2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

NDA MATHS MOCK TEST - 100 (SOLUTION)

1. (B) We have, $f(x)=\left\{\begin{array}{c}x^{2}-5, x \leq 3 \\ \sqrt{x+13}, x>3\end{array}\right.$

To find $\lim _{x \rightarrow 3} f(x)-$
L.H.L. $=\lim _{x \rightarrow 3^{-}} f(x)=\lim _{h \rightarrow 0} f(3-h)$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left[(3-h)^{2}-5\right] \\
& =\lim _{h \rightarrow 0}(9-5)=4
\end{aligned}
$$

R.H.L. $=\lim _{x \rightarrow 3^{+}} f(x)=\lim _{h \rightarrow 0} f(3+h)$

$$
=\lim _{h \rightarrow 0}(\sqrt{3+h+13})
$$

$$
=\lim _{h \rightarrow 0}(\sqrt{16+h})=4
$$

$\because \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=4$
$\therefore \quad \lim _{x \rightarrow 3} f(x)=4$
2. (D) 1. For continuous,

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3) \\
\therefore & \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=4
\end{aligned}
$$

Hence, $f(x)$ is continuous at $x=4$.
Statement 1 is incorrect.
2. We have, $f(x)=x^{2}-5, x \leq 3$

$$
\Rightarrow f^{\prime}(x)=2 x \Rightarrow f^{\prime}(0)=0
$$

Hence, $f(x)$ is differentiable at $x=0$.
Statement 2 is incorrect.
So, neither statement 1 nor 2 is correct.
3. (D) We have, $f(x)=\sqrt{x+13}, x>3$
$\Rightarrow \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x+13}}$
$\therefore \quad f^{\prime}(12)=\frac{1}{2 \sqrt{12+13}}=\frac{1}{2 \times 5}=\frac{1}{10}$
4. (D) Equation of parabola is $y^{2}=4 b x$.

Area $=2 \int_{0}^{b} \sqrt{4 b x} d x$
$=4 \sqrt{b} \times \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{b}$
$=\frac{8 \sqrt{b}}{3}\left[b^{3 / 2}-0\right]=\frac{8 b^{2}}{3}$ sq units
5. (B) $\lim _{x \rightarrow 0} \frac{\log _{5}(1+x)}{x} \quad\left(\frac{0}{0}\right)$ Form
$=\lim _{x \rightarrow 0} \frac{\log _{e}(1+x)}{x \log _{\mathrm{e}} 5} \quad\left(\because \log _{\mathrm{a}} b=\frac{\log _{e} b}{\log _{\mathrm{e}} a}\right)$
$=\frac{1}{\log _{e} 5} \lim _{x \rightarrow 0} \frac{\log _{e}(1+x)}{x}$
$=\log _{5} \mathrm{e}$
$\left(\because \lim _{x \rightarrow 0} \frac{\log _{e}(1+x)}{x}=1\right.$ and $\left.\log _{\mathrm{a}} \mathrm{b}=\frac{1}{\log _{b} a}\right)$
6. (A) Equation of circles are

$$
\begin{aligned}
& x^{2}+y^{2}+2 a x+c=0 \\
& \text { and } \quad x^{2}+y^{2}+2 b y+c=0
\end{aligned}
$$

Since, the centres of two circles are $(-a, 0)$ and $(0,-b)$
\therefore Distance between two centres $=\sqrt{a^{2}+b^{2}}$
7. (B) Two circles touch each other, if
\Rightarrow Distance between two centres

$$
=\text { Sum of radius of two circles }
$$

$\Rightarrow \sqrt{a^{2}+b^{2}}=\sqrt{a^{2}-c}+\sqrt{b^{2}-c}$
On squaring both sides, we get
$\Rightarrow a^{2}+b^{2}=a^{2}-c+b^{2}-c+2 \sqrt{\left(a^{2}-c\right)\left(b^{2}-c\right)}$
$\Rightarrow c=\sqrt{\left(a^{2}-c\right)\left(b^{2}-c\right)}$
Again, squaring both sides, we get
$\Rightarrow c^{2}=a^{2} b^{2}-a^{2} c-b^{2} c+c^{2}$
$\Rightarrow a^{2} b^{2}=\left(a^{2}+b^{2}\right) c \Rightarrow \frac{1}{c}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
8. (C) We have, $A(3,4)$ and $B(5,-2)$

Let $\mathrm{P}(x, y)$
Given that, $\quad P A=P B$
$\Rightarrow P A^{2}=P B^{2}$
$\Rightarrow(x-3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2}$
$\Rightarrow x^{2}-6 x+9+y^{2}-8 y+16$

$$
=x^{2}-10 x+25+y^{2}+4 y+4
$$

$\Rightarrow 4 x-12 y=4$
$\Rightarrow x-3 y=1$
\because Area of $\triangle \mathrm{PAB}=10$
$\Rightarrow \frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ 3 & 4 & 1 \\ 5 & -2 & 1\end{array}\right|= \pm 10$
$\Rightarrow x(4+2)-y(3-5)+1(-6-20)= \pm 20$
$\Rightarrow 6 x+2 y-26= \pm 20$
$\Rightarrow 6 x+2 y-26=20$
or $6 x+2 y-26=-20$
$\Rightarrow \quad 6 x+2 y=46$
or $6 x+2 y=6$
On
On solving Eqs. (i) and (ii), we get

$$
x=7, y=2
$$

Similarly, solving Eqs. (i) and (iii), we get $x=1, y=0$
Hence, coordinates of P are $(7,2)$ or $(1,0)$.
9. (B) We have equation of line is
$b x \cos \alpha+a y \sin \alpha=a b$
Perpendicular distance from point
$\left(\sqrt{a^{2}-b^{2}}, 0\right)$ is
$d_{1}=\left|\frac{b \cos \alpha \sqrt{a^{2}-b^{2}}+0-a b}{\sqrt{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha}}\right|$
Similarly, perpendicular distance from point $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ is
$d_{2}=\left|\frac{-b \cos \alpha \sqrt{a^{2}-b^{2}}+0-a b}{\sqrt{b^{2} \cos ^{2} a+a^{2} \sin ^{2} a}}\right|$
Now, $d_{1} \times d_{2}$
$=\frac{\left(b \cos \alpha \sqrt{a^{2}-b^{2}}-a b\right)\left(b \cos \alpha \sqrt{a^{2}-b^{2}}+a b\right)}{\left(\sqrt{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha}\right)\left(\sqrt{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha}\right)}$
$=\frac{b^{2} \cos ^{2} \alpha\left(a^{2}-b^{2}\right)-a^{2} b^{2}}{b^{2} \cos ^{2} a+a^{2} \sin ^{2} a}$
$=\frac{a^{2} b^{2} \cos ^{2} \alpha-b^{4} \cos ^{2} \alpha-a^{2} b^{2}}{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha}$
$=\frac{a^{2} b^{2}\left(\cos ^{2} \alpha-1\right)-b^{4} \cos ^{2} \alpha}{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha}$
$=\frac{-b^{2}\left[a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha\right]}{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha}$
$=-b^{2}=b^{2}$ (Since, distance is positive).
10. (D) Equation of line passing through the points $(2,1,3)$ and $(4,-2,5)$ is

$$
\begin{aligned}
& \frac{x-2}{4-2}=\frac{y-1}{-2-1}=\frac{z-3}{5-3}=\lambda \\
& \Rightarrow \frac{x-2}{2}=\frac{y-1}{-3}=\frac{z-3}{2}=\lambda \\
& \Rightarrow x=2 \lambda+2, y=-3 \lambda+1 \text { and } z=2 \lambda+3
\end{aligned}
$$

Since, this line cuts the plane $2 x+y-z=3$.
So, $(2 \lambda+2,-3 \lambda+1,2 \lambda+3)$ satisfies the equation of plane.

$$
\begin{array}{ll}
\therefore & 2(2 \lambda+2)-3 \lambda+1-2 \lambda-3=3 \\
\Rightarrow & \lambda=-1
\end{array}
$$

Hence, points are
$[2(-1)+2,-3(-1)+1,2(-1)+3]$ i.e. $(\mathbf{0}, \mathbf{4}, \mathbf{1})$.
11. (D) Let the ratio plane divides the line is $k: 1$
$(2,1,3)$

Then, $0=\frac{4 k+2}{k+1}$
$\Rightarrow 4 k+2=0 \Rightarrow \mathrm{k}=-\frac{1}{2}$
and $4=\frac{-2 k+1}{k+1}$
$\Rightarrow 4 k+4=-2 k+1 \Rightarrow k=-\frac{1}{2}$
Hence, plane divides the line in ratio $\mathbf{1}: 2$ externally.
12. (A) $P\left(A / B^{C}\right)=\frac{P\left(A \cap B^{C}\right)}{P\left(B^{C}\right)}=\frac{P(A)-P(B)}{1-P(B)}$
13. (D)Angle between the regression lines will be

$$
\begin{aligned}
& \tan \theta=\left\{\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\right)\right\} \\
& \Rightarrow \tan \frac{\pi}{2}=\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\right) \\
& \Rightarrow \quad \frac{1}{0}=\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\right) \\
& \Rightarrow r\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)=0 \\
& \therefore \quad r=0
\end{aligned}
$$

