

Similarly, perpendicular distance from point
$$(\sqrt{a^2 - b^2} - 0)$$
 is

$$d_{1} = \frac{|\cos a \sqrt{a^2 - b^2} - ab|}{\sqrt{b^2 \cos^2 a - a^2 \sin^2 a}}$$
Similarly, perpendicular distance from point $(\sqrt{a^2 - b^2}, 0)$ is

$$d_{2} = \frac{|-b \cos a \sqrt{a^2 - b^2} - ab|}{\sqrt{b^2 \cos^2 a - a^2 \sin^2 a}}$$
Similarly, perpendicular distance from point $(\sqrt{a^2 - b^2}, 0)$ is

$$d_{2} = \frac{|-b \cos a \sqrt{a^2 - b^2} - ab|}{\sqrt{b^2 \cos^2 a - a^2 \sin^2 a}}$$
Similarly, perpendicular distance from point $(\sqrt{a^2 - b^2}, 0)$ is

$$d_{2} = \frac{|-b \cos a \sqrt{a^2 - b^2} - ab|}{\sqrt{b^2 \cos^2 a - a^2 \sin^2 a}}$$
Now, $d_{1} = \frac{|-b \cos a \sqrt{a^2 - b^2} - ab|}{\sqrt{b^2 \cos^2 a - a^2 \sin^2 a}}$

$$= \frac{-b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= \frac{-b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= \frac{-b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= \frac{-b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= \frac{-b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - a^2 \sin^2 a}{b^2 \cos^2 a - a^2 \sin^2 a}$$

$$= -\frac{b^2 |b^2 \cos^2 a - b^2 \sin^2 a}{b^2 \cos^2 a$$

EXAMPLE ALL CHAPTENES
EXAMPLE STRUCK CONSISTEMENT MURHERIZE NAGAR POLICE STATION, DELHI-100009
60. (A) Required Area - Area of curve ACDA

$$= \int_{\frac{1}{2}}^{\frac{1}{2}} [sinx - cosx) dx$$

$$= [-cosx - sinx]_{\frac{1}{2}}^{\frac{1}{2}}$$

$$= -[0 + 1 - (\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}})]$$

$$= (\sqrt{2} - 1)$$
(61-63)
61. (B) $x = \frac{a(1 - t^{2})}{(1 + t^{2})}, y = \frac{2at}{1 + t^{2}}$
On squaring and adding

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}(1 - t^{2})}{(1 + t^{2})^{2}} + \frac{4a^{2}t^{2}}{(1 + t^{2})^{2}}$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} + \frac{4a^{2}t^{2}}{(1 + t^{2})^{2}}$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} = [1 - t^{2} + 4t^{2}]$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} = [1 - t^{2} + 2t^{2} + 4t^{2}]$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} = [1 - t^{2} + 2t^{2} + 4t^{2}]$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} = [1 - t^{2} + 2t^{2} + 4t^{2}]$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} = [1 - t^{2} + 2t^{2} + 4t^{2}]$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} = [1 + t^{2} - 2t^{2} + 4t^{2}]$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} = [1 + t^{2} - 2t^{2} + 4t^{2}]$$

$$\Rightarrow x^{2} + y^{2} = \frac{a^{2}}{(1 + t^{2})^{2}} = [1 + t^{2} - 2t^{2} + 4t^{2}]$$

$$\Rightarrow y^{2} \frac{d^{2}y}{dx^{2}} = -1 \quad [from equation (ii]]$$

$$\Rightarrow y^{2} \frac{d^{2}y}{dx^{2}} = -1 \quad [from equation (ii]]$$

$$\Rightarrow y^{2} \frac{d^{2}y}{dx^{2}} = -\frac{y^{2}}{y^{2}} \quad ...(ii)$$
62. (D) $x = \frac{a(1 - t^{2})}{(1 + t^{2})^{2}} = \frac{1 - t^{2}}{(1 + t^{2})^{2}}$

