RPF MOCK TEST - 2 (SOLUTION)

51. (B) $\%$ change $=\frac{R}{100 \pm R} \times 100 \%$

Required fraction $=\frac{50}{(100+50)}=\frac{1}{3}$
52. (D) Let CP of article $=100$

Profit \% = 25\%
CP of article $=\frac{8750 \times 100}{125}=₹ 7000$
\therefore Level price of article $=\frac{7000 \times 100}{70}$
$=₹ 10000$
53. (A) Let CP of first cycle $=x$

ATQ,
$\frac{x \times 120}{100}+\frac{(1600-x) \times 110}{100}-\frac{x \times 110}{100}$
$-\frac{(1600-x) \times 120}{100}=5$
$\Rightarrow 120 x+176000-110 x-110 x-19200$
$+120 x=500$
$\Rightarrow 20 x=16000-500$
$\Rightarrow x=775$
\therefore cost price of second cycle $=1600-775$

$$
\text { = ₹ } 825
$$

\therefore Required difference $=825-775=₹ 50$
54. (C) CP of motor car $=₹ 17,000$

MP of motor car $=₹ 17,000 \times \frac{100}{85}$
= ₹ 20,000

After successive discount, CP
$=20,000 \times \frac{95}{100} \times \frac{90}{100}$
$=$ ₹ 17,100
55. (D) Rate of interest $=\frac{2}{5} \times \frac{100}{5}=8 \%$

Let, Principal $=100$
Principal : Interest rate $\left.25<\times \frac{1}{4} \quad \begin{array}{ll}100 \\ & \\ 2\end{array}\right) \times \frac{1}{4}$
Hence, Required ratio $=25: 2$
56. (C) Remaining amount

$$
\begin{aligned}
& =50,000-(8000+24000) \\
& =₹ 18000
\end{aligned}
$$

ATQ,
$\frac{8000}{100} \times \frac{11}{2} \times 1+\frac{24000 \times 6}{100} \times 1+$
$\frac{18000 \times \mathrm{R}}{100}=3680$
$\Rightarrow \frac{44000}{100}+\frac{144000}{100}+\frac{18000 \mathrm{R}}{100}=3680$
$\Rightarrow \frac{188000}{100}+\frac{188000 \mathrm{R}}{100}=3680$
$\Rightarrow \frac{18000 \mathrm{R}}{100}=3680-1880$
$\Rightarrow 180 \mathrm{R}=1800$
R = 10\%
Hence, Required rate \% = 10\%
57. (C)

58. (C) $10 \%=\frac{10}{100}=\frac{1}{10}$

Let principal - 1000
First years = 100
second years $=100+10$
ATQ,
10 unit $=28$
\therefore Principal $=\frac{28}{10} \times 1000=₹ 2800$
Now, Interest is half-yearly
then, rate $=5 \%$
and, time $=4$ years
$5 \%=\frac{5}{100}=\frac{1}{20}$
Now, Principal $=2800$
1 st year $=140$
2 nd year $=140+7$
3rd year $=140+7+7+.35$
4 th year $=140+7+7+7+1.05$
\therefore Required difference $=₹ 43.41$
59. (D) ATQ,

SP of the mixture = ₹ 20
CP of the mixture $=20 \times \frac{100}{125}=₹ 16$
Ratio of water to chemical $=25-16: 16$
= $9: 16$

KD Campus Pvt. Ltd

60. (B) ATQ,
$\frac{2 x}{2}+\frac{3 x}{4}+\frac{5 x}{10}=90$
$\Rightarrow \frac{20 x+15 x+10 x}{20}=90$
$\Rightarrow 45 x=1800$
$\Rightarrow x=\frac{1800}{45}=40$
$\therefore 25$ paise coins are $=40 \times 3=120$
61. (B) $(3+\sqrt{2}): x:(12-\sqrt{32})$
a:b:c
mean propertion
$b^{2}=a \times c$
$=\sqrt{(3+\sqrt{2}) \times(12-\sqrt{32})}$
$=\sqrt{(3+\sqrt{2}) \times(12-4 \sqrt{2}) \sqrt{28}}=2 \sqrt{7}$
62. (D) A can do the work in $\frac{5 \times 2}{1}$

$$
=10 \text { days }
$$

B complete 1 work in $=\frac{9 \times 5}{3}=15$ days
C complete work in $=8 \times \frac{3}{2}=12$ days

