2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

IBPS RRB OFFICER PHASE - I - 157 (SOLUTION)

REASONING

(1-5) :

Floor	Person	Fruits
7	Vishnu	Banana
6	Akash	Mango
5	Sunil	Apple
4	Raghav	Grapes
3	Vivek	Guava
2	Shiva	Orange
1	Vishesh	Papaya

1. (3)
2. (1)
3. (5)
4. (2)
(6-10) :

$$
\begin{array}{lll}
\% & \rightarrow & > \\
\$ & \rightarrow & \leq \\
* & \rightarrow & < \\
\& & \rightarrow & \geq \\
C & \rightarrow & =
\end{array}
$$

6. (2) $\mathrm{R}<\mathrm{A} \leq \mathrm{M} \leq \mathrm{P}, \mathrm{M} \leq \mathrm{C}$
I. $\mathrm{P}>\mathrm{R} \rightarrow$ True
II. $\mathrm{A} \leq \mathrm{P} \rightarrow$ True
III. $\mathrm{P}>\mathrm{C} \rightarrow$ False

Both conclusion I and II are true.
7. (2) $\mathrm{Z} \geq \mathrm{X}=\mathrm{A} \leq \mathrm{S}=\mathrm{D}<\mathrm{C}$
I. $\mathrm{S}>\mathrm{Z} \rightarrow$ False
II. D $<\mathrm{C} \rightarrow$ True
II. $\mathrm{X}<\mathrm{C} \rightarrow$ True

Both conclusion II and III are true.
8. (1) $V \leq H<F=G, B \leq H$
I. $\mathrm{F}>\mathrm{V} \rightarrow$ True
II. $\mathrm{G}=\mathrm{H} \rightarrow$ False
II. V $<\mathrm{B} \rightarrow$ False

Only conclusion I is true.
9. (3) $\mathrm{E}>\mathrm{J} \geq \mathrm{H}=\mathrm{D} \leq \mathrm{C}, \mathrm{D}>\mathrm{F}$
I. $\mathrm{E}>\mathrm{C} \rightarrow$ False
II. $\mathrm{F}<\mathrm{E} \rightarrow$ True
III.J $>\mathrm{F} \rightarrow$ True

Both conclusion II and III are true.
10. (3) $Z=Y \geq V<W \leq R$
I. $\mathrm{W} \geq \mathrm{Y} \rightarrow$ False
II. $\mathrm{R}>\mathrm{V} \rightarrow$ True
III. $\mathrm{V} \leq \mathrm{Z} \rightarrow$ True

Both conclusion II and III are true.
(11-15) :

Person	Floor	Shop
Madhuri	7	Titan
Kusum	6	Walmart
Mahima	5	Puma
Seema	4	Nike
Priya	3	Reebok
Rama	2	Liberty
Sita	1	Sonata

11. (4)
12. (3)
13. (2)
14. (3)
(16-20) :
15. (4)

I. True
II. False
III. True
IV. False Only I and III follows
16. (4)

I. True
II. False
III. True
IV. False

Only I and III follows
18. (5)

I. True
II. True
III. True
IV. False

Only I, II and III follows

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

19. (2)

I. False
II. True
III. False
IV. False

Only II follows
20. (5)

I. False
II. True
III. False
IV. True

Only II and IV follows
(21-25) :

21. (2)
22. (4)
23. (5)
24. (5)
25. (4)
(26-27) :

26. (3) $\mathrm{SV}=\mathrm{VQ}+\mathrm{SQ}=25+30=55 \mathrm{~m}$
27. (2) Northeast
28. (2) Twelfth to the left of the twenty second from the left end is $(22-12=)$ 10th from the left, i.e @.
29.

30. (1) New arrangement becomes:

F \% D A © I B @ R H E * N \$ U W P T 9 V \# Z Q.
Hence sixteenth from the right end is @.
(31-35) :
Input : 32 proud girl beautiful 485597 rich family 617217 nice life
Step I : beautiful 1732 proud girl 485597 rich family 6172 nice life
Step II : family 32 beautiful 17 proud girl 4855 97 rich 6172 nice life
Step III : girl 48 family 32 beautiful 17 proud 55 97 rich 6172 nice life

Step IV : life 55 girl 48 family 32 beautiful 17 proud 97 rich 6172 nice
Step V : nice 61 life 55 girl 48 family 32 beautiful 17 proud 97 rich 72
Step VI : proud 72 nice 61 life 55 girl 48 family 32 beautiful 1797 rich
Step VII : rich 97 proud 72 nice 61 life 55 girl 48 family 32 beautiful 17 .
31. (3)
32. (4)
33. (3)
34. (1)
35. (2)
(36-40) :
Family Tree