14. (A) \therefore Total number of arrangements $=\frac{10!}{2!}$

Total number of arrangements when I's comes together $=9$!
and favourable arrangements $=\frac{10!}{2!}-9!$
\therefore Required probability $=\frac{\frac{10!}{2!}-9!}{\frac{10!}{2!}}$

$$
=\frac{(10-2) \times 9!}{10 \times 9!}=\frac{4}{5}
$$

15. (D) Let A and B be the events that X and Y qualify the examination respectively, We have, $P(A)=0.05, P(B)=0.10$ and $P(A \cap B)=0.02$,
then
P (only one of A and B will qualify the
examination) $=P(A \cap \bar{B})+\mathrm{P}(B \cap \bar{A})$
$=P(A)-P(A \cap B)+P(B)-P(A \cap B)$
$=P(A)+P(B)-2 \mathrm{P}(A \cap B)$
$=0.05+0.1-2(0.02)$
$=0.15-0.04=0.11$
16. (B) Let S be the sample space of the experiment and E be the event that at most three tails occur.
Clearly, $n(S)=2^{4}=16$
and $n(E)={ }^{4} \mathrm{C}_{0}+{ }^{4} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{3}$

$$
=1+4+6+4=15
$$

$\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{15}{16}$
17. (B) $\sin ^{2} 66 \frac{1}{2}^{\circ}-\sin ^{2} 23 \frac{1}{2}^{\circ}$
$\Rightarrow\left[\sin \left(90^{\circ}-23 \frac{1^{\circ}}{2}\right)\right]^{2}-\sin ^{2} 23 \frac{1^{\circ}}{2}$
$\Rightarrow \cos ^{2} 23 \frac{1^{\circ}}{2}-\sin ^{2} 23 \frac{1^{\circ}}{2}$
$\Rightarrow \cos 2\left(23 \frac{1}{2}^{\circ}\right)$
$\Rightarrow \cos \left[2 \times\left(\frac{47}{2}\right)^{\circ}\right]=\cos 47^{\circ}$
(18-20) : We know that
De Moivre's Theorem
$(\cos n \theta+i \sin n \theta)=(\cos \theta+i \sin \theta)^{n}$
$\Rightarrow \cos 5 \theta+i \sin 5 \theta=(\cos \theta+i \sin \theta)^{5}$
$\Rightarrow \cos 5 \theta+i \sin 5 \theta={ }^{5} C_{0}(\cos \theta)^{5}(i \sin \theta)^{0}$
$+{ }^{5} C_{1}(\cos \theta)^{4}(i \sin \theta)^{1}+{ }^{5} C_{2}(\cos \theta)^{3}(i \sin \theta)^{2}$
$+{ }^{5} C_{3}(\cos \theta)^{2}(i \sin \theta)^{3}+{ }^{5} C_{4}(\cos \theta)(i \sin \theta)^{4}$
${ }^{5}{ }_{5}(\cos \theta)^{0}(i \sin \theta)^{5}$
On comparing
$\sin 5 \theta={ }^{5} C_{1} \cos ^{4} \theta \cdot \sin \theta-{ }^{5} C_{3} \cos ^{2} \theta \cdot \sin ^{3} \theta+$
${ }^{5} C_{5} \sin ^{5} \theta$
$\Rightarrow \sin 5 \theta=5 \cos ^{4} \theta \cdot \sin \theta-10 \cos ^{2} \theta \cdot \sin ^{3} \theta+\sin ^{5} \theta$
$\Rightarrow \sin 5 \theta=5\left(1-\sin ^{2} \theta\right)^{2} \cdot \sin \theta-$
$10\left(1-\sin ^{2} \theta\right) \cdot \sin ^{3} \theta+\sin ^{5} \theta$
$\Rightarrow \sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta$
Similarly

$$
\begin{aligned}
& \cos 3 \theta+i \sin 3 \theta={ }^{3} C_{0}(\cos \theta)^{3}(i \sin \theta)^{0} \\
&+{ }^{3} C_{1}(\cos \theta)^{2}(i \sin \theta)^{1}+{ }_{2} C_{2}(\cos \theta)^{1}(i \sin \theta)^{2} \\
&+{ }^{3} C_{3}(\cos \theta)^{\circ}(i \sin \theta)^{3}
\end{aligned}
$$

On comparing
$\sin 3 \theta={ }^{3} C_{1} \cos ^{2} \theta \cdot \sin \theta-{ }^{3} C_{3} \sin ^{3} \theta$
$\Rightarrow \sin 3 \theta=3 \cos ^{2} \theta \cdot \sin \theta-\sin ^{3} \theta$
$\Rightarrow \sin 3 \theta=3\left(1-\sin ^{2} \theta\right) \cdot \sin \theta-\sin ^{3} \theta$
$\Rightarrow \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
Given that
$16 \sin ^{5} \theta=p \sin 5 \theta+q \sin 3 \theta+r \sin \theta$
$\Rightarrow 16 \sin ^{5} \theta=p\left(16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta\right)$
$q\left(3 \sin \theta-4 \sin ^{3} \theta\right)+r \sin \theta$
$\Rightarrow 16 \sin ^{5} \theta=16 p \sin ^{5} \theta+(-20 p-4 q) \sin ^{3} \theta$
$+(5 p+3 q+r) \sin \theta$
On comparing
$16=16 p \Rightarrow p=1$
or $-20 p-4 q=0$
$\Rightarrow-20-4 q=0 \Rightarrow q=-5$
or $5 p+3 q+r=0$
$\Rightarrow 5+3(-5)+r=0 \Rightarrow r=10$
18. (A) $p=1$
19. (D) $q=-5$
20. (C) $r=10$
21. (A) Let $\vec{a}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\hat{k}$
and $\vec{b}=\frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}+\hat{k}$
$\therefore \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$\cos \theta=\frac{\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\hat{k}\right) \cdot\left(\frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}+\hat{k}\right)}{\sqrt{\frac{1}{2}+\frac{1}{2}+1} \sqrt{\frac{1}{2}+\frac{1}{2}+1}}$
$\cos \theta=\frac{\frac{1}{2}-\frac{1}{2}+1}{\sqrt{2} \cdot \sqrt{2}}$
$\cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
22. (A) Let $\vec{a}=\lambda \hat{i}+(1+\lambda) \hat{j}+(1+2 \lambda) \hat{k}$
and $\vec{b}=(1-\lambda) \hat{i}+\lambda \hat{j}+2 \hat{k}$
\vec{a} and \vec{b} are perpendicular to each other
$\vec{a} \cdot \vec{b}=0$
$\Rightarrow[\lambda \hat{i}+(1+\lambda) \hat{j}+(1+2 \lambda) \hat{k}] \cdot[(1-\lambda)] \hat{i}+\lambda \hat{j}+2 \hat{k}]=0$
$\Rightarrow \lambda(1-\lambda)+(1+\lambda) \lambda+(1+2 \lambda) \times 2=0$
$\Rightarrow 6 \lambda+2=0$
$\Rightarrow \lambda=-\frac{2}{6}=-\frac{1}{3}$
23. (A) Let h be the height, R be the radius and V be the volume of cylinder.
In $\Delta \mathbf{O A B}: \mathrm{OA}=\mathrm{OC}=h / 2$

$$
\begin{equation*}
r^{2}=R^{2}+\left(\frac{h}{2}\right)^{2} \tag{i}
\end{equation*}
$$

Clearly, $\quad V=\pi \mathrm{R}^{2} h$

$$
\begin{align*}
& \Rightarrow \mathrm{V}(h)=\pi\left(r^{2}-\frac{h^{2}}{4}\right) h \quad \text { [using Eq. (i)] } \\
& \Rightarrow \quad \mathrm{V}(h)=\pi\left(r^{2} h-\frac{h^{3}}{4}\right) \\
& \Rightarrow \quad \mathrm{V}^{\prime}(h)=\pi\left(r^{2}-\frac{3 h^{2}}{4}\right) \tag{ii}
\end{align*}
$$

For maximum, put $V^{\prime}(h)=0$

$$
\begin{aligned}
& \Rightarrow \quad r^{2}=\frac{3 h^{2}}{4} \Rightarrow h^{2}=\frac{4 r^{2}}{3} \\
& \Rightarrow \quad h=\frac{2 r}{\sqrt{3}} \quad(\because h>0)
\end{aligned}
$$

Again, differentiating Eq. (ii) w.r.t.' h '

$$
\begin{aligned}
V^{\prime \prime}(h) & =\left(\frac{-6 h}{4}\right) \\
\Rightarrow \quad V^{\prime \prime}\left(\frac{2 r}{\sqrt{3}}\right) & =\pi\left(\frac{-6}{4} \times \frac{2 r}{\sqrt{3}}\right)<0 \text { (maxima) }
\end{aligned}
$$

Thus, the volume is maximum when $h=\frac{2 r}{\sqrt{3}}$.
24. (B) Clearly, volume of cylinder is maximum when $h=\frac{2 r}{\sqrt{3}}$.

By using the relation $r^{2}=\mathrm{R}^{2}+\left(\frac{h}{2}\right)^{2}$,
we have

$$
\begin{aligned}
R^{2} & =r^{2}-\frac{h^{2}}{4} \\
R^{2} & =r^{2}-\frac{r^{2}}{3} \\
R^{2} & =\frac{2 r^{2}}{3} \Rightarrow R=\frac{\sqrt{2} r}{\sqrt{3}}(\because \mathrm{R}>0)
\end{aligned}
$$

(25-26)
Given, a rectangular box is to be made from a sheet of size $24^{\prime \prime} \times 9^{\prime \prime}$ by cutting out identical square of side length x from the four corners.