$=\mathrm{A}+\mathrm{B}+\mathrm{C}$ one day work $=15$ units
\Rightarrow They will complete the whole work
in $=\frac{60}{15}=4$ days
63. (C) Let additional men be x
$\frac{25 \times 24}{\frac{1}{3}}=\frac{(25+x) \times 12}{\frac{2}{3}}$
$\Rightarrow x=75$
64. (B)

Hence, leakage will empty the fully filled $\operatorname{tank}=\frac{21}{1}=21 \mathrm{hrs}$
65. (A) Let total capacity $=42$ units
$\therefore(A+B+C)$ per hour work $=\frac{42}{6}$ $=7$ units
$A+B=\frac{28}{7}=4$ units $/ h r$
$\therefore \mathrm{C}$ can alone fill the cistern in $=\frac{42}{(7-4)}$

$$
=14 \mathrm{hrs} .
$$

66. (D) Difference of the length of the objects which is crossed by train and the result is divided by difference of time

Speed of train $=\frac{(210-122)}{(25-17)}=11 \mathrm{~m} / \mathrm{s}$
$=11 \times \frac{18}{5}=39.6 \mathrm{~km} / \mathrm{hr}$
67. (D) Relative speed of the two trains
$=(48+42) \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{s}$
and, Distance travelled in 12 sec . at 25 $\mathrm{m} / \mathrm{s}=25 \times 12=300 \mathrm{~m}$

Length of first train $=300 \times \frac{2}{3}=200 \mathrm{~m}$
Distance travelled by first train in 45 sec
$=48 \times \frac{5}{18} \times 45=600 \mathrm{~m}$
Length of platform $=600-200=400 \mathrm{~m}$
68. (C) Let distance $=x \mathrm{~km}$

ATQ,
$\frac{x}{14}+\frac{x}{6}=5$
$\Rightarrow \frac{3 x+7 x}{42}=5$
$\Rightarrow 10 x=42 \times 5$
$\Rightarrow x=\frac{42 \times 5}{10}=21 \mathrm{~km}$
69. (B) $\left[(251)^{98}+(21)^{29}-(106)^{100}+(705)^{35}-(16)^{4}\right.$ $+(259)]$
Unit place of 1,5 and 6 will remain same
There is no change, they will be 1,5
$=\left[(1)^{98}+(1)^{29}-(6)^{100}+(5)^{35}-(6)^{4}+9\right]$
$=(1+1-6+5-6+9)$
$=16-12=4$
70. (C) Let the number of friend's in begining $=x$ ATQ,
$\frac{108}{(x-3)}-\frac{108}{x}=3$
$\Rightarrow \frac{108 x-108 x+324}{x(x-3)}$

Campus

KD Campus Pvt. Ltd

$\Rightarrow 108=x^{2}-3 x$
$\Rightarrow x^{2}-12 x+9 x-108=0$
$\Rightarrow(x-12)(x+9)=0$
$\Rightarrow x=12$
\therefore Required number $=12-3=9$
71. (D) ATQ,

$$
\begin{aligned}
& \left(\frac{2}{3} \times \frac{13}{4}\right)-\frac{3}{4} \times\left(\frac{9}{4}-\frac{5}{3}\right) \\
& =\left(\frac{2}{3} \times \frac{13}{4}\right)-\frac{3}{4} \times\left(\frac{27-20}{12}\right) \\
& =\frac{13}{6}-\frac{3}{4} \times \frac{7}{12} \\
& =\frac{13}{6}-\frac{7}{16} \Rightarrow \frac{104-21}{48}=\frac{83}{48}
\end{aligned}
$$

72. (B) $\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{4+3+2 \times 2 \times \sqrt{3}}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{(2+\sqrt{3})^{2}}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+8(2+\sqrt{3})}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+16+8 \sqrt{3}}}$
$=\sqrt{-\sqrt{3}+\sqrt{(\sqrt{3})^{2}+(4)^{2}+2 \times 4 \times \sqrt{3}}}$
$=\sqrt{-\sqrt{3}+\sqrt{(4+\sqrt{3})^{2}}}$
$=\sqrt{-\sqrt{3}+4+\sqrt{3}}=\sqrt{4}=2$
73.