C^{-}
36. (4)
37. (1)
38. (5)
39. (4)
40. (3)

Maths

(41-45) :
41. (2) $217250 \div 1350 \div 120$

$$
=217250 \div 162000
$$

$$
=1.34 \approx 2
$$

Campus

 KD Campus

 KD Campus}

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
42. (1) $\left(\frac{7}{4}\right)^{\frac{1}{2}} \times \frac{396}{11} \div \frac{588}{12}$
$=\left(\frac{7}{4}\right)^{\frac{1}{2}} \times \frac{396}{11} \times \frac{12}{588}$
$\approx(2)^{\frac{1}{2}} \times 36 \times \frac{1}{49}=1.46 \approx 2$
43. (4) $9237.89-7629.01+5153.99-6205.10$
$\approx 9238-7629+5154-6205$
$=14392-13834=558$
44. (5) $14.03 \times 23.96+14.98 \times \sqrt[3]{46656}$
$\approx 14 \times 24+15 \times 36$
$=336+540=876$
45. (4) $(7256+1286)-1234+189$
$=8542-1234+189$
$=8731-1234=7497$
(46-50) :
46. (2) Required Ratio $=\frac{(45 \times 925)}{(60 \times 650)}=\frac{111}{104}$
$=111: 104$
47. (2) Required sum $=25 \%$ of $880+56 \%$ of 1125 $+60 \%+60 \%$ of 650
$=\frac{25}{100} \times 880+\frac{56}{100} \times 1125+\frac{60}{100} \times 650$
$=220+630+390=1240$
48. (2) Number of females of village $B=40 \%$ of $1050=420$

Required percentage $=\left(\frac{420}{1125} \times 100\right) \%$
$=37.33 \% \approx 37 \%$
49. (5) Sum of total number of female in entire village $=55 \%$ of $925+40 \%$ of $1050+75 \%$ of $880+56 \%$ of $1125+60 \%$ of $650+35 \%$ of 985
$=508.75+420+660+630+390+344.75$ $=2953.5 \approx 2954$
50. (5) Total no. of males in entire village $=45 \%$ of $925+60 \%$ of $1050+25 \%$ of $880+44 \%$ of $1125+40 \%$ of $650+65 \%$ of 985
$=416.25+630+220+495+260+640.25$
$=2661.5$
\therefore Required Average $=\frac{2661.5}{6}$
$=443.58 \approx 444$

(51-55) :

51. (2) The pattern of the number series is: $9 \times 2-3=18-3=15$
$15 \times 2-3=30-3=27$
$27 \times 2-3=54-3=51$
$51 \times 2-3=102-3=99$
$99 \times 2-3=198-3=195$
52. (4) The pattern of the number series is:
$13+8=21$
$21+8+7=21+15=36$
$36+15+7=36+22=58$
$58+22+7=58+29=87$
$87+29+7=87+36=\mathbf{1 2 3}$
53. (4) The pattern of the number series is:
$7+(2+0)=9$
$9+(2+8)=19$
$19+(10+16)=45$
$45+(26+24)=95$
$95+(50+32)=177$
54. (1) The pattern of the number series is:
$14+I^{2}=15$
$15+2^{3}=23$
$23+3^{2}=32$
$32+4^{3}=96$
$96+5^{2}=96+25=\mathbf{1 2 1}$
55. (3) The pattern of the number series is:
$20+1 \times 4=20+4=24$
$24+3 \times 4=24+12=36$
$36+5 \times 4=36+20=56$
$56+7 \times 4=56+28=84$
$84+9 \times 4=84+36=120$
56. (2) Let the length of candles be 1 unit and after t hours, the ratio of their length be 3 : 4.
ATQ,
$1-\frac{1}{7} t$
$\frac{1-\frac{7}{9}}{1-\frac{1}{9} t}=\frac{3}{4} \Rightarrow \frac{7-t}{9-t} \times \frac{9}{7}=\frac{3}{4}$
$\Rightarrow \mathrm{t}=4 \frac{1}{5} \mathrm{hr}=4 \mathrm{hr} 12$ minutes
57. (2) ATQ,

Let time $=x$ minutes
1 page has 23 lines
$\therefore \frac{(100-8) \times 20}{10}$
$=\frac{\left(100 \times \frac{128}{100} \times 8\right) \times 23 \times 40}{x}$
$\Rightarrow x=450 \mathrm{~min}=7 \mathrm{hr} 30 \mathrm{~min}$

Campus

 KD Campus

 KD Campus}

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

58. (3) Required no. of way $=\frac{11!}{3!\times 4!\times 2!\times 2!}$
$=63900$
59. (3) Let the speed of Car be $x \mathrm{~km} / \mathrm{h}$ and actual time taken is $t \mathrm{hrs}$.

