RPF MOCK TEST - 9 (SOLUTION)

51. (B) $\%$ change $=\frac{R}{100 \pm R} \times 100 \%$

Required fraction $=\frac{60}{(100+60)}=\frac{3}{8}$
52. (D) Let CP of article $=100$

Profit \% = 30\%
CP of article $=\frac{8840 \times 100}{130}=₹ 6800$
\therefore Lebel price of article $=\frac{6800 \times 100}{85}$
$=₹ 8000$
53. (A) Let CP of first cycle $=x$

ATQ,
$\frac{x \times 124}{100}+\frac{(2400-x) \times 116}{100}-\frac{x \times 116}{100}$
$-\frac{(2400-x) \times 124}{100}=24$
$\Rightarrow 124 x+278400-116 x-116 x-$
$297600+124 x=2400$
$\Rightarrow 16 x=19200+2400$
$\Rightarrow x=1350$
\therefore Cost price of second cycle $=1600-1350$

$$
\text { = ₹ } 1050
$$

\therefore Required difference $=1350-1050=₹ 300$
54. (C) CP of motor car $=₹ 24,600$

MP of motor car $=₹ 24,600 \times \frac{100}{82}$

$$
=₹ 30,000
$$

After successive discount, CP
$=30,000 \times \frac{92}{100} \times \frac{88}{100}=₹ 24288$
55. (A) Let the numbers x and y.

ATQ,
$6 y-x=129$
$y+7 x=86$
On solving equation (i) and (ii),
$x=9$ and $\mathrm{y}=23$
\therefore Required difference $=23-9=14$
56. (C) Remaining amount

$$
\begin{aligned}
& =52,000-(9000+27000) \\
& =₹ 14000
\end{aligned}
$$

ATQ,
$\frac{9000}{100} \times \frac{20}{3} \times 1+\frac{27000 \times 25}{100 \times 3} \times 1+$
$\frac{14000 \times \mathrm{R}}{100}=4600$
$\Rightarrow \frac{180000}{300}+\frac{675000}{300}+\frac{14000 \mathrm{R}}{100}=4600$
$\Rightarrow \frac{14000 \mathrm{R}}{100}=4600-2850$
$\Rightarrow 140 \mathrm{R}=1750$
Hence, Required rate $=12 \frac{1}{2} \%$
57. (C)

58. (C) ATQ,
$25 \%=\frac{25}{100}=\frac{1}{4}$
Let principal - 1000
First years $=250$
second years $=250+62.5$
Now, 22.5 unit $=62.5$
\therefore Principal $=\frac{525}{62.5} \times 1000=₹ 8400$
Now, Interest is half-yearly
then, rate $=12 \frac{1}{2} \%$
and, time $=4$ years
$12 \frac{1}{2} \%=\frac{25}{200}=\frac{1}{8}$
Now, Principal $=8400$
1 st year $=1050$
2 nd year $=1050+131.25$
3rd year $=1050+131.25+131.25+$ 16.41

4th year $=1050+131.25+131.25+$ $131.25+16.41+16.41+16.41+2.05$
\therefore Required difference $=₹ 445$
59. (D) ATQ,

SP of the mixture = ₹ 30
CP of the mixture $=30 \times \frac{100}{120}=₹ 25$
Ratio of water to chemical $=36-25: 25$

$$
=11: 25
$$

60. (B) ATQ,
$\frac{6 x}{10}+\frac{5 x}{4}+\frac{3 x}{2}=268$
$\Rightarrow \frac{12 x+25 x+30 x}{20}=268$
$\Rightarrow x=80$
$\therefore 25$ paise coins are $=80 \times 5=400$