$\sqrt[3]{2}$	$\sqrt{3}$	$\sqrt[3]{5}$	1.5
\downarrow	\downarrow	\downarrow	\downarrow
$2^{1 / 3}$	$3^{1 / 2}$	$5^{1 / 3}$	
\downarrow	\downarrow	\downarrow	\downarrow
$2^{2 / 6}$	$3^{3 / 6}$	$5^{2 / 6}$	$1.5^{6 / 6}$
\downarrow	\downarrow	\downarrow	\downarrow
$\sqrt[6]{2^{2}}$	$\sqrt[6]{3^{3}}$	$\sqrt[6]{5^{2}}$	$\sqrt[6]{1.5^{6}}$
\downarrow	\downarrow	\downarrow	\downarrow
$\sqrt[6]{4}$	$\sqrt[6]{27}$	$\sqrt[6]{25}$	$\sqrt[6]{11.35}$

74. (D) ATQ,
$=\frac{19}{43}+\frac{1}{2+\frac{1}{3+\frac{1}{1+\frac{1}{4}}}}$
$=\frac{19}{43}+\frac{1}{2+\frac{1}{3+\frac{4}{5}}}$
$=\frac{19}{43}+\frac{1}{2+\frac{5}{19}}$
$=\frac{19}{43}+\frac{19}{43}=\frac{38}{43}$
$\Rightarrow \frac{38}{43}$
75. (C) It is possible when there are 5 sundays in the month starting from 2 of that month. In that case of 3 even dates will be sunday on $2,9,16,23,30$. So, 15 will be saturday
76. (D) Let the average expenditure $=₹ x$ ATQ,
$\Rightarrow 35 \times x+42=42(x-1)$
$\Rightarrow 35 x+42=42 x-42$
$\Rightarrow 7 x=84$
$\Rightarrow x=12$
\therefore Initial expenditure $=35 \times 12=₹ 420$
77. (A) Let the present age of son $=x$ years
and, the father's age $=3 x+3$
ATQ,
$2(x+3)+10=3 x+3+3$
$\Rightarrow 2 x+6+10=3 x+6$
$\Rightarrow 2 x+16=3 x+6$
$\Rightarrow x=10$
\therefore Father's present age $=3 x+3$
$=3 \times 10+3=33$ years
78. (A) Let fraction is $\frac{x}{y}$

ATQ,
$\therefore \frac{x-4}{y+1}=\frac{1}{6}$
$\Rightarrow 6 x-24=y+1$
$\Rightarrow 6 x-y-25=0$
Again, $\frac{x+2}{y+1}=\frac{1}{3}$
$\Rightarrow 3 x+6=y+1$
$\Rightarrow 3 x-y+5=0$
On solving equation (i) and (ii),
and, $\mathrm{y}=35$
$\therefore \frac{x}{y}=\frac{10}{35}=\frac{2}{7}$
\therefore Required LCM
$=2 \times 7=14$
79. (A) Greatest prime number $=97$

Least prime number 2
\therefore Required difference $=97-2=95$
80. (B) ATQ,
$R+r=10$
$\Rightarrow(\mathrm{R}+\mathrm{r})^{2}=100$
$\Rightarrow R^{2}+r^{2}+2 R r=100$
$\Rightarrow R^{2}+r^{2}=100-2 R r$
and, $\frac{4}{3} \pi R^{3}+\frac{4}{3} \pi r^{3}=880$
$\Rightarrow R^{3}+r^{3}=\frac{880 \times 3 \times 7}{22 \times 4}$
$\Rightarrow(\mathrm{R}+\mathrm{r})\left(\mathrm{R}^{2}+\mathrm{r}^{2}-\mathrm{Rr}\right)=210$
$\Rightarrow 10 \times(100-2 R r-R r)=210$
$\Rightarrow 100-3 \mathrm{Rr}=21$
$\Rightarrow 3 R r=100-21=79$
$\Rightarrow \operatorname{Rr}=\frac{79}{3}=26 \frac{1}{3}$
81. (B) Radius of semi-circular sheet $=r$
$\Rightarrow \frac{28}{2}$
$\mathrm{r}=14 \mathrm{~cm}$
Circumference of sheet $=\pi r$

$$
=14 \pi \mathrm{~cm}
$$

Sheet is folded to form a cone
Let radius of cone $=r_{1}$
\therefore The circumference of base of cone
\Rightarrow Circumference of sheet
$\therefore 2 \pi r_{1}=14 \pi$
$\mathrm{r}_{1}=7 \mathrm{~cm}$
\therefore radius of cone $=7 \mathrm{~cm}$
slant height $=$ radius of semi-circular sheet $\mathrm{r}=14 \mathrm{~cm}$
\therefore height $\sqrt{(14)^{2}-(7)}$
$=\sqrt{147}=12 \mathrm{~cm}$ (approx)
82. (B) Average number of people using mobile service for all the years
$=\frac{20+25+10+35+25}{5}$ thousands
$=23000$
83. (C) Required ratio

$$
=20: 15=4: 3
$$

84. (A) Required percentage $=\frac{40}{50} \times 100=80 \%$
85. (A) Required percentage $=\frac{15}{75} \times 100=20 \%$
86. (A)
87. (B)