In first case, distance $=(x+6)(t-6) \mathrm{km}$

In second case, distance $=(x-6)(t+6)$

Also distance $=x t$ from (i) and (ii)
$(x+6)(t-4)=(x-6)(t+6)$
$\Rightarrow \frac{x+6}{x-6}=\frac{t+6}{t-4} \Rightarrow \frac{x}{6}=\frac{2 t+2}{10} \Rightarrow \frac{x}{6}=\frac{t+1}{5}$
$\Rightarrow 5 x=6 t+6 \Rightarrow 5 x-6 t=6 \Rightarrow t=\frac{5 x-6}{6}$
Putting the value of ' t ' in eqn. (iii) we get,
$x=30 \mathrm{~km} / \mathrm{hr}$
$\therefore \quad t=25 \mathrm{hr}$
Thus, distance $=30 \times 24=720$
60. (1) Let the price per kg of Orange, Mangoes, Bananas and Grapes be ₹ O , ₹ M , ₹ B and $₹$ G respectively.
Given that
$5 \mathrm{O}+2 \mathrm{M}=310$
(i)
$3 \mathrm{M}+3.5 \mathrm{~B}=230$
(ii)
$1.5 \mathrm{~B}+5 \mathrm{G}=610$
Now, (i), (ii), (iii) we get
$5 \mathrm{O}+5 \mathrm{M}+5 \mathrm{~B}+5 \mathrm{G}=700$
$\therefore 10 \mathrm{O}+10 \mathrm{M}+10 \mathrm{~B}+10 \mathrm{G}=2 \times 700$
= ₹ 1400
(61-65) :
61. (1) S.P of HCL Laptops

$$
=32000+4000=₹ 36000
$$

and profit $\%=\left(\frac{4000}{32000} \times 100\right) \%$
= 12.5%
62. (3) C.P of Apple Laptop
$=\frac{33000}{110} \times 100=₹ 30,000$
\therefore C.P of Dell Laptop
$=30000 \times \frac{3}{5}=₹ 18,000$
Now, Profit $=22000-18000=₹ 4,000$
$\therefore \quad$ Profit $\%=\left(\frac{4000}{18000} \times 100\right) \%=22 \frac{2}{9} \%$
63. (5) Profit of Lenovo Laptop
$=3500+500=₹ 4,000$
\therefore Profit $\%=\left(\frac{4000}{28000} \times 100\right) \%=14 \frac{2}{7} \%$
and $\mathrm{SP}=28000+4000=₹ 32,000$
64. (3) Profit earned on Acer Laptop
$=53000 \times \frac{14}{100}=₹ 7,420$
65. (2) S.P of HP Laptop
$=35000+3500=₹ 38,500$
\therefore Required ratio $=35000: 38500$
= $10: 11$
66. (3) P do the work for 3 days +3 days $=6$ days, Q work for 3 days and R work for 3 days.
$\frac{6}{18}+\frac{3}{12}+\frac{3}{R}=1$
$\frac{3}{R}=1-\frac{1}{3}-\frac{1}{4}$
Three days work of $\mathrm{R}=\frac{3}{R}=\frac{12-4-3}{12}$
$\therefore \mathrm{P}: \mathrm{Q}: \mathrm{R}=\frac{6}{18}: \frac{3}{12}: \frac{5}{12}$
Ratio of share $=12: 9: 15=4: 3: 5$
Share of R $=\frac{5}{12} \times 24000=₹ 10,000$
67. (2) Labelled price $=₹ 1600$

As, the reduction price is 10% lower than the labelled price,
Reduced price $=90 \%$ of $1600=₹ 1440$
Now, the price at which Priti bought it is 20% lower than the reduced price, the selling price $=84 \%$ of $1440=₹ 1152$
68. (2) $\frac{\text { Ram }}{\text { Sohan }}=\frac{100}{90}$ also $\frac{\text { Sohan }}{\text { Sunil }}=\frac{100}{75}$
then, $\frac{\text { Ram }}{\text { Sunil }}=\frac{40}{27}$
So in a race of 40 m , Ram beats Sunil by 13m
In a race of 100 m , Ram beats Sunil by 32.5 m