$$\Rightarrow \frac{dx}{dt} = a \left[\frac{(1 + t^{2})(-2t) - (1 - t^{2})(2t)}{(1 + t^{2})^{2}} \right]$$

$$\Rightarrow \frac{dx}{dt} = -2at \left[\frac{1 + t^{2} + 1 - t^{2}}{(1 + t^{2})^{2}} \right] = \frac{-2aa \times 2}{(1 + t^{2})^{2}}$$

$$\Rightarrow \frac{dx}{dt} = -2at \left[\frac{1 + t^{2} + 1 - t^{2}}{(1 + t^{2})^{2}} \right]$$

$$\Rightarrow \frac{dx}{dt} = -2at \left[\frac{1 + t^{2} + 1 - t^{2}}{(1 + t^{2})^{2}} \right]$$

$$\Rightarrow \frac{dx}{dt} = -2at \left[\frac{1 + t^{2} + 1 - t^{2}}{(1 + t^{2})^{2}} \right]$$

$$\Rightarrow \frac{dx}{dt} = -2at \left[\frac{1 + t^{2} + 1 - t^{2}}{(1 + t^{2})^{2}} \right]$$

$$\Rightarrow \frac{dx}{dt} = -2at \left[\frac{1 + t^{2} + 1 - t^{2}}{(1 + t^{2})^{2}} \right]$$

$$\Rightarrow \frac{dx}{dt} = -2at \left[\frac{1 + t^{2} + 1 - t^{2}}{(1 + t^{2})^{2}} \right]$$

$$\Rightarrow \frac{dx}{dt} = -2at \left[\frac{1 + t^{2} +$$

г

EXAMPLES 1ST FLOR. OPPOSITE MURHERIE NAGAR POLICE STATION, DELHI-110009
166-67) Given that,
$$\lim_{n \to \infty} \left(\frac{2+x^2}{1+x} - Ax - B\right) = 3$$

 $\Rightarrow \lim_{n \to \infty} \left(\frac{2+x^2}{1+x} - Ax - Ax^2 - B - Bx}{1+x}\right) = 3$
by L-Hospital's Rule
 $\Rightarrow \lim_{n \to \infty} \left(\frac{2x - A^2 - 2Ax - B}{1+x}\right) = 3$
by L-Hospital's Rule
 $\Rightarrow \lim_{n \to \infty} \left(\frac{2x - A - 2Ax - B}{1+x}\right) = 3$
Now, equating both the sides,
 $= 2 - 2A - 0$ and $(A + B) = -3$
 $= A - 1$ and $(B + B) = -3$
 $= A - 1$ and $(B + B) = -3$
 $= A - 1$ and $(B + B) = -3$
 $= A - 1$ and $(B + B) = -3$
 $= A - 1$ and $(B + B) = -3$
 $= A - 1$ and $(B + B) = -3$
 $= A - 1$ and $(B - A - 4)$
66. (B)
67. (C)
68. (A) Differential equation
 $\sin\left(\frac{dy}{dx}\right) - a = 0$
 $\Rightarrow \sin\frac{dy}{dx} = a$
 $\Rightarrow \frac{dy}{dx} = \sin^2 a$
 $\Rightarrow \frac{dy}{dx} = (\sin^2 a) dx$
 $\exists \operatorname{Integrating both side}$
 $\Rightarrow \int [dy - \int (\sin^2 a) dx + C)$
 $\Rightarrow y = x(\sin^2 a) dx$
 $(D - (D) \ln AABC, AB - 2\frac{1}{2} + 3\frac{1}{2} + 2\frac{2}{3}$
 $AB \times \overline{AC} = -4\frac{1}{4} + 5\frac{1}{7} + 2\frac{2}{8}$
 $AB \times \overline{AC} = -4\frac{1}{4} - 4\frac{1}{7} + 2\frac{2}{8}$
 $Area of AABC = \frac{1}{2} \sqrt{-4^2} + (-4)^2 + (2)^2$
 $Area of AABC = \frac{1}{2} \sqrt{-4^2} + (-4)^2 + (2)^2$
 $Area of AABC = \frac{1}{2} \sqrt{36}$
 $Area of AABC = \frac{1}{2} \sqrt{36}$
 $Area of AABC = \frac{1}{2} \times 6 = 3$ square units
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
12
12
13
11
13
15
15
16
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