KD Campus Pvt. Ltd

61. (B) $(3+\sqrt{2}): x:(12-\sqrt{32})$
$\mathrm{a}: \mathrm{b}: \mathrm{c}$
mean propertion
$b^{2}=a \times c$
$=\sqrt{(3+\sqrt{2}) \times(12-\sqrt{32})}$
$=\sqrt{(3+\sqrt{2}) \times(12-4 \sqrt{2}) \sqrt{28}}=2 \sqrt{7}$
62. (D) A can do the work in $\frac{5 \times 3}{2}=\frac{15}{2}$ day B complete 1 work in $=\frac{9 \times 5}{3}=15$ days C complete work in $=8 \times \frac{2}{1}=16$ days

$A+B+C$ one day work $=63$ units
\Rightarrow They will complete the whole work
in $=3+\frac{240-(63 \times 3)}{15}=6 \frac{2}{5}$ days
63. (C) Let additional men be x
$\frac{35 \times 27}{\frac{1}{3}}=\frac{(27+x) \times 9}{\frac{2}{3}}$
$\Rightarrow x=183$
64. (B) $\mathrm{A}-4$

Hence, leakage will empty the fully filled tank $=\frac{68}{1}=68 \mathrm{hrs}$
65. (A) Let total capacity $=42$ units
$\therefore(A+B+C)$ per hour work $=\frac{42}{6}$

$$
=7 \text { units }
$$

$A+B=\frac{28}{7}=4$ units $/ h r$
$\therefore \mathrm{C}$ can alone fill the cistern in $=\frac{42}{(7-4)}$

$$
=14 \mathrm{hrs}
$$

66. (D) Difference of the length of the objects which is crossed by train and the result is divided by difference of time
Speed of train $=\frac{(230-140)}{(23-18)}=18 \mathrm{~m} / \mathrm{s}$
$=18 \times \frac{18}{5}=64.8 \mathrm{~km} / \mathrm{hr}$
67. (D) Relative speed of the two trains
$=(62+46) \times \frac{5}{18}=30 \mathrm{~m} / \mathrm{s}$
and, Distance travelled in 14 sec . at 30 $\mathrm{m} / \mathrm{s}=30 \times 14=420 \mathrm{~m}$

Length of first train $=420 \times \frac{2}{3}=280 \mathrm{~m}$
Distance travelled by first train in 54 sec
$=62 \times \frac{5}{18} \times 54=930 \mathrm{~m}$
Length of platform $=930-280=650 \mathrm{~m}$
68. (C) Let distance $=x \mathrm{~km}$

ATQ,
$\frac{x}{28}+\frac{x}{12}=5$
$\Rightarrow \frac{3 x+7 x}{84}=5$
$\Rightarrow 10 x=84 \times 5$
$\Rightarrow x=\frac{84 \times 5}{10}=42 \mathrm{~km}$
69. (D) As we know
$(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{1}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
$\Rightarrow\left(\frac{24}{7}, 2\right)=\left(\frac{7 \times 2+2 \times 5}{2+5}, \frac{6 \times 5+2 \times y}{2+5}\right)$
On comparison the value of y coordinate
$\Rightarrow \frac{30+2 y}{7}=2 \Rightarrow \mathrm{y}=-8$
70. (C) Let the number of friend's in begining $=x$ ATQ,

$$
\begin{aligned}
& \frac{117}{(x-4)}-\frac{117}{x}=4 \\
& \Rightarrow \frac{117 x-117 x+468}{x(x-4)}=4 \\
& \Rightarrow 117=x^{2}-4 x \\
& \Rightarrow x^{2}-13 x+9 x-117=0 \\
& \Rightarrow(x-13)(x+9)=0 \\
& \Rightarrow x=13
\end{aligned}
$$

$$
\therefore \text { Required number }=13-4=9
$$

71. (D) ATQ,

$$
\begin{aligned}
& \left(\frac{2}{3} \times \frac{13}{4}\right)-\frac{3}{4} \times\left(\frac{9}{4}-\frac{5}{3}\right) \\
& =\left(\frac{2}{3} \times \frac{13}{4}\right)-\frac{3}{4} \times\left(\frac{27-20}{12}\right) \\
& =\frac{13}{6}-\frac{3}{4} \times \frac{7}{12} \\
& =\frac{13}{6}-\frac{7}{16} \Rightarrow \frac{104-21}{48}=\frac{83}{48}
\end{aligned}
$$