Clearly, the length of rectangular box $=24-2 x$, the height of rectangular box $=x$ and the width of rectangular box $=9-2 x$.
25. (C) Let V be the volume of the box.
$\therefore \quad \mathrm{V}(x)=(24-2 x) \cdot(9-2 x) \cdot x$
$\mathrm{V}(x)=\left(216-48 x-18 x+4 x^{2}\right) \cdot x$
$\mathrm{V}(x)=4 x^{3}-66 x^{2}+216 x$
$\Rightarrow \mathrm{V}^{\prime}(x)=12 x^{2}-132 x+216$
For maximum, put $\mathrm{V}^{\prime}(x)=0$
$\Rightarrow 12 x^{2}-132 x+216=0$
$\Rightarrow x^{2}-11 x+18=0$
$\Rightarrow(x-9)(x-2)=0$
$\Rightarrow x=9$ or $x=2$
Now, $\mathrm{V}^{\prime \prime}(x)=24 x-132$
$\therefore \quad \mathrm{V}^{\prime \prime}(9)=216-132=84>0$ (minima) and $\mathrm{V}^{\prime \prime}(2)=48-132=-84<0$ (maxima) Thus, volume is maximum when $x=2$ inch.
26. (A) Maximum volume of $\mathrm{box}=(24-4) \cdot(9-4) \cdot 2$ $=20 \times 5 \times 2=200 \mathrm{cu}$ inch
27. (B) Consider the given expression is
$y=\frac{2}{3 C}(\mathrm{C} x-1)^{3 / 2}+\mathrm{B}$
On differentiating both sides w.r.t. ' x '
$\frac{d y}{d x}=\frac{2}{3 C} \cdot \frac{3}{2}(\mathrm{C} x-1)^{1 / 2} \cdot \mathrm{C}+0=(\mathrm{C} x-1)^{1 / 2}$
On squaring both sides, we get
$\left(\frac{d y}{d x}\right)^{2}=\mathrm{C} x-1$
$\Rightarrow\left(\frac{d y}{d x}\right)^{2}+1=\mathrm{C} x$
Now, on differentiating w.r.t. ' x ', we get
$2\left(\frac{d y}{d x}\right) \cdot \frac{d^{2} y}{d x^{2}}=\mathrm{C}$
From Eq. (i)
$\left(\frac{d y}{d x}\right)^{2}+1=2 x\left(\frac{d y}{d x}\right) \frac{d^{2} y}{d x^{2}}$
28. (A) $\because \alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$

Also, $\alpha+h+\beta+h=-\frac{q}{p}$
$\Rightarrow \alpha+\beta+2 h=-\frac{q}{p}$
$\Rightarrow 2 h=-\frac{q}{p}+\frac{b}{a}$
$\left(\because \alpha+\beta=-\frac{b}{a}\right)$
$\Rightarrow h=\frac{1}{2}\left[\frac{b}{a}-\frac{q}{p}\right]$
29. (B) $\left|\begin{array}{lll}a & b & 0 \\ 0 & a & b \\ b & 0 & a\end{array}\right|=0$
$\Rightarrow a\left[a^{2}-0\right]-b\left[-b^{2}\right]+0$
$\Rightarrow a^{3}+b^{3}=0$
$\Rightarrow a^{3}=-b^{3} \Rightarrow\left(\frac{a}{b}\right)^{3}=-1$
Hence, $\frac{a}{b}$ is one of the cube roots of -1 .
30. (B) Given that, $X=$ Collection of all people living in a city
Let R is related to x where $x<y$ if y is
atleast 5 years older than x.
It is clear that $x \nless x$, Hence R is not reflexive.
Now, let x R y such that $x<y$, i.e. y is at least 5 year older than x.
Then, x must be younger than y.
It is clear that $y \nless x$, hence R is not symmetric.
Now, let $x R y$ and y Rz.
Then, $x<y$ and $y<z$.
It is clear that $x<z$.
Hence, R is transitive.
31. (B)
$\left[\begin{array}{lll}1 & 5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is an elementary matrix because its value $=1$.
32. (C) Given that, $\left(x^{2}+2\right)^{2}+8 x^{2}=6 x\left(x^{2}+2\right)$
$\Rightarrow x^{4}+4+4 x^{2}+8 x^{2}=6 x^{3}+12 x$
$\Rightarrow x^{4}-6 x^{3}+12 x^{2}-12 x+4=0$
let $P(x)=x^{4}-6 x^{3}+12 x^{2}-12 x+4$
and $P(-x)=x^{4}+6 x^{3}+12 x^{2}+12 x+4$
Thus we can say that any negative real roots is not possible but four positive roots are possible. Instead of these, this is clear that sum of all the roots is 6 . Hence, both the statements given are true.
33. (D) A square matrix A is called skew

Hermitian; if $(\bar{A})^{\prime}=-\mathrm{A}$
Now, $\mathrm{A}=\left[\begin{array}{cc}0 & -4+i \\ 4+i & 0\end{array}\right]$
$\Rightarrow \bar{A}=\left[\begin{array}{cc}0 & -4-i \\ 4-i & 0\end{array}\right]$
$\Rightarrow(\bar{A})^{\prime}=\left[\begin{array}{cc}0 & 4-i \\ -4-i & 0\end{array}\right]$
$\Rightarrow(\bar{A})^{\prime}=-\left[\begin{array}{cc}0 & -4+i \\ 4+i & 0\end{array}\right]$
$\Rightarrow(\bar{A})^{\prime}=-A$
Hence, it is clear that given matrix is a skew Hermitian.
34. (D) $0.5+0.55+0.555+\ldots+n$ terms
$\Rightarrow \frac{5}{10}+\frac{55}{100}+\frac{555}{1000}+\ldots n$ terms
$\Rightarrow 5\left[\frac{1}{10}+\frac{11}{100}+\frac{111}{1000}+\ldots n\right.$ terms $]$
$\Rightarrow \frac{5}{9}\left[\frac{9}{10}+\frac{99}{100}+\frac{999}{1000}+\ldots n\right.$ terms $]$
$\Rightarrow \frac{5}{9}\left[\frac{(10-1)}{10}+\frac{\left(10^{2}-1\right)}{10^{2}}+\ldots n\right.$ terms $]$
$\Rightarrow \frac{5}{9}(1+1+1 \ldots n$ terms $)-$

$$
-\frac{5}{9}\left[\frac{1}{10}+\frac{1}{10^{2}}+\ldots n \text { terms }\right]
$$

$\Rightarrow \frac{5}{9}\left[n-\frac{\frac{1}{10}\left(1-\frac{1}{10^{n}}\right)}{1-\frac{1}{10}}\right]$
$\Rightarrow \frac{5}{9}\left[n-\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)\right]$
35. (C) The no. of subsets of $\mathrm{A}={ }^{10} \mathrm{C}_{2}$

$$
=\frac{10 \times 9}{2}=45
$$

36. (A) $\because A X=B$
$\therefore\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]=\left[\begin{array}{cc}5 & 2 \\ -2 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}3 p+q & -4 p-q \\ 3 r+s & -4 r-s\end{array}\right]=\left[\begin{array}{cc}5 & 2 \\ -2 & 1\end{array}\right]$
$\Rightarrow 3 p+q=5$ and $-4 p-q=2$
For solving $p=-7$ and $q=26$
Now, $3 r+s=-2$ and $-4 r-s=1$
For solving, $r=1$ and $s=-5$
$\therefore A=\left[\begin{array}{cc}-7 & 26 \\ 1 & -5\end{array}\right]$
37. (C) Required no. of words $=\frac{6!}{2!}-\frac{4!\times 3!}{2!}$

$$
=360-72=288
$$

38. (B) $\left(x^{3}-1\right)=(x-1)\left(x^{2}+1+x\right)$
$=(x-1)\left(x^{2}+x-\omega-\omega^{2}\right)\left(\because 1+\omega+\omega^{2}=0\right)$
$=(x-1)\left(x^{2}-\omega^{2}+x-\omega\right)$
$=(x-1)[(x-\omega)(x+\omega)+(x-\omega)]$
$=(x-1)(x-\omega)(x+\omega+1)$
$=(x-1)(x-\omega)\left(x-\omega^{2}\right)$
39. (C) let $Z=\left[\frac{\sin \frac{\pi}{6}+i\left(1-\cos \frac{\pi}{6}\right)}{\sin \frac{\pi}{6}-i\left(1-\cos \frac{\pi}{6}\right)}\right]^{3}$

$$
\begin{aligned}
& =\left[\frac{2 \sin \frac{\pi}{12} \cdot \cos \frac{\pi}{12}+i \cdot 2 \sin ^{2} \frac{\pi}{12}}{2 \sin \frac{\pi}{12} \cdot \cos \frac{\pi}{12}-i \cdot 2 \sin ^{2} \frac{\pi}{12}}\right]^{3} \\
& =\left[\frac{\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}}{\cos \frac{\pi}{12}-i \sin \frac{\pi}{12}}\right]^{3} \\
& =\left[\frac{\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)}{\left(\cos \frac{\pi}{12}-i \sin \frac{\pi}{12}\right)\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)}\right]^{3}
\end{aligned}
$$

$$
=\left[\frac{\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)^{2}}{\cos ^{2} \frac{\pi}{12}+\sin ^{2} \frac{\pi}{12}}\right]^{3}
$$

$$
=\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)^{6}
$$

$$
=\left[\cos \left(6 \times \frac{\pi}{12}\right)+i \sin \left(6 \times \frac{\pi}{12}\right)\right]
$$

$$
=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=0+i=i
$$

40. (C) $\frac{\theta^{\circ}}{\theta^{C}}=\frac{180^{\circ}}{\pi} \Rightarrow \theta^{C}=\frac{\pi \times \theta^{\circ}}{180^{\circ}}$

$$
\begin{aligned}
& \text { and } \theta^{\circ} \times \theta^{c}=\frac{125 \pi}{9} \\
& \therefore \theta^{\circ} \times \frac{\pi \times \theta^{\circ}}{180^{\circ}}=\frac{125 \pi}{9} \\
& \Rightarrow\left(\theta^{\circ}\right)^{2}=\frac{125}{9} \times 180^{\circ} \\
& \Rightarrow\left(\theta^{\circ}\right)^{2}=125 \times 20^{\circ} \\
& \Rightarrow\left(\theta^{\circ}\right)^{2}=\left(5 \times 10^{\circ}\right)^{2} \Rightarrow \theta=50^{\circ}
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
41. (B) Let AB is tower and its height $=h \mathrm{~m}$