EXAMPLES 1ST FLOR, OPPOSITE MUMERIZE NAGAR POLICE STATION, DELHI-110009
89. (D) **Assertion (A)**
$$f(x) = x$$
 and $F(x) = \frac{x^2}{x}$
At $x = 0$, $F(x) \neq f(x)$
 \therefore this incorrect statement.
Reason (R) It is true that $F(x)$ is not defined
at $x = 0$.
 \therefore Option (D) is correct.
90. (C) Let $y = \tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)$
Put $x = \cos 2\theta \rightarrow \theta = \frac{1}{2}\cos^{-1}x$
 $\Rightarrow y = \tan^{-1}\left(\frac{\sqrt{1-\cos 2\theta}-\sqrt{1-\cos 2\theta}}{\sqrt{1-\cos 2\theta}+\sqrt{1-\cos 2\theta}}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{\sqrt{2\cos^2\theta}-\sqrt{2\sin^2\theta}}{\sqrt{2\cos^2\theta}+\sqrt{2\sin^2\theta}}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{\sqrt{2\cos^2\theta}-\sqrt{2\sin^2\theta}}{\sqrt{2\cos^2\theta}+\sqrt{2\sin^2\theta}}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{\sqrt{2\cos^2\theta}-\sqrt{2\sin^2\theta}}{\sqrt{2\cos^2\theta}+\sqrt{2\sin^2\theta}}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{\cos\theta-\sin\theta}{\cos\theta+\sin\theta}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{\cos\theta-\sin\theta}{\cos\theta+\sin\theta}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{\tan\left(\frac{\pi}{4}-\theta\right)\right)}{\sqrt{2\cos^2\theta}+\sqrt{2\sin^2\theta}}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{\tan\left(\frac{\pi}{4}-\theta\right)\right)}{\sqrt{2}}$
 $\Rightarrow y = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x$
On differentiating $w.r.t. x'$, we get:
 $\frac{dy}{dx} = \frac{1}{2}\left(\frac{1-1}{\sqrt{1-x^2}}\right) = \frac{1}{2\sqrt{1-x^2}}$
91. (C) Let $y = \frac{d}{dx} [\sin^{-1}(2\sin\sqrt{1-x^2})]$
Put $x = \sin x \Rightarrow a = \sin^{-x}x$
 $\Rightarrow y = \frac{d}{dx} [\sin^{-1}(2\sin\sqrt{1-x^2})]$
Put $x = \sin x \Rightarrow a = \sin^{-x}x$
 $\Rightarrow y = \frac{d}{dx} [\sin^{-1}(2\sin\cos(2\theta)]$
 $\Rightarrow y = \frac{d}{dx} [ain^{-1}(2\sin\cos(2\theta)]$
 $\Rightarrow y = \frac{d}{dx} [ain^{-1}x]$
 $\Rightarrow y = \frac{d}{dx} [2ain^{-1}x]$
 $\Rightarrow y = \frac{d}{dx} [2ain^{-1}x]$

EXAMPLIES 1ST FLOR, OPPOSITE MUKHERIZE NAGAR POLICE STATION, DELHI-110009
95. (C) Let
$$\bar{v} = \lambda \left(\frac{\dot{t} + \dot{j}}{2} + \frac{\dot{f} + \dot{k}}{\sqrt{2}} + \frac{\dot{k} + \dot{l}}{\sqrt{2}}\right)$$

