 \sqrt{6}}} \\
& =\sqrt{\frac{2(5-2 \sqrt{6})}{25-24}}=\sqrt{2(5-2 \sqrt{6})} \\
& =\sqrt{\left[2(\sqrt{3})^{2}+(\sqrt{2})^{2}-2 \sqrt{3} \sqrt{2}\right]} \\
& =\sqrt{2(\sqrt{3}-\sqrt{2})^{2}}=\sqrt{2}(\sqrt{3}-\sqrt{2})=\sqrt{6}-2
\end{aligned}
$$

73. (A) LCM of $18,36,45$ and $60=180$

Now, $\frac{17}{18}=\frac{17 \times 10}{18 \times 10}=\frac{170}{180}$
$\frac{31}{36}=\frac{31 \times 5}{36 \times 5}=\frac{155}{180}$
$\frac{43}{45}=\frac{43 \times 4}{45 \times 4}=\frac{172}{180}$
$\frac{59}{60}=\frac{59 \times 3}{60 \times 3}=\frac{172}{180}$
Since, $155<170<172<177$,
So, $\frac{155}{180}<\frac{170}{180}<\frac{172}{180}<\frac{177}{180}$
Hence, $\frac{31}{36}<\frac{17}{18}<\frac{43}{45}<\frac{59}{60}$
74. (B) Let the age of Manoj $=x$ and the age of Manoj's father $=5 x$
ATQ,
$x+16-\frac{3}{7}(5 x+16)$
$\Rightarrow 7 x+112=15 x+48$
$\Rightarrow 8 x=64$
$\Rightarrow x=8$
\therefore Age Manoj's father $=8 \times 5=40$ years
75. (C) ATQ,

Interior angle - exterior angle $=60^{\circ}$
$\frac{(n-2) \times 180}{n}-\frac{360}{n}=60$
$\Rightarrow \frac{1}{n}[(n-2) \times 180-360]=60$
$\Rightarrow \frac{1}{n}[180 n-360-360]=60$
$\Rightarrow \frac{1}{n}[180 n-720]=60$
$\Rightarrow 180 n-720=60 n$
$\Rightarrow 120 n=720$
$\Rightarrow n=\frac{720}{120}=6$
76. (B) Let the highest score be x.

Then, lowest score $=(x-150)$
Then, $(50 \times 40)-[x+(x-150)]=38 \times 48$
$\Rightarrow 2 x=2000+150-1824$
$\Rightarrow 2 x=326$
$\Rightarrow x=163$
77. (B) Let capacity of container $=x$

ATQ,
$\frac{x \times 80}{100}\left(1-\frac{5}{x}\right)\left(1-\frac{15}{x}\right)=\frac{x+15}{100}$
$\Rightarrow 16\left(1-\frac{5}{x}\right)\left(1-\frac{15}{x}\right)=11$
$\Rightarrow 16\left(x^{2}-20 x+75\right)=11 x^{2}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$
\begin{aligned}
& \Rightarrow 16 x^{2}-320+1200=11 x^{2} \\
& \Rightarrow 5 x^{2}-320+1200=0 \\
& \Rightarrow x^{2}-64 x-240=0 \\
& \Rightarrow(x-60)(x-4)=0 \\
& \Rightarrow x=60
\end{aligned}
$$

78. (A) ATQ,
$5 \tan \theta=4 \Rightarrow \tan \theta=\frac{4}{5}=\frac{\text { Perpendicular }}{\text { Base }}$
Now, $\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+3 \cos \theta}=\frac{5 \tan \theta-3}{5 \tan \theta+3}$
$=\frac{5 \times \frac{4}{5}-3}{5 \times \frac{4}{5}+3}=\frac{1}{7}$
79. (D) Let the third proportional to $\left(x^{2}-y^{2}\right)$ and $(x-y)$ be z, then

$$
\begin{aligned}
& \left(x^{2}-y^{2}\right):(x-y)::(x-y): z \\
& \Rightarrow\left(x^{2}-y^{2}\right) \times z=(x-y)^{2} \\
& \Rightarrow z=\frac{(x-y)^{2}}{\left(x^{2}-y^{2}\right)}=\frac{(x-y)}{(x+y)}
\end{aligned}
$$

80. (C) ATQ,

Volume of the new cube = sum of volumes of all five cubes
$\therefore a^{3}=a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}+a_{5}^{3}$
or, $a=\sqrt[3]{a_{1}^{3}+a_{2}^{3}+a_{3}^{3}+a_{4}^{3}+a_{5}^{3}}$
$=\sqrt[3]{9^{3}+6^{3}+3^{3}+3^{3}+1^{3}} \mathrm{~cm}$
$=\sqrt[3]{729+216+27+27+1} \mathrm{~cm}=\sqrt[3]{1000} \mathrm{~cm}$
$=10 \mathrm{~cm}$
81. (D) Required average number of students
$=\frac{460+420+350+400+350}{5}$
$=396$
82. (A) Required percentage $=\frac{360+250}{320+300} \times 100$
= 98.39\%
83. (C) Required percentage

$$
\begin{aligned}
& =\frac{500 \times 100}{250+300+320+500+350} \\
& =29.06 \%
\end{aligned}
$$