In $\triangle \mathrm{ABC}$:
$\tan 47^{\circ}=\frac{h}{36}$
In $\triangle \mathrm{ABD}$:
$\tan 43^{\circ}=\frac{h}{49}$
from eq. (i) and (ii)
$\Rightarrow \tan 47^{\circ} \cdot \tan 43^{\circ}=\frac{h^{2}}{36 \times 49}$
$\Rightarrow \tan 47^{\circ} \cdot \cot 47^{\circ}=\frac{h^{2}}{36 \times 49}$
$\Rightarrow 1=\frac{h^{2}}{36 \times 49}$
$\Rightarrow h^{2}=49 \times 36$
$\Rightarrow h=7 \times 6=42$
Hence, height of tower $=42$ metre
42. (B) $(1-\sin A+\cos A)^{2}$
$\Rightarrow 1+\sin ^{2} A+\cos ^{2} A-2 \sin A-2 \sin A \cdot \cos A$
$+2 \cos A$
$\Rightarrow 1+1-2 \sin A-2 \sin A \cdot \cos A+2 \cos A$
$\Rightarrow 2+2 \cos A-2 \sin A-2 \sin A \cdot \cos A$
$\Rightarrow 2(1+\cos A)-2 \sin A(1+\cos A)$
$\Rightarrow 2(1+\cos A)(1-\sin A)$
$\Rightarrow 2(1-\sin A)(1+\cos A)$
43. (A) let $P(x, y)$ is circumcentre of $\triangle \mathrm{ABC}$.
$\therefore \mathrm{AP}^{2}=P B^{2}$
$\Rightarrow(x+2)^{2}+(y-3)^{2}=(x-2)^{2}+(y-1)^{2}$
$\Rightarrow x^{2}+4+4 x+y^{2}+9-6 y$

$$
=x^{2}+4-4 x+y^{2}+1-2 y
$$

$\Rightarrow 4 x+9-6 y=-4 x+1-2 y$
$\Rightarrow 8 x-4 y+8=0$
$\Rightarrow 2 x-y+2=0$
and $\quad A P^{2}=P C^{2}$
$\Rightarrow(x+2)^{2}+(y-3)^{2}=(x-1)^{2}+(y-2)^{2}$
$\Rightarrow x^{2}+4+4 x+y^{2}+9-6 y$

$$
=x^{2}+1-2 x+y^{2}+4-4 y
$$

$\Rightarrow 4 x-6 y+9=-2 x-4 y+1$
$\Rightarrow 6 x-2 y+8=0$
$\Rightarrow 3 x-y+4=0$
On solving the equation (i) and (ii)
$x=y=-2$
\therefore circumcentre of circle $=(-2,-2)$
44. (B) cenroid of $\triangle A B C=\left(\frac{-2+2+1}{3}, \frac{3+1+2}{3}\right)$

$$
=\left(\frac{1}{3}, 2\right)
$$

45. (D) In $\triangle A B C$, let D is the foot of altitude drawn from point A.

C $(1,2)$

$\mathrm{A}(-2,3) \quad(2,1)$
Slope of $B C\left(m_{1}\right)=\frac{1-2}{2-1}=-1$
and slope of $A D\left(m_{2}\right)=\frac{y_{1}-3}{x_{1}+2}$
We know that

$$
\begin{aligned}
& m_{1} \cdot m_{2}=-1 \\
& \Rightarrow-1 \times \frac{y_{1}-3}{x_{1}+2}=-1 \\
& \Rightarrow y_{1}-3=x_{1}+2 \\
& \Rightarrow \quad y_{1}-x_{1}=5
\end{aligned}
$$

Only $(-1,4)$ satisfies the above equation from given point.
46. (A) Hence point on the parabola $y^{2}=4 a x$ nearest to the focus has its abscissa $x=0$

47. (B) Equation of given line is $y=3-3 x$

Slope of given line $m=-3$
\therefore slope of the perpendicular line

$$
\mathrm{m}^{\prime}=\frac{-1}{m}=\frac{1}{3}
$$

\therefore Required equation of line

$$
\begin{aligned}
& y-2=\frac{1}{3}(x-2) \\
\Rightarrow & 3 y-6=x-2 \\
\Rightarrow & 3 y-x=4 \\
\Rightarrow & \frac{x}{-4}+\frac{y}{4 / 3}=1
\end{aligned}
$$

$\therefore y$-intercepts $=\frac{4}{3}$
48. (A) Given that,

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{i}
\end{equation*}
$$

and $\frac{x}{b}+\frac{y}{a}=1$
$\Rightarrow b x+a y=a b$ and $a x+b y=a b$
$\therefore b x+a y=a x+b y$
$\begin{array}{ll}\Rightarrow x(b-a) & =y(b-a) \\ \Rightarrow \quad x & =y\end{array}$
From equation (i)
$\frac{y}{a}+\frac{y}{b}=1 \Rightarrow y=\frac{a b}{a+b}$ and $x=\frac{a b}{a+b}$
\therefore The line joining the Points $(0,0)$ and
$\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$ is
$\Rightarrow y-0=\frac{\frac{a b}{a+b}-0}{\frac{a b}{a+b}-0}(x-0)$
$\Rightarrow y=x \Rightarrow x-y=0$
(49-50)
49. (D) length of the line segment

$$
\begin{aligned}
& =\sqrt{(12)^{2}+(4)^{2}+(3)^{2}} \\
& =\sqrt{144+16+9} \\
& =\sqrt{169}=13 \text { units }
\end{aligned}
$$

50. (A) Direction Cosines of the line segment

$$
=\left(\pm \frac{12}{13}, \pm \frac{4}{13}, \pm \frac{3}{13}\right)
$$

51. (A) Given that centroid $=(1,2,3)$

Let equation of plane is $\frac{x}{A}+\frac{y}{B}+\frac{z}{C}=1$
Hence, 3, 6, 9 are respectively intercepts cut on x-axis, y-axis, and z-axis.
52. (D) \therefore Equation of plane ABC is $\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1$ $6 x+3 y+2 z=18$
53. (C) Statement 1
$y=f(x)=\frac{e^{x}+e^{-x}}{2}$
$\Rightarrow f^{\prime}(x)=\frac{e^{x}-e^{-x}}{2}$
$\Rightarrow f^{\prime}(x)=\frac{1}{2}\left(e^{x}-\frac{1}{e^{x}}\right)$
$\Rightarrow f^{\prime}(x)=\frac{1}{2}\left(\frac{e^{2 x}-1}{e^{x}}\right)$
Now, for $x \geq 0,2 x \geq 0$
$\Rightarrow e^{2 x} \geq e^{0}\left(\because e^{x}\right.$ is a increasing function $)$
\therefore for $x \geq 0, \mathrm{e}^{x} \geq 1$

From equation (i)
$f^{\prime}(x)=\frac{1}{2}\left(\frac{e^{2 x}-1}{e^{x}}\right) \geq 0$
Hence, $y=f(x)=\frac{e^{x}+e^{-x}}{2}$, increasing
function in $[0, \infty]$
Statement 1 is correct.
Statement 2
$y=g(x)=\frac{e^{x}-e^{-x}}{2}$
$\Rightarrow g^{\prime}(x)=\frac{e^{x}+e^{-x}}{2}$
$\left[\because\right.$ both e^{x} and e^{-x} is more than 0 in $\left.(-\infty, \infty)\right]$
Hence, $y=g(x)=\frac{e^{x}-e^{-x}}{2}$ increasing
function in intervel $(-\infty, \infty)$.
Statement 2 is correct.
54. (B) let $u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ and $v=\tan ^{-1} x$

On putting $x=\tan \theta$
$\Rightarrow u=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}\right)$
$\Rightarrow u=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{\theta}{2}$
$\Rightarrow u=\frac{1}{2} \tan ^{-1} x$
$\Rightarrow u=\frac{1}{2} v$
On differentiating both side w.r.t. ' v '
$\Rightarrow \frac{d u}{d v}=\frac{1}{2}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
55. (B) $f(x)=\log _{e}\left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{2}}{1+3 x^{2}}$

Now, $g \circ f\left(\frac{e-1}{e+1}\right)=g\left[f\left(\frac{e-1}{e+1}\right)\right]$.

$$
\begin{aligned}
& \Rightarrow \quad g \circ f\left(\frac{e-1}{e+1}\right)=g\left[\log _{\mathrm{e}}\left(\frac{1+\frac{e-1}{e+1}}{1-\frac{e-1}{e+1}}\right)\right] \\
& \Rightarrow \quad g \circ f\left(\frac{e-1}{e+1}\right)=g\left[\log _{e}\left(\frac{e+1+e-1}{e+1-e+1}\right)\right] \\
& \Rightarrow \quad g \circ f\left(\frac{e-1}{e+1}\right)=g\left[\log _{e}\left(\frac{2 e}{2}\right)\right]
\end{aligned}
$$

$$
\Rightarrow \quad g \circ f\left(\frac{e-1}{e+1}\right)=g\left[\log _{e} e\right]
$$

$$
\Rightarrow g \circ f\left[\frac{e-1}{e+1}\right]=g(1)
$$

$\Rightarrow g \circ f\left[\frac{e-1}{e+1}\right]=\frac{3(1)+(1)^{2}}{1+3(1)}$
$\Rightarrow g \circ f\left[\frac{e-1}{e+1}\right]=\frac{3+1}{1+3}=1$
56. (C) 1. Given that $f(x)=x^{3}, x \in \mathrm{R}$
$\Rightarrow f^{\prime}(x)=3 x^{2} \geq 0$
$\Rightarrow f$ is increasing function.
$\Rightarrow f$ is unique.
Hence f is inverse on its range.
2. Given that, $f(x)=\sin x, 0<x<2 \pi$
it is clear that, $f\left(\frac{\pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
and $f\left(\frac{2 \pi}{3}\right)=\sin \left(\pi-\frac{\pi}{3}\right)$
$\Rightarrow f\left(\frac{2 \pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
$\Rightarrow f$ is not unique.
Hence, f is not inverse on its range.
3. given that, $f(x)=\mathrm{e}^{x}, x \in R$
$\Rightarrow f^{\prime}(x)=\mathrm{e}^{x}, x>0$
Hence, f is a increasing function.
$\Rightarrow f$ is unique.
Hence, f is inverse on its range.
(57-58) let $I=\int \frac{d x}{a \cos x+b \sin x}$ now, put $a=r \sin \alpha$ and $b=r \cos \alpha$ where,

$$
\begin{aligned}
r & =\sqrt{a^{2}+b^{2}} \text { and } \alpha=\tan ^{-1}\left(\frac{a}{b}\right) \\
\therefore I & =\frac{1}{r} \int \frac{d x}{\sin \alpha \cdot \cos x+\cos \alpha \cdot \sin x} \\
& =\frac{1}{r} \int \frac{d x}{\sin (x+\alpha)}=\frac{1}{r} \int \operatorname{cosec}(x+\alpha) d x \\
& =\frac{1}{r} \ln [\operatorname{cosec}(x+\alpha)-\cot (x+a)]+C \\
& =\frac{1}{r} \ln \left[\frac{1}{\sin (x+\alpha)}-\frac{\cos (x+\alpha)}{\sin (x+\alpha)}\right]+C \\
& =\frac{1}{r} \ln \left[\frac{1-\cos (x+\alpha)}{\sin (x+\alpha)}\right]+C
\end{aligned}
$$

$$
=\frac{1}{r} \ln \left[\frac{2 \sin ^{2}\left(\frac{x+\alpha}{2}\right)}{2 \sin \left(\frac{x+\alpha}{2}\right) \cdot\left(\frac{x+\alpha}{2}\right)}\right]+C
$$

$$
=\frac{1}{r} \ln \left[\tan \frac{x+\alpha}{2}\right]+C
$$

57. (B)
58. (A)
(59-60)
curves $y=\sin x$ and $y=\cos x$

59. (A) Required Area $=$ Area of curve OABO.