KD Campus Pvt. Ltd

72. (B) We know that,
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+\right.$
$\left.c^{2}-a b-b c-c a\right)$
$=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b c)^{2}+(c-a)^{2}\right]$
$=\frac{1}{2}(53+55+57)\left[(-2)^{2}+(-2)^{2}+(4)^{2}\right]$
$=1320$
73. (A) We know that,
$x+\frac{1}{x}=1$
$\therefore x^{3}+1=0$
$\Rightarrow x=-1$
$\therefore x^{53}+\frac{1}{x^{53}}=(-1)^{53}+\frac{1}{(-1)^{53}}=-2$
74. (A) ATQ,
$=2+\frac{1}{1+\frac{2}{2+\frac{3}{3+\frac{2}{5}}}}$
$=2+\frac{1}{1+\frac{2}{2+\frac{15}{17}}}$
$=2+\frac{1}{1+\frac{34}{49}}$
$=2+\frac{49}{83}=\frac{215}{83}$
75. (A) It is possible when there are 5 sundays in the month starting from 2 of that month. In that case of 3 even dates will be sunday on $2,9,16,23,30$. So, 17 will be monday
76. (D) Let the average expenditure $=₹ x$ ATQ,
$\Rightarrow 45 \times x+45=54(x-1)$
$\Rightarrow 45 x+45=54 x-54$
$\Rightarrow 9 x=99$
$\Rightarrow x=11$
\therefore Initial expenditure $=45 \times 11=₹ 495$
77. (A) Let the present age of son $=x$ years
and, the father's age $=4 x+4$
ATQ,
$3(x+4)+12=4 x+4+4$
$\Rightarrow 3 x+12+12=4 x+8$
$\Rightarrow 3 x+24=4 x+8$
$\Rightarrow x=16$
\therefore Father's present age $=4 x+4$
$=4 \times 16+4=68$ years
78. (A) Let fraction is $\frac{x}{y}$

ATQ,
$\therefore \frac{x-4}{y+1}=\frac{1}{6}$
$\Rightarrow 6 x-24=y+1$
$\Rightarrow 6 x-y-25=0$
Again, $\frac{x+2}{y+1}=\frac{1}{3}$
$\Rightarrow 3 x+6=y+1$
$\Rightarrow 3 x-y+5=0$
On solving equation (i) and (ii), and, $\mathrm{y}=35$
$\therefore \frac{x}{y}=\frac{10}{35}=\frac{2}{7}$
\therefore Required LCM
$=2 \times 7=14$
79. (A) Greatest prime number $=199$

Least prime number 2
\therefore Required difference $=199-2=197$
80. (B) ATQ,
$R+r=15$
$\Rightarrow(\mathrm{R}+\mathrm{r})^{2}=225$
$\Rightarrow R^{2}+r^{2}+2 R r=225$
$\Rightarrow R^{2}+r^{2}=225-2 R r$
and, $\frac{4}{3} \pi \mathrm{R}^{3}+\frac{4}{3} \pi \mathrm{r}^{3}=1760$
$\Rightarrow R^{3}+r^{3}=\frac{1760 \times 3 \times 7}{22 \times 4}$
$\Rightarrow(\mathrm{R}+\mathrm{r})\left(\mathrm{R}^{2}+\mathrm{r}^{2}-\mathrm{Rr}\right)=420$
$\Rightarrow 15 \times(225-2 R r-R r)=420$
$\Rightarrow 225-3 \mathrm{Rr}=28$
$\Rightarrow 3 \mathrm{Rr}=225-28=197$
$\Rightarrow \mathrm{Rr}=\frac{197}{3}=65 \frac{2}{3}$
81. (B) Radius of semi-circular sheet $=r$
$\Rightarrow \frac{28}{2}$
$\mathrm{r}=14 \mathrm{~cm}$
Circumference of sheet $=\pi r$