84. (A) Required ratio $=350+400: 400+350$

$$
=1: 1
$$

85. (C) Required avereage
$=\frac{300+350+350+220+320}{5}$
$=308$
86. (C) Total number of IITs in India is 23 and the total number of NITs in India is $\mathbf{3 1}$.
87. (A)
88. (A) As, $36-81 \Rightarrow 36+3^{2}+6^{2}=81$

Similarly, $54-\mathbf{9 5} \Rightarrow 54+5^{2}+4^{2}=\mathbf{9 5}$
89. (A) As, $\frac{1+8+7+8}{4}=4$

Similarly, $\frac{9+7+2}{3}=\mathbf{6}$
90. (B) Sushma Sawraj is the minister of external affairs and Parkash javadekar is the minister of Human resource development.
91. (D) Except Hydrabad, all others are the world heritage cities.
92. (D) Number of heritage sites in Bihar is 2. While in all others, the total number of heritage site is 3 .
93. (C) $12-42 \Rightarrow 2 \times 2,1 \times 2 \Rightarrow 42$
$24-84 \Rightarrow 4 \times 2,2 \times 2 \Rightarrow 84$
$23-68 \Rightarrow 3 \times 2,2 \times 2 \Rightarrow \mathbf{6 4} \neq 68$
$31-26 \Rightarrow 1 \times 2,3 \times 2 \Rightarrow 26$
94. (B) Execpt CFIN, in all other is added next letter to get the next one letter.
95. (B) Ecept 961, all others are made of odd digits only.
96. (C) As, $9+12-10=11$
and, $12+16-17=11$
Similarly,
$6+11-6=11$
97. (A) As, $\sqrt{9}+\sqrt{16}-\sqrt{4}=\sqrt{25}$
and, $\sqrt{9}+\sqrt{4}-\sqrt{1}=\sqrt{\mathbf{1 6}}$
Similalry,
$\sqrt{49}+\sqrt{36}-\sqrt{25}=\sqrt{64}$
98. (B)
99. (A)

100. (D) Let the prestn age of Vipin $=x$ years
\therefore Present age of Vipin's father $=3 x$
ATQ,
$3(3 x-6)=72$
$\Rightarrow 9 x=90$
$\Rightarrow x=10$
\therefore Present age of Vipin $=\mathbf{1 0}$ years
101. (B)
102. (A)
103. (D)
104. (D)

105. (A)

106. (A) $(4)^{2},(4+4)^{2},(8+4)^{2},(12+8)^{2},(20+8)^{2}$ $=784$
107. (B) $54 \div 6+3>6+3$
$\Rightarrow 12>9$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
108. (A)

109. (A) $\mathbf{a b c} / \mathbf{b c a} / \mathbf{c a b} / \mathbf{a b c} / \mathbf{b} \mathbf{c a}$
110. (A)

Hence, only conclusion (I) follows.
111. (C) As, $8 \times 7-8-7=41$
and, $9 \times 8-9-8=55$
Similarly,
$7 \times 6-7-6=29$
112. (C) As, $8 \times 7-7 \times 2=42$
and, $7 \times 6-6 \times 2=30$
Similarly,
$9 \times 8-8 \times 2=\mathbf{5 6}$
113. (B) Required time $=18: 30-11: 25$
$=7: 05$
Hence, water image of $11: 25$ is $7: 05$.
114. (C)
115. (C)
116. (B)

Hence, his face is in South-East Direction.
117. (D) Let number of students who belong to both club $=x$
ATQ,
$(25-x)+(21-x)=34$
$\Rightarrow 46-2 x=34$
$\Rightarrow x=6$
118. (C)
119. (B)
120. (B) Total number of triangles $=\mathbf{1 6}$

Answer key

1. (A)	16. (D)	31. (A)	46. (A)	61. (B)	76. (B)	91. (D)	106. (A)
2. (C)	17. (C)	32. (C)	47. (D)	62. (C)	77. (B)	92. (D)	107.(B)
3. (D)	18. (D)	33. (B)	48. (B)	63. (B)	78. (A)	93. (C)	108. (A)
4. (A)	19. (D)	34. (A)	49. (D)	64. (B)	79. (D)	94. (B)	109.(A)
5. (B)	20. (A)	35. (D)	50. (B)	65. (C)	80. (C)	95. (B)	110.(A)
6. (C)	21. (C)	36. (D)	51. (B)	66. (C)	81. (D)	96. (C)	111.(C)
7. (C)	22. (B)	37. (B)	52. (C)	67. (B)	82. (A)	97. (A)	112.(C)
8. (B)	23. (B)	38. (B)	53. (A)	68. (B)	83. (C)	98. (B)	113.(B)
9. (A)	24. (A)	39. (B)	54. (C)	69. (A)	84. (A)	99. (A)	114. (C)
10. (D)	25. (A)	40. (A)	55. (B)	70. (A)	85. (C)	100.(D)	115. (C)
11. (D)	26. (B)	41. (B)	56. (D)	71. (D)	86. (C)	101.(B)	116.(B)
12. (A)	27. (A)	42. (D)	57. (C)	72. (C)	87. (A)	102.(A)	117.(D)
13. (C)	28. (C)	43. (D)	58. (A)	73. (A)	88. (A)	103.(D)	118.(C)
14. (A)	29. (C)	44. (B)	59. (C)	74. (B)	89. (A)	104.(D)	119.(B)
15. (C)	30. (B)	45. (D)	60. (B)	75. (C)	90. (B)	105. (A)	120.(B)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