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x \\
& =[\sin x+\cos x]_{0}^{\pi / 2} \\
& =\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-0-1=(\sqrt{2}-1)
\end{aligned}
$$

60. (A) Required Area $=$ Area of curve ACDA

$$
\begin{aligned}
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin x-\cos x) d x \\
& =[-\cos x-\sin x]_{\pi / 4}^{\pi / 2} \\
& =-\left[0+1-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)\right. \\
& =(\sqrt{2}-1)
\end{aligned}
$$

(61-63)
61. (B) $x=\frac{a\left(1-t^{2}\right)}{\left(1+t^{2}\right)}, y=\frac{2 a t}{1+t^{2}}$

On squaring and adding
$\Rightarrow x^{2}+y^{2}=\frac{a^{2}\left(1-t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}}+\frac{4 a^{2} t^{2}}{\left(1+t^{2}\right)^{2}}$
$\Rightarrow \quad x^{2}+y^{2}=\frac{a^{2}}{\left(1+t^{2}\right)^{2}}\left[\left(1-t^{2}\right)^{2}+4 t^{2}\right]$
$\Rightarrow x^{2}+y^{2}=\frac{a^{2}}{\left(1+t^{2}\right)^{2}}\left[1+t^{4}-2 t^{2}+4 t^{2}\right]$
$\Rightarrow x^{2}+y^{2}=\frac{a^{2}}{\left(1+t^{2}\right)^{2}} \times\left(1+t^{2}\right)^{2}=a^{2}$
$\Rightarrow x^{2}+y^{2}=a^{2}$
Equation (i) represents a circle whose radius is a.
62. (D) $x=\frac{a\left(1-t^{2}\right)}{\left(1+t^{2}\right)}$

$$
\begin{aligned}
& \Rightarrow \frac{d x}{d t}=a\left[\frac{\left(1+t^{2}\right)(-2 t)-\left(1-t^{2}\right)(2 t)}{\left(1+t^{2}\right)^{2}}\right] \\
& \Rightarrow \frac{d x}{d t}=-2 a t\left[\frac{1+t^{2}+1-t^{2}}{\left(1+t^{2}\right)^{2}}\right]=\frac{-2 a t \times 2}{\left(1+t^{2}\right)^{2}} \\
& \Rightarrow \frac{d x}{d t}=\frac{-4 a t}{\left(1+t^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{align*}
& \text { and } y=\frac{2 a t}{1+t^{2}} \\
& \Rightarrow \frac{d y}{d t}=2 a\left[\frac{\left(1+t^{2}\right) \cdot 1-t \cdot(2 t)}{\left(1+t^{2}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d t}=\frac{2 a\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} \\
& \text { Now, } \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x} \\
& \frac{d y}{d x}=\frac{2 a\left(1-\mathrm{t}^{2}\right)}{\left(1+t^{2}\right)^{2}} \times \frac{\left(1+t^{2}\right)^{2}}{-4 a t} \\
& \frac{d y}{d x}=\frac{-\left(1-t^{2}\right)}{2 t}=-\frac{x}{y} \tag{ii}
\end{align*}
$$

63. (D) From equation (ii)

$$
\begin{aligned}
& y \frac{d y}{d x}=-x \\
& \Rightarrow y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=-1 \\
& \Rightarrow y \frac{d^{2} y}{d x^{2}}+\frac{x^{2}}{y^{2}}=-1 \quad \text { [from equation (ii)] } \\
& \Rightarrow y \frac{d^{2} y}{d x^{2}}=-1-\frac{x^{2}}{y^{2}} \\
& \Rightarrow y \frac{d^{2} y}{d x^{2}}=-\frac{\left(y^{2}+x^{2}\right)}{y^{2}} \\
& \therefore \frac{d^{2} y}{d x^{2}}=-\frac{a^{2}}{y^{3}} \quad \text { [from equation (i)] }
\end{aligned}
$$

(64-65)

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\left(\frac{1+x^{2}+x^{4}}{1+x+x^{2}}\right)=A x+B \\
& \Rightarrow \frac{d}{d x}\left[\frac{\left(x^{2}+x+1\right)\left(x^{2}-x-1\right)}{x^{2}+x+1}\right]=A x+B \\
& \Rightarrow \frac{d}{d x}\left(x^{2}-x+1\right)=\mathrm{A} x+\mathrm{B} \\
& \Rightarrow 2 x-1=\mathrm{A} x+\mathrm{B}
\end{aligned}
$$

Now, equating both the sides ;
$A=2, B=-1$
64. (C)
65. (A)

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(66-67) Given that, $\lim _{x \rightarrow \infty}\left(\frac{2+x^{2}}{1+x}-A x-B\right)=3$
$\Rightarrow \lim _{x \rightarrow \infty}\left(\frac{2+x^{2}-A x-A x^{2}-B-B x}{1+x}\right)=3$
by L-Hospital's Rule
$\Rightarrow \lim _{x \rightarrow \infty}\left(\frac{2 x-A-2 A x-B}{1}\right)=3$
$\Rightarrow \lim _{x \rightarrow \infty}[x(2-2 A)-(A+B)]=3$
Now, equating both the sides,
$\Rightarrow 2-2 A=0$ and $(A+B)=-3$
$\Rightarrow A=1$ and $(A+B)=-3$
$\Rightarrow A=1$ and $B=-4$
66. (B)
67. (C)
68. (A) Differential equation

$$
\begin{aligned}
& \sin \left(\frac{d y}{d x}\right)-a=0 \\
& \Rightarrow \sin \frac{d y}{d x}=a \\
& \Rightarrow \frac{d y}{d x}=\sin ^{-1} a \\
& \Rightarrow d y=\left(\sin ^{-1} a\right) d x
\end{aligned}
$$

Integrating both side

$$
\begin{aligned}
& \Rightarrow \int d y=\int\left(\sin ^{-1} a\right) d x+C \\
& \Rightarrow y=x\left(\sin ^{-1} a\right)+C
\end{aligned}
$$

69. (D) In $\triangle A B C, \overrightarrow{A B}=-2 \hat{i}+3 \hat{j}+2 \hat{k}$
and $\overrightarrow{\mathrm{AC}}=-4 \hat{i}+5 \hat{j}+2 \hat{k}$
$\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -2 & 3 & 2 \\ -4 & 5 & 2\end{array}\right|$
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=-4 \hat{i}-4 \hat{j}+2 \hat{k}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \sqrt{(-4)^{2}+(-4)^{2}+(2)^{2}}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \sqrt{36}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 6=3$ square units
70. (C) Median is used for the measure of central tendency.
71. (A) Let X and Y are two persons and they hit a target with the probability A and B respectively.
$\therefore P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$
Now, P (Probability of hitting the target by any one X or Y).
$=P(A \cap \bar{B})+P(\bar{A} \cap \mathrm{~B})$
$=P(\mathrm{~A}) \cdot \mathrm{P}(\bar{B})+P(\bar{A}) \cdot P(B)$
$=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}=\frac{3}{6}=\frac{1}{2}$
72. (D) let probability of success $(p)=\frac{1}{2}$
and probability of unsuccess $(q)=\frac{1}{2}$
let x is random variable which show for solving 5 questions. It is clear that
$x \sim$ bionomial distribution $\left(5, \frac{1}{2}\right)$
$\therefore P(X=x)={ }^{5} C_{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{5-x}$
(where, $x=0,1, \ldots ., 5$)
\therefore Required Probability
$=P(X \geq 2)=1-[P(X=0)+P(X=1)]$
$=1-\left[{ }^{5} C_{0}\left(\frac{1}{2}\right)^{5}+{ }^{5} C_{1}\left(\frac{1}{2}\right)^{5}\right]$
$=1-\frac{6}{32}=\frac{26}{32}=\frac{13}{16}$
73. (C) If $\mathrm{A} \subseteq \mathrm{B}$ then $A \cup B=B$ and $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$ then
it is clear that $\mathrm{P}(\mathrm{A} \cap \bar{B})=0$