$$
=14 \pi \mathrm{~cm}
$$

Sheet is folded to form a cone
Let radius of cone $=r_{1}$
\therefore The circumference of base of cone
\Rightarrow Circumference of sheet
$\therefore 2 \pi r_{1}=14 \pi$
$\mathrm{r}_{1}=7 \mathrm{~cm}$
\therefore radius of cone $=7 \mathrm{~cm}$
slant height $=$ radius of semi-circular sheet $\mathrm{r}=14 \mathrm{~cm}$
\therefore height $\sqrt{(14)^{2}-(7)}$
$=\sqrt{147}=12 \mathrm{~cm}$ (approx)
82. (B) Average number of people car service for all the years
$=\frac{20+25+10+35+25}{5}=23000$
83. (C) Required ratio
$=20: 15=4: 3$
84. (A) Required percentage $=\frac{40}{50} \times 100=80 \%$
85. (A) Required percentage $=\frac{15}{75} \times 100=20 \%$
86. (B) World Women's Day is celebrated on 8 March while Teacher's day is celebrated on 5 september.
87. (B)

Similarly,

88. (D) As, $(2)^{2} \Rightarrow(2)^{5}$

Similarly, $(4)^{2} \Rightarrow(4)^{5}=\mathbf{1 0 2 4}$
89. (A) As, $818 \Rightarrow(2)^{3} 18 \Rightarrow \sqrt{18-2}=4$

Similarly, $126 \Rightarrow(1)^{3} 26 \Rightarrow \sqrt{26-1}=5$
90. (A) As, $(19)^{3}-(19)^{2}=6018$ Similarly, $(17)^{3}-(17)^{2}=4624$
91. (B)

92. (D) Expect Rahul Gandhi, all were the prime ministers of India.
93. (A) Except 41 - 72, in all others second number is divisible by the sum of digits of first number.
94. (D) Except Pannalal Gosh, all there are associated with tabla while Pannalal Gosh associated with flute.
95. (D) Except 6354, sum of digits of all others is odd.
96. (B) $4 \times 1=4$
$4 \times 2=8$
$8 \times 3=24$
$24 \times 4=96$
$96 \times 5=480$
$480 \times 6=\mathbf{2 8 8 0}$
$2880 \times 7=20160$
97. (B) $7+\mathbf{8}=15 \Rightarrow 15-2=13$ (left)

$$
\Rightarrow 15+1=16 \text { (right) }
$$

$$
13+16=29 \Rightarrow 29-2=27 \text { (left) }
$$

$$
\Rightarrow 29+1=30 \text { (right) }
$$

$$
27+30=57 \Rightarrow 57-2=55 \text { (left) }
$$

$$
\Rightarrow 57+1=58 \text { (right) }
$$

98. (B)
99. (D)
100. (A)

In east direction
101. (D) From figure,
 can't be made by the question figure.
102. (A)
103. (D)
104. (A)

105. (B)

106. (D) $2^{3}+2=10$
$3^{3}-2=25$
$4^{3}+2=66$
$5^{3}-2=123$
$6^{3}+2=\mathbf{2 1 8}$
107. (A) Last day of the year would be sunday.
108. (B)

109. (D) acca/abab/acca/ab
110. (A)

I. \checkmark
II. \times

Hence, only conclusion I follows.
111. (D) As, $(8)^{3}-7=505$
and, $(6)^{3}-5=211$
Similarly, $(11)^{3}-9=1322$
112. (A) All are starting letter of days of week.

So, next will be \mathbf{S}.
113. (B) A B C D E
$\begin{array}{ccccc}\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 2 & 1 & 4 & 5\end{array}$
114. (D)
115. (D)
116. (D)

117. (D)
118. (A) Letters represent the girls who are Doctor $=\mathbf{A}, \mathbf{B}, \mathbf{C}$
119. (C) 11 rectangles
120. (D)
\qquad

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