So, Sunil cover 32.5 m in 10 sec .
Speed of Sunil $=3.25 \mathrm{~m} / \mathrm{sec}$
Perimeter of circle $=3.25 \times 100=325 \mathrm{~m}$
Area $=\frac{325^{2}}{4 \pi}=8401$ (approximately)

Campus
 KD Campus

69. (5) $d=\frac{t_{1}-t_{2}}{60} \times \frac{s_{1} s_{2}}{\left(s_{2}-s_{1}\right)}$
$=\frac{14-8}{60} \times \frac{45 \times 50}{50-45}$
$=\frac{6}{60} \times \frac{45 \times 50}{5}=45 \mathrm{~km}$
70. (4) Total balls initially in the bag $=4+5+6$ $=15$
There are 4 red balls
If on first draw, red balls comes out then 6 more red balls are added
\therefore The probability of red balls on first draw
$=\frac{4}{15}$
Due to withdraw of one red balls now there are only 3 red balls is left.
Also, there is no replacement done so, total number of balls becomes 14 .
After adding 6 new red balls total number of balls becomes $=14+6=20$
And total number of red balls $=3+6=9$ Now, if on the 2nd draw, red balls is drawn, then,
$\therefore \quad$ The probability of red balls on 2nd draw
$=\frac{9}{20}$
As there is no replacement done so, total number of balls becomes 19
And total number of red balls $=9-1=8$ Now, if on the 3rd draw, red balls is drawn then
\therefore The probability of red balls on 3rd draw $=\frac{8}{19}$
$\therefore \quad$ Final probability if on both the draws red balls is drawn $=\frac{4}{15} \times \frac{9}{20} \times \frac{8}{19}=\frac{24}{475}$

Hence, $\frac{24}{475}$ is the probability of all the 3 balls drawn are of red ball.

(71-75) :

71. (2) I. $5 x^{2}-87 x-378=0$
$\Rightarrow 5 x^{2}-105 x+18 x-378=0$
$\Rightarrow 5 x(x-21)+18(x-21)=0$
$\Rightarrow(5 x+18)(x-21)=0$
$\Rightarrow x=-\frac{18}{5}, 21$
II. $3 y^{2}-49 y+200=0$
$\Rightarrow 3 x^{2}-24 y-25 y+200=0$
$\Rightarrow 3 y(y-8)-25(y-8)=0$
$\Rightarrow(3 y-25)(y-8)=0$
$\Rightarrow y=\frac{25}{3}, 8$
Clearly, $x<y$
72. (2) I. $(x+1)(x+18)=-66$
$\Rightarrow x^{2}+18 x+x+18+66=0$
$\Rightarrow x^{2}+19 x+84=0$
$\Rightarrow x^{2}+12 x+7 x+84=0$
$\Rightarrow x(x+12)+7(x+12)=0$
$\Rightarrow(x+7)(x+12)=0$
$\Rightarrow x=-7,-12$
II. $\sqrt{(y-3)(y-27)}=9$
$\Rightarrow(y-3)(y-27)=81$
$\Rightarrow y^{2}-27 y-3 y+81-81=0$
$\Rightarrow y^{2}-30 y=0$
$\Rightarrow y(y-30)=0$
$\Rightarrow y=0,30$
Clearly, $x<y$
73. (1) I. $\frac{15}{x}+\frac{16}{y}=1$
II. $\frac{3}{x}-\frac{7}{y}=5$
equation (i) $-(i i) \times 5$, we let
$\frac{15}{x}+\frac{16}{y}-\frac{15}{x}+\frac{35}{y}=1-25$
$\Rightarrow \frac{51}{y}=-24 \Rightarrow y=\frac{-51}{24}$
Put the value of y in equation (i), we get
$\frac{15}{x}+\frac{16}{-51} \times 24=1$
$\Rightarrow \frac{15}{x}=1+\frac{128}{17} \Rightarrow \frac{15}{x}=\frac{145}{17}$
$\Rightarrow x=\frac{15 \times 17}{145}=\frac{255}{145}$
Clearly, $x>y$
74. (2) I. $17 x^{2}+48 x=9$
$\Rightarrow 17 x^{2}+48 x-9=0$
$\Rightarrow 17 x^{2}+51 x-3 x-9=0$
$\Rightarrow 17 x(x+3)-3(x+3)=0$
$\Rightarrow(17 x-3)(x+3)=0$
$\Rightarrow x=\frac{3}{17},-3$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