$$
\begin{gathered}
P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)} \\
P(A /(A \cup B))=P(A / B)=\frac{P(A)}{P(B)} \\
\therefore P(B / A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A)}{P(A)}=1
\end{gathered}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
74. (C) Sample space in throwing of two dice.
$(1,1)(1,2),(1,3),(1,4)(1,5)(1,6)$
$(2,1)$ \qquad $(2,6)$
!
$(5,1)$ \qquad
$(6,1)$ $(6,6)$
$\because 5$ will never come on any dice.
\therefore Number of exhaustive events
$=36-6-6+1=25$
75. (B)
$\frac{\left[1+\left(i^{5}\right)^{4 n-1}\right]^{4 n+1}}{\left[1+\left(i^{5}\right)^{4 n+1}\right]^{4 n-1}}$
$\Rightarrow \frac{\left[1+(i)^{4 n-1}\right]^{4 n+1}}{\left[1+(i)^{4 n+1}\right]^{4 n-1}} \Rightarrow \frac{\left[1+i^{-1}\right]^{4 n+1}}{[1+i]^{4 n-1}}$
$\Rightarrow \frac{\left[1+\frac{1}{i}\right]^{4 n+1}}{[1+i]^{4 n-1}} \Rightarrow \frac{[1+i]^{4 n+1}}{[1+i]^{4 n-1} \cdot i^{4 n+1}}$
$\Rightarrow \frac{(1+i)^{2}}{i} \Rightarrow \frac{1+i^{2}+2 i}{i} \Rightarrow \frac{2 i}{i}=2$
76. (A) $\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right) \ldots$
...to $2 n$ factors
$\Rightarrow\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega\right)\left(1-\omega+\omega^{2}\right) \ldots$
... to $2 n$ factor
$\Rightarrow(-2 \omega)\left(-2 \omega^{2}\right)(-2 \omega)\left(-2 \omega^{2}\right) \ldots$ to $2 n$ factors
$\Rightarrow\left(2^{2} \omega^{3}\right)\left(2^{2} \omega^{3}\right) \ldots$ to n factors
$\Rightarrow\left(2^{2}\right)^{n}=2^{2 n}$
77. (A) We have, $\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{\omega^{2}\left(a+b \omega+c \omega^{2}\right)}{\omega^{2}\left(c+a \omega+b \omega^{2}\right)}+\frac{\omega\left(a+b \omega+c \omega^{2}\right)}{\omega\left(b+c \omega+a \omega^{2}\right)} \\
& \Rightarrow \frac{\omega^{2}\left(a+b \omega+c \omega^{2}\right)}{\left(c \omega^{2}+a \omega^{3}+b \omega^{4}\right)}+\frac{\omega\left(a+b \omega+c \omega^{2}\right)}{\left(b \omega+c \omega^{2}+a \omega^{3}\right)} \\
& \Rightarrow \frac{\omega^{2}\left(a+b \omega+c \omega^{2}\right)}{\left(a+b \omega+a \omega^{2}\right)}+\frac{\omega\left(a+b \omega+c \omega^{2}\right)}{a+b \omega+a \omega^{2}} \\
& \Rightarrow \omega^{2}+\omega=-1
\end{aligned}
$$

78. (A) Given, $(x-1)^{3}+8=0$
$\Rightarrow(x-1)^{3}=-8$
$\Rightarrow x-1=(-8)^{1 / 3}$
$\Rightarrow x-1=2(-1)^{1 / 3}$
$\Rightarrow x-1=2(-1)$ or $x-1=2(-\omega)$ or $x-1=2\left(-\omega^{2}\right)$
$\Rightarrow x-1=-2$ or $x-1=-2 \omega$ or $x-1=-2 \omega^{2}$
$\Rightarrow x=-1$ or $x=1-2 \omega$ or $x=1-2 \omega^{2}$
79.(B) Given equations are $p x^{2}+2 q x+r=0$ and $q x^{2}-2 \sqrt{p r} x+q=0$.
They have real roots.
$\therefore 4 q^{2}-4 p r \geq 0 \Rightarrow q^{2} \geq p r$
and from second $4(p r)-4 q^{2} \geq 0$
$\Rightarrow \quad p r \geq q^{2} \ldots$ (ii)
From Eqs. (i) and (ii), we get $q^{2}=p r$
79. (C) We have, $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$
$\therefore T_{n}=\frac{1^{3}+2^{3}+3^{3}+\ldots+n^{3}}{1+3+5+\ldots \text { upto } n \text { terms }}$

$$
\begin{aligned}
T_{n} & =\frac{\sum n^{3}}{\frac{n}{2}[2 \times 1+(n-1) \times 2]} \\
T_{n} & =\frac{1}{4} \frac{n^{2}(n+1)^{2}}{n^{2}}=\frac{1}{4}\left(n^{2}+2 n+1\right)
\end{aligned}
$$

81. (B) $I=\int_{1}^{2} e^{x}\left(\frac{x-3}{x^{4}}\right) d x$
$I=\int_{1}^{2} e^{x}\left(\frac{1}{x^{3}}-\frac{3}{x^{4}}\right) d x$
$I=\left[\frac{e^{x}}{x^{3}}\right]_{1}^{2}$
$I=\frac{e^{2}}{8}-\frac{e^{1}}{1}=e\left(\frac{e}{8}-1\right)$
82. (C) $\left|\begin{array}{ccc}3 & \log _{7} 7 & 2 \pi \\ \log _{5} 125 & \log _{3} 3 & \sqrt{17} \\ 3 & 1 & 5\end{array}\right|$
$\Rightarrow\left|\begin{array}{ccc}3 & 1 & 2 \pi \\ 3 \log _{5} 5 & 1 & \sqrt{17} \\ 3 & 1 & 5\end{array}\right|$
$\Rightarrow\left|\begin{array}{ccc}3 & 1 & 2 \pi \\ 3 & 1 & \sqrt{17} \\ 3 & 1 & 5\end{array}\right|$
$\Rightarrow 3\left|\begin{array}{ccc}1 & 1 & 2 \pi \\ 1 & 1 & \sqrt{17} \\ 1 & 1 & 5\end{array}\right|=0$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
83. (A)

Equation of directrixe

$$
y=8
$$

84. (D) Required probability $={ }^{5} \mathrm{C}_{2}\left(\frac{1}{7}\right)^{2}\left(\frac{6}{7}\right)^{3}$

$$
=\frac{10 \times 6^{3}}{7^{5}}
$$

85. (D) I. If $\cot \theta=x$,

$$
\begin{aligned}
& \text { then } x+\frac{1}{x}=\cot \theta+\frac{1}{\cot \theta} \\
& \Rightarrow \quad x+\frac{1}{x}=\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \\
& \Rightarrow \quad x+\frac{1}{x}=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cdot \cos \theta} \\
& \Rightarrow \quad x+\frac{1}{x}=\frac{1}{\sin \theta \cdot \cos \theta}=\operatorname{cosece} \theta \cdot \sec \theta
\end{aligned}
$$

$\therefore \quad$ Statement I is correct.
II. If $x+\frac{1}{x}=\sin \theta$,
then $\left(x+\frac{1}{x}\right)^{2}=\sin ^{2} \theta$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2=\sin ^{2} \theta$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=\sin ^{2} \theta-2$
$\therefore \quad$ Statement II is correct.
III. If $x=p \sec \theta$ and $y=q \tan \theta$, then

$$
\begin{aligned}
x^{2} q^{2}-y^{2} p^{2} & =p^{2} q^{2} \sec ^{2} \theta-p^{2} q^{2} \tan ^{2} \theta \\
x^{2} q^{2}-y^{2} p^{2} & =p^{2} q^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right) \\
x^{2} q^{2}-y^{2} p^{2} & =p^{2} q^{2}
\end{aligned}
$$

$\therefore \quad$ Statement III is correct.
IV. Maximum value of $(\cos \theta-\sqrt{3} \sin \theta)$

$$
=\sqrt{1^{2}+(-\sqrt{3})^{2}}=2
$$

Statement IV is incorrect.
\therefore Only I, II and III are correct.
86. (B) Let $B D$ is flag and $B D=(h+20) \mathrm{ft}$

In $\triangle \mathrm{ABD}$:

$$
\begin{align*}
& \tan 60^{\circ}=\frac{B D}{A B} \\
\Rightarrow & \sqrt{3}=\frac{h+20}{A B} \\
\Rightarrow & A B=\frac{(h+20)}{3} \sqrt{3} \tag{i}
\end{align*}
$$

In $\triangle \mathbf{A B C}$:

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
\Rightarrow & 20^{2}=\frac{3(h+20)^{2}}{9}+h^{2} \quad \text { [from Eq. (i)] } \\
\Rightarrow & 400=\frac{(h+20)^{2}+3 h^{2}}{3} \\
\Rightarrow & 1200=h^{2}+40 h+400+3 h^{2} \\
\Rightarrow & 4 h^{2}+40 h-800=0 \\
\Rightarrow & (h+20)(h-10)=0 \\
\Rightarrow & h=10 \quad(\because h \neq-20)
\end{aligned}
$$

$$
\therefore \quad \text { Height of flag }=B D=(h+20) \mathrm{ft}
$$

$$
\begin{aligned}
& =(10+20) \mathrm{ft} \\
& =30 \mathrm{ft}
\end{aligned}
$$

87. (B) From equation (i)

$$
\Rightarrow A B=\frac{(h+20)}{3} \sqrt{3}
$$

On putting $h=10$

$$
\Rightarrow A B=\frac{30 \sqrt{3}}{3}=10 \sqrt{3} \mathrm{ft}
$$

88. (A) $\because f(x)=\frac{\sec ^{4} x+\operatorname{cosec}^{4} x}{x^{3}+x^{4} \cot x}$

$$
\begin{aligned}
\therefore \quad f(-x) & =\frac{\sec ^{4}(-x)+\operatorname{cosec}^{4}(-x)}{(-x)^{3}+(-x)^{4} \cot (-x)} \\
f(-x) & =-\frac{\sec ^{4} x+\operatorname{cosec}^{4} x}{x^{3}+x^{4} \cot x}=-f(x)
\end{aligned}
$$

$f(x)$ is an odd function.
Thus, both A and R are true and R is the correct explanation of A.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
89. (D) Assertion (A) $f(x)=x$ and $F(x)=\frac{x^{2}}{x}$

At $x=0, F(x) \neq f(x)$
\therefore It is incorrect statement.
Reason (R) It is true that $F(x)$ is not defined at $x=0$.
\therefore Option (D) is correct.
90. (C) Let $y=\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)$