Similarly,
88. (D) As, $(2)^{2} \Rightarrow(2)^{3}$ Similarly, $(1)^{2} \Rightarrow(1)^{3}=\mathbf{1}$
89. (A) As, $818 \Rightarrow(2)^{3} 18 \Rightarrow \sqrt{18-2}=4$ Similarly, $126 \Rightarrow(1)^{3} 26 \Rightarrow \sqrt{26-1}=5$
90. (C) As, $8785-159=8626$ Similarly, 6579-159 = $\mathbf{6 4 2 0}$
91. (B)

92. (D) Expect K.R. Narayana, all others were the prime ministers of India. while K.R. Narayana was the president of India.
93. (A) Except 41-72, in all others second number is divisible by the sum of digits of first number.
94. (B)
95. (D) Except 6354, sum of digits of all others is odd.
96. (B) $3 \times 1=3$
$3 \times 2=6$
$6 \times 3=18$
$18 \times 4=72$
$72 \times 5=360$
$360 \times 6=2160$
$2160 \times 7=15120$
97. (A) $6+7=13 \Rightarrow 13-2=11$ (left)

$$
\Rightarrow 13+1=14 \text { (right) }
$$

$11+14=25 \Rightarrow 25-2=23$ (left)
$\Rightarrow 25+1=26$ (right)
$23+26=49 \Rightarrow 49-2=47$ (left)
$\Rightarrow 49+1=50$ (right)
98. (B)
99. (C) Number of female members

$$
\begin{aligned}
& =(1+3+1+2+2) \\
& =\mathbf{9}
\end{aligned}
$$

100. (A) Starting

In east direction
101. (A)
102. (A)
103. (A)
104. (A)

105. (B)

106. (A) $2^{3}+1=9$

$$
\begin{aligned}
& 3^{3}-1=26 \\
& 4^{3}+1=65 \\
& 5^{3}-1=124 \\
& 6^{3}+1=\mathbf{2 1 7}
\end{aligned}
$$

107. (A) Last day of the year would be sunday. 108. (C)

108. (D) acca/abab/acca/ab
109. (A)

I. $\quad \checkmark$
II. \times

Hence, only conclusion I follows.
111. (D) As, $(7)^{3}-8=335$
and, $(6)^{3}-5=211$
Similarly, $(7)^{3}-4=339$
112. (A) All are starting letter of days of week. So, next will be \mathbf{S}.
113. (B) A B C D E

\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
3	2	1	4	5

114. (D)
115. (A)
116. (C)

117. (D)
118. (A) Letters represent the men who are physicians = A, B, C
119. (C) Total number of triangles $=\mathbf{2 7}$
120. (D)

Answer key

1. (A)	16. (A)	31. (C)	46. (A)	61. (B)	76. (D)	91. (B)	106. (A)
2. (B)	17. (B)	32. (D)	47. (A)	62. (D)	77. (A)	92. (D)	107. (A)
3. (C)	18. (A)	33. (C)	48. (D)	63. (C)	78. (A)	93. (A)	108.(C)
4. (D)	19. (A)	34. (D)	49. (D)	64. (B)	79. (A)	94. (B)	109.(D)
5. (B)	20. (A)	35. (A)	50. (A)	65. (A)	80. (B)	95. (D)	110.(A)
6. (C)	21. (C)	36. (C)	51. (B)	66. (D)	81. (B)	96. (B)	111.(D)
7. (A)	22. (C)	37. (C)	52. (D)	67. (D)	82. (B)	97. (A)	112.(A)
8. (C)	23. (D)	38. (B)	53. (A)	68. (C)	83. (C)	98. (B)	113.(B)
9. (A)	24. (A)	39. (B)	54. (C)	69. (B)	84. (A)	99. (C)	114.(D)
10. (B)	25. (B)	40. (C)	55. (D)	70. (C)	85. (A)	100.(A)	115.(A)
11. (D)	26. (A)	41. (D)	56. (C)	71. (D)	86. (A)	101. (A)	116.(C)
12. (A)	27. (C)	42. (A)	57. (C)	72. (B)	87. (B)	102. (A)	117.(D)
13. (B)	28. (D)	43. (B)	58. (C)	73. (C)	88. (D)	103. (A)	118.(A)
14. (C)	29. (D)	44. (D)	59. (D)	74. (D)	89. (A)	104. (A)	119.(C)
15. (B)	30. (A)	45. (A)	60. (B)	75. (C)	90. (C)	105.(B)	120. (D)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