II. $13 y^{2}+12=32 y$
$\Rightarrow 13 y^{2}-32 y+12=0$
$\Rightarrow 13 y^{2}-26 y-6 y+12=0$
$\Rightarrow 13 y(y-2)-6(y-2)=0$
$\Rightarrow(13 y-6)(y-2)=0$
$\Rightarrow y=\frac{6}{13}, 2$
Clearly, $x<y$
75. (5) I. $4 x+7 y=209$
II. $12 x-14 y=-38$
equation (i) $\times 2+$ (ii), we get
$8 x+14 y+12 x-14 y=418-38$
$\Rightarrow 20 x=380 \Rightarrow x=19$
Now, put the value of x in equation (ii)
$12 \times 19-14 y=-38$
$\Rightarrow 14 y=228+38$
$\Rightarrow 14 y=266 \Rightarrow y=\frac{266}{14}=19$
\therefore Clearly, $x=y$
(76-80):
76. (5) Income of Company A in 2006

$$
\begin{aligned}
& =₹\left(\frac{100}{110} \times 37.5\right) \text { crores } \\
& =₹ 34.09 \text { crores }
\end{aligned}
$$

Let the expenditure in 2006 be ₹ x crores.
$\therefore \quad 20=\frac{34.09-x}{x} \times 100$
or, $0.2 x=34.09-x$
or, $1.2 x=34.09$
or, $\quad x=\frac{34.09}{1.2}$

$$
=₹ 28.41 \text { crores }
$$

77. (4) Profit/loss percentage of companies: Company B:
$\frac{42.5-32.5}{32.5} \times 100=30.77 \%$ (profit)
Company C:
$\frac{35-45}{45} \times 100=22.2 \%$ (loss)

Company F :
$\frac{32.5-25}{25} \times 100=30 \%$ (profit)
Company A :

$$
\frac{37.5-27.5}{27.5} \times 100=36.36 \% \text { (profit) }
$$

78. (5) Total expenditure of Companies C and D together

$$
\begin{aligned}
& =45+40 \\
& =₹ 85 \text { crores }
\end{aligned}
$$

Total income of Companies C and $\mathrm{D}=3 \boldsymbol{\phi}$ $+50$

$$
\text { = ₹ } 85 \text { crore }
$$

79. (2) Expenditure of Company G in 2006

$$
=\frac{45 \times 100}{120}
$$

$$
=₹ \frac{75}{2}
$$

$$
=₹ 37.5 \text { crores }
$$

$$
\therefore 10=\frac{\text { Income }-37.5}{37.5} \times 100
$$

$$
\text { Income }=₹ 41.25 \text { crores }
$$

80. (3) Total income

$$
\begin{aligned}
& \quad=37.5+42.5+35+50 \\
& +40+32.5+50 \\
& \quad=₹ 287.5 \text { crores }
\end{aligned}
$$

Total expenditure

$$
\begin{aligned}
= & 27.5+32.5+45 \\
& +40+45+25+45
\end{aligned}
$$

$$
=₹ 260 \text { crores }
$$

\therefore Profit \% $=\frac{287.5-260}{260} \times 100$

$$
=10.57
$$

Campus
 KD Campus

IBPS RRB OFFICER PHASE - I - 157 (ANSWER KEY)

1. (3)
2. (1)
3. (3)
4. (5)
5. (2)
6. (2)
7. (2)
8. (1)
9. (3)
10. (3)
11. (4)
12. (3)
13. (1)
14. (2)
15. (3)
16. (4)
17. (4)
18. (5)
19. (2)
20. (5)
(5)
21. (2)
22. (4)
23. (5)
24. (5)
25. (4)
26. (3)
27. (2)
28. (2)
29. (4)
30. (1)
31. (3)
32. (4)
33. (3)
34. (1)
35. (2)
36. (4)
37. (1)
38. (5)
39. (4)
40. (3)
41. (2)
42. (1)
43. (4)
44. (5)
45. (4)
46. (2)
47. (2)
48. (2)
49. (5)
50. (5)
51. (2)
52. (4)
53. (4)
54. (1)
55. (3)
56. (2)
57. (2)
58. (3)
59. (3)
60. (1)
61. (1)
62. (3)
63. (5)
64. (3)
65. (2)
66. (3)
67. (2)
68. (2)
69. (5)
70. (4)
71. (2)
72. (2)
73. (1)
74. (2)
75. (5)
76. (5)
77. (4)
78. (5)
79. (2)
80. (3)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- Whatapp with Mock Test No. and Question No. at 7053606571 for any of te doubts. Join the group and you may also share your suggestions and experience of sunday Mock Test.

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