Put $x=\cos 2 \theta \Rightarrow \theta=\frac{1}{2} \cos ^{-1} x$
$\Rightarrow y=\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right)$
$\Rightarrow y=\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right)$
$\Rightarrow y=\tan ^{-1}\left(\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right)$
$\Rightarrow y=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right)$
$\Rightarrow y=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\theta\right)\right)$
$\Rightarrow y=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x$
On differentiating w.r.t. ' x ', we get

$$
\frac{d y}{d x}=-\frac{1}{2}\left(\frac{-1}{\sqrt{1-x^{2}}}\right)=\frac{1}{2 \sqrt{1-x^{2}}}
$$

91. (C) Let $y=\frac{d}{d x}\left[\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\right]$

Put $x=\sin \alpha \Rightarrow \alpha=\sin ^{-1} x$
$\Rightarrow y=\frac{d}{d x} \quad\left[\sin ^{-1}\left(2 \sin \alpha \sqrt{1-\sin ^{2} \alpha}\right)\right]$
$\Rightarrow y=\frac{d}{d x}\left[\sin ^{-1}(2 \sin \alpha \cdot \cos \alpha)\right]$
$\Rightarrow y=\frac{d}{d x}\left[\sin ^{-1}(\sin 2 \alpha)\right]$
$\Rightarrow y=\frac{d}{d x}(2 \alpha)$
$\Rightarrow y=\frac{d}{d x}\left(2 \sin ^{-1} x\right)$
$\Rightarrow y=\frac{2}{\sqrt{1-x^{2}}}$
92.(C) From mean value theorem

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Given, $f(x)=x(x-1)(x-2)$

$$
a=0 \Rightarrow f(a)=0
$$

and $b=\frac{1}{2} \Rightarrow f(\mathrm{~b})=\frac{3}{8}$
$f^{\prime}(x)=(x-1)(x-2)+x(x-2)+x(x-1)$
$\therefore \quad f^{\prime}(c)=(c-1)(c-2)+c(c-2)+c(c-1)$
$\Rightarrow f^{\prime}(\mathrm{c})=3 c^{2}-6 c+2$
By definition of mean value theorem,

$$
\begin{gathered}
f^{\prime}(\mathrm{c})=\frac{f(b)-f(a)}{b-a} \\
\Rightarrow 3 c^{2}-6 c+2=\frac{(3 / 8)-0}{(1 / 2)-0}=\frac{3}{4} \\
\Rightarrow 3 c^{2}-6 c+\frac{5}{4}=0 \Rightarrow 12 c^{2}-24 c+5=0
\end{gathered}
$$

This is a quadratic equation in c,
$\Rightarrow c=\frac{24 \pm \sqrt{(24)^{2}-4 \times 12 \times 5}}{2 \times 12}$
$\Rightarrow c=\frac{6 \pm \sqrt{21}}{6}=1 \pm \frac{\sqrt{21}}{6}$
Since, 'c' lies between [0, 1/2],
$\therefore c=1-\frac{\sqrt{21}}{6}$ (neglecting $c=1+\frac{\sqrt{21}}{6}$)
93. (C) Equation of parabola
$\Rightarrow y^{2}=4 a x$
On differentiating w.r.t. ' x '
$\Rightarrow 2 y y^{\prime}=4 a$
Again, differentiating, we get $\Rightarrow 2 y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}=0 \Rightarrow y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
94. (D) Equation of of ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$
$\therefore e=\sqrt{1-\frac{b^{2}}{a^{2}}} \Rightarrow e=\sqrt{1-\frac{5}{9}} \Rightarrow e=\frac{2}{3}$
and equation of hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{\frac{45}{4}}=1$
$\therefore e^{\prime}=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{45 / 4}{9}}=\frac{3}{2}$
$\therefore e e^{\prime}=\frac{2}{3} \times \frac{3}{2}=1$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
95. (C) Let $\vec{v}=\lambda\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}+\frac{\hat{j}+\hat{k}}{\sqrt{2}}+\frac{\hat{k}+\hat{i}}{\sqrt{2}}\right)$
$\Rightarrow \vec{v}=\frac{\lambda}{\sqrt{2}}[2 \hat{i}+2 \hat{j}+2 \hat{k}]$
$\Rightarrow|\vec{v}|^{2}=\frac{\lambda^{2}}{2}(4+4+4)$
$\Rightarrow \quad 16=\frac{\lambda^{2}}{2} \times 12 \quad[\because|\vec{v}|=4]$
$\Rightarrow \quad \lambda^{2}=\frac{8}{3} \Rightarrow \lambda=\frac{2 \sqrt{2}}{\sqrt{3}}$
From eq. (i)

$$
\begin{aligned}
\vec{v} & =\frac{2 \sqrt{2}}{\sqrt{3} \sqrt{2}}(2 \hat{i}+2 \hat{j}+2 \hat{k}) \\
\Rightarrow \quad \vec{v} & =\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})
\end{aligned}
$$

96. (A) Given, $\bar{x}=65, \bar{y}=67$

$$
\begin{aligned}
\sigma_{x} & =5.0, \sigma_{y}=2.5 \\
r & =0.8
\end{aligned}
$$

The line of regression of y on x is

$$
\begin{aligned}
& y-\bar{y}=r \cdot \frac{\sigma_{y}}{\sigma_{x}}(x-\bar{x}) \\
& \Rightarrow y-67=\frac{0.8 \times 2.5}{5}(x-65) \\
& \Rightarrow y-67=\frac{2}{5}(x-65)
\end{aligned}
$$

97. (C) The line of regression of x on y is

$$
\begin{aligned}
& x-\bar{x}=r \cdot \frac{\sigma_{x}}{\sigma_{y}}(y-\bar{y}) \\
& \Rightarrow x-65=\frac{0.8 \times 5}{2.5}(y-67) \\
& \Rightarrow x-65=\frac{8}{5}(y-67)
\end{aligned}
$$

98. (D) $\frac{d y}{d x}=\frac{3 x-4 y-2}{3 x-4 y-3}$

Let $3 x-4 y=X$

$$
\begin{aligned}
& 3-4 \frac{d y}{d x}=\frac{d X}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{4}\left(3-\frac{d X}{d x}\right) \\
& \Rightarrow \frac{1}{4}\left(3-\frac{d X}{d x}\right)=\frac{X-2}{X-3}
\end{aligned}
$$

$\Rightarrow \quad \frac{3}{4}-\frac{1}{4} \frac{d X}{d x}=\frac{X-2}{X-3}$
$\Rightarrow \quad-\frac{1}{4} \frac{d X}{d x}=\frac{X-2}{X-3}-\frac{3}{4}$
$\Rightarrow \quad-\frac{1}{4} \frac{d X}{d x}=\frac{X+1}{4(X-3)}$
$\Rightarrow \quad-\frac{(X-3)}{(X+1)} d X=d x$
$\Rightarrow \quad-\left(1-\frac{4}{X+1}\right) d X=d x$
$\Rightarrow \quad\left(-1+\frac{4}{X+1}\right) d X=d x$
On integration
$\Rightarrow-X+4 \log (X+1)=x+4 C$
$\Rightarrow 4 \log (X+1)=X+x+4 C$
$\Rightarrow 4 \log (3 x-4 y+1)=3 x-4 y+x+4 C$
$\Rightarrow 4 \log (3 x-4 y+1)=4 x-4 y+4 C$
$\Rightarrow \log (3 x-4 y+1)=x-y+C$
99. (B) $\quad x=\sin ^{-1}(t), y=\log \left(1-t^{2}\right)$

$$
\frac{d x}{d t}=\frac{1}{\sqrt{1-t^{2}}}, \frac{d y}{d t}=\frac{1}{1-t^{2}}(-2 t)
$$

Now, $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{-2 t}{1-t^{2}}}{\frac{1}{\sqrt{1-t^{2}}}}$

$$
\frac{d y}{d x}=-\frac{2 t}{\sqrt{1-t^{2}}}
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d t}\left[-\frac{2 t}{\sqrt{1-t^{2}}}\right] \frac{d t}{d x}
$$

$\frac{d^{2} y}{d x^{2}}=\frac{-2 \sqrt{1-t^{2}}-(-2 t) \cdot \frac{-2 t}{2 \sqrt{1-t^{2}}}}{1-t^{2}} \times \sqrt{1-t^{2}}$
$\frac{d^{2} y}{d x^{2}}=-\frac{2}{\left(1-t^{2}\right)^{\frac{3}{2}}} \times \sqrt{1-t^{2}}=-\frac{2}{1-t^{2}}$
100. (D)
$\left|\begin{array}{ccc}-a^{2} & -a b & a c \\ b a & -b^{2} & b c \\ a c & -b c & c^{2}\end{array}\right|$
On taking common $\mathrm{a}, \mathrm{b}, \mathrm{c}$ from R_{1}, R_{2}, R_{3}
$\Rightarrow a b c\left|\begin{array}{ccc}-a & -b & c \\ a & -b & c \\ a & -b & c\end{array}\right|$
On taking b, c from C_{2}, C_{3}
$\Rightarrow-a b^{2} c^{2}\left|\begin{array}{ccc}-a & 1 & 1 \\ a & 1 & 1 \\ a & 1 & 1\end{array}\right|=0$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
101. (D) $\frac{d f}{d x}=0$
102. (C)

2	1753	1
2	876	0
2	438	0
2	219	1
2	109	1
2	54	0
2	27	1
2	13	1
2	6	0
2	3	1
	1	

$(1753)_{10}=(11011011001)_{2}$
103.(A) Class-size $=$ Difference between two consecutive class marks $=10-6=4$
104. (B) Committee of 3 is to be chosen from 4 men and 5 women,
So required probability $=\frac{{ }^{4} C_{2} \times{ }^{5} C_{1}}{{ }^{9} C_{3}}$

$$
=\frac{6 \times 5}{12 \times 7}=\frac{5}{14}
$$

105. (B) $\int_{-2}^{2}\left|1-x^{2}\right| d x=\int_{-2}^{-1}\left|1-x^{2}\right| d x+\int_{-1}^{1}\left|1-x^{2}\right| d x$

$$
+\int_{1}^{2}\left|1-x^{2}\right|
$$

$=\int_{-2}^{-1}\left(x^{2}-1\right) d x+\int_{-1}^{1}\left(1-x^{2}\right) d x+\int_{1}^{2}\left(x^{2}-1\right) d x$ $=\left(\frac{x^{3}}{3}-x\right)_{-2}^{-1}+\left(x-\frac{x^{3}}{3}\right)_{-1}^{1}+\left(\frac{x^{3}}{3}-x\right)_{1}^{2}$ $=\left[\left(-\frac{1}{3}+1\right)-\left(-\frac{8}{3}+2\right)\right]+\left[\left(1-\frac{1}{3}\right)-\left(-1+\frac{1}{3}\right)\right]$

$$
+\left[\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-1\right)\right]
$$

$=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}$
$=6 \times \frac{2}{3}=4$
106. (A) $[a b c]=a \cdot(b \times c)=b \cdot(c \times a)=c \cdot(a \times b)$ Using the given property,
$\left[\begin{array}{lll}a & b+c & a+b+c\end{array}\right]$
$\Rightarrow(a+b+c) \cdot(a \times(b+c))$
$\Rightarrow(a+b+c) \cdot(a \times b+a \times c)$
$\Rightarrow a \cdot(a \times b)+a \cdot(a \times c)+b \cdot(a \times b)$

$$
+b \cdot(a \times c)+c \cdot(a \times b)+c \cdot(a \times c)
$$

$\Rightarrow\left[\begin{array}{lll}a & a & b\end{array}\right]+\left[\begin{array}{lll}a & a & c\end{array}\right]+\left[\begin{array}{lll}b & a & b]+\left[\begin{array}{lll}b & a & c\end{array}\right]+ \\ \hline\end{array}\right.$
$\left[\begin{array}{ccc}c & a & b\end{array}\right]+\left[\begin{array}{ccc}c & a & c\end{array}\right]$
$\Rightarrow 0+0+0-[a b c]+[a b c]+0=0$
107. (A) Let $A B$ be a tower whose height is 15 m .

In \triangle BAC

$$
\tan 30^{\circ}=\frac{A B}{A C}
$$

$$
\Rightarrow \frac{1}{\sqrt{3}}=\frac{15}{A C} \Rightarrow A C=15 \sqrt{3}
$$

The distance of the point from the foot of the tower $=15 \sqrt{3} \mathrm{~m}$
108. (A)

2	55	1
2	27	1
2	13	1
2	6	0
2	3	1
2	1	1
	0	

0.625
$\times 2$
1.250
$\begin{array}{r}\times 2 \\ \hline 0.500\end{array}$
$\times 2$
$\times 1.000$
$(55)_{10}=(110111)_{2},(0.625)_{10}=(0.101)_{2}$
Hence $(55.625)_{10}=(110111.101)_{2}$
109. (B) Required probability $=\frac{{ }^{4} C_{1} \times{ }^{4} C_{1}}{{ }^{52} C_{2}}$

$$
=\frac{4 \times 4}{26 \times 51}=\frac{8}{663}
$$

110. (B) $I=\int \sin ^{3} x \cdot \cos x \mathrm{~d} x$

Let $\sin x=t \Rightarrow \cos x \mathrm{~d} x=\mathrm{dt}$
$I=\int t^{3} d t$
$I=\frac{t^{4}}{4}+C \Rightarrow I=\frac{1}{4} \sin ^{4} x+C$
111. (B) $v=2 s^{2}+4 s+5$

On differentiating both side w.r.t.' s '
$\frac{d v}{d s}=2(2 s)+4$
$\frac{d v}{d s}=4 \mathrm{~s}+4$
At $\mathrm{s}=5$, Acceleration $=4 \times 5+4=24$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
112. (B) $\sin 2 \mathrm{~A}=\lambda \sin 2 \mathrm{~B} \Rightarrow \frac{\sin 2 A}{\sin 2 B}=\frac{\lambda}{1}$

Using Componendo and Dividendo Rule
$\frac{\sin 2 A+\sin 2 B}{\sin 2 A-\sin 2 B}=\frac{\lambda+1}{\lambda-1}$
$\frac{2 \sin (A+B) \cdot \cos (A-B)}{2 \cos (A+B) \cdot \sin (A-B)}=\frac{\lambda+1}{\lambda-1}$
$\frac{\tan (A+B)}{\tan (A-B)}=\frac{\lambda+1}{\lambda-1}$
113. (D) Shaded Region is $(P \cap Q) \cup(P \cap R)$
114. (D) $(9)^{200}=(1+8)^{200}$
$(9)^{200}=1+{ }^{200} \mathrm{C}_{1}(8)+{ }^{200} \mathrm{C}_{2}(8)^{2}+\ldots$
$(9)^{200}=1+1600+1273600+\ldots$
So, last two digit are 01.
115. (C) Equation of plane be $\mathrm{a} x+\mathrm{b} y+\mathrm{c} z+d=0$ So, no.of arbitrary constants $=4(a, b, c, d)$
116. (B) $0 . \overline{2}+0 . \overline{23}=\frac{2}{9}+\frac{23}{99}$

$$
=\frac{45}{99}=0 . \overline{45}
$$

117. (B) $(a+b+c)^{n}=[a+(b+c)]^{n}$
$\Rightarrow a^{n}+{ }^{n} \mathrm{C}_{1} a^{\mathrm{n}-1}(b+c)+{ }^{n} \mathrm{C}_{2} a^{n-2}(b+c)^{2}+\ldots$
Number of terms $=1+2+3+\ldots+(n+1)$

$$
=\frac{1}{2}(n+1)(n+2)
$$

118. (A) It the word 'DELHI'

When, we fix L in mid place, the first two letters arranged in ${ }^{4} \mathrm{p}_{2}$ ways, then last two letters are arranged in ${ }^{2} \mathrm{P}_{2}$ ways. Total number of ways $={ }^{4} \mathrm{P}_{2} \times{ }^{2} \mathrm{P}_{2}=24$
119. (B) $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=4 \hat{i}-4 \hat{j}+7 \hat{k}$

Projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$=\frac{1 \times 4+(-2) \times(-4)+1 \times 7}{\sqrt{(4)^{2}+(-4)^{2}+(7)^{2}}}$
$=\frac{19}{\sqrt{81}}=\frac{19}{9}$
120. (D) Given, $\left|z-\frac{2}{z}\right|=6$

$$
\begin{aligned}
& \Rightarrow z-\frac{2}{z}= \pm 6 \Rightarrow z^{2}-2= \pm 6 z \\
& \Rightarrow z^{2}-6 z-2=0 \text { or } z^{2}+6 z-2=0 \\
& \Rightarrow z=\frac{6 \pm \sqrt{36+8}}{2} \text { or } z=\frac{-6 \pm \sqrt{36+8}}{2} \\
& \Rightarrow z=\frac{6 \pm \sqrt{44}}{2} \text { or } z=\frac{-6 \pm \sqrt{44}}{2} \\
& \Rightarrow z=\frac{6 \pm 2 \sqrt{11}}{2} \text { or } z=\frac{-6 \pm 2 \sqrt{11}}{2} \\
& \Rightarrow z=3 \pm \sqrt{11} \text { or } z=-3 \pm \sqrt{11} \\
& \Rightarrow z=3+\sqrt{11}, 3-\sqrt{11},-3+\sqrt{11},-3-\sqrt{11} \\
& \Rightarrow|z|=|3+\sqrt{11}|,|3-\sqrt{11}|, \\
& \Rightarrow|z|=(3+\sqrt{11}),(\sqrt{11}-3),(\sqrt{11}-3),(3+\sqrt{11})
\end{aligned}
$$

So, maximum value of $|z|=3+\sqrt{11}$ and minimum value of $|z|=\sqrt{11}-3$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

NDA (MATHS) MOCK TEST - 100 (Answer Key)

1.	(B)	21.	(A)	41.	(B)	61.	(B)	81.	(B)	101.	(D)
2.	(D)	22.	(A)	42.	(B)	62.	(D)	82.	(C)	102.	(C)
3.	(D)	23.	(A)	43.	(A)	63.	(D)	83.	(A)	103.	(A)
4.	(D)	24.	(B)	44.	(B)	64.	(C)	84.	(D)	104.	(B)
5.	(B)	25.	(C)	45.	(D)	65.	(A)	85.	(D)	105.	(B)
6.	(A)	26.	(A)	46.	(A)	66.	(B)	86.	(B)	106.	(A)
7.	(B)	27.	(B)	47.	(B)	67.	(C)	87.	(B)	107.	(A)
8.	(C)	28.	(A)	48.	(A)	68.	(A)	88.	(A)	108.	(A)
9.	(B)	29.	(B)	49.	(D)	69.	(D)	89.	(D)	109.	(B)
10.	(D)	30.	(B)	50.	(A)	70.	(C)	90.	(C)	110.	(B)
11.	(D)	31.	(B)	51.	(A)	71.	(A)	91.	(C)	111.	(B)
12.	(A)	32.	(C)	52.	(D)	72.	(D)	92.	(C)	112.	(B)
13.	(D)	33.	(D)	53.	(C)	73.	(C)	93.	(C)	113.	(D)
14.	(A)	34.	(D)	54.	(B)	74.	(C)	94.	(D)	114.	(D)
15.	(D)	35.	(C)	55.	(B)	75.	(B)	95.	(C)	115.	(C)
16.	(B)	36.	(A)	56.	(C)	76.	(A)	96.	(A)	116.	(B)
17.	(B)	37.	(C)	57.	(B)	77.	(A)	97.	(C)	117.	(B)
18.	(A)	38.	(B)	58.	(A)	78.	(A)	98.	(D)	118.	(A)
19.	(D)	39.	(C)	59.	(A)	79.	(B)	99.	(B)	119.	(B)
20.	(C)	40.	(C)	60.	(A)	80.	(C)	100.	(D)	120.	(D)

Note : If your opinion differ regarding any answer, please message the mock test and Question number to 8860330003

Note : If you face any problem regarding result or marks scored, please contact: 9313111777

Note : Whatsapp with Mock Test No. and Question No. at 705360571 for any of the doubts. Join the group and you may also share your sugesstions and experience of Sunday Mock Test.