 $\Rightarrow \dot{v} = \frac{\dot{\lambda}}{\sqrt{2}} [2\dot{i} + 2\dot{j} + 2\dot{k}] \dots (\dot{0})$
 $\Rightarrow [\dot{v} | \dot{v} = \frac{\dot{\lambda}}{2} (4 + 4 + 4)$
 $\Rightarrow 16 - \frac{\dot{\lambda}^2}{2} \times 12 \qquad [\because | \bar{v} | = 4]$
 $\Rightarrow \lambda^2 = \frac{8}{3} \Rightarrow \lambda = \frac{2\sqrt{2}}{\sqrt{3}}$
From eq. ($\dot{0}$)
 $\ddot{v} = \frac{2\sqrt{2}}{\sqrt{3}\sqrt{2}} (2\dot{i} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow \dot{v} = \frac{4}{\sqrt{3}} (\dot{i} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow \dot{v} = \frac{4}{\sqrt{3}} (\dot{i} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow \dot{v} = \frac{8}{\sqrt{3}} \Rightarrow \lambda = \frac{2\sqrt{2}}{\sqrt{3}}$
From eq. ($\dot{0}$)
 $\ddot{v} = \frac{2\sqrt{2}}{\sqrt{3}\sqrt{2}} (2\dot{i} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow \ddot{v} = \frac{5}{\sqrt{3}} (\dot{v} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow \ddot{v} = \frac{5}{\sqrt{3}} (\dot{v} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow \ddot{v} = \frac{5}{\sqrt{3}} (\dot{v} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow \ddot{v} = \frac{5}{\sqrt{3}} (\dot{v} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow \ddot{v} = \frac{5}{\sqrt{3}} (\dot{v} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow v = \frac{6}{7} = \frac{6}{\sqrt{3}} (\dot{v} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow v = \frac{6}{7} = \frac{6}{\sqrt{3}} (\dot{v} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow v = \frac{6}{7} = \frac{6}{\sqrt{3}} (\dot{v} + 2\dot{j} + 2\dot{k})$
 $\Rightarrow v = \frac{6}{7} = \frac{6}{\sqrt{3}} (\dot{v} - 4\dot{v} + 4\dot{v}$

Ph: 09555108888, 09555208888

17

Campus KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

NDA (MATHS) MOCK TEST - 100 (Answer Key)

1.	(B)	21.	(A)	41.	(B)	61.	(B)	81.	(B)	101. (D)
2.	(D)	22.	(A)	42.	(B)	62.	(D)	82.	(C)	102. (C)
3.	(D)	23.	(A)	43.	(A)	63.	(D)	83.	(A)	103. (A)
4.	(D)	24.	(B)	44.	(B)	64.	(C)	84.	(D)	104. (B)
5.	(B)	25.	(C)	45.	(D)	65.	(A)	85.	(D)	105. (B)
6.	(A)	26.	(A)	46.	(A)	66.	(B)	86.	(B)	106. (A)
7.	(B)	27.	(B)	47.	(B)	67.	(C)	87.	(B)	107. (A)
8.	(C)	28.	(A)	48.	(A)	68.	(A)	88.	(A)	108. (A)
9.	(B)	29.	(B)	49.	(D)	69.	(D)	89.	(D)	109. (B)
10.	(D)	30.	(B)	50.	(A)	70.	(C)	90.	(C)	110. (B)
11.	(D)	31.	(B)	51.	(A)	71.	(A)	91.	(C)	111. (B)
12.	(A)	32.	(C)	52.	(D)	72.	(D)	92.	(C)	112. (B)
13.	(D)	33.	(D)	53.	(C)	73.	(C)	93.	(C)	113. (D)
14.	(A)	34.	(D)	54.	(B)	74.	(C)	94.	(D)	114. (D)
15.	(D)	35.	(C)	55.	(B)	75.	(B)	95.	(C)	115. (C)
16.	(B)	36.	(A)	56.	(C)	76.	(A)	96.	(A)	116. (B)
17.	(B)	37.	(C)	57.	(B)	77.	(A)	97.	(C)	117. (B)
18.	(A)	38.	(B)	58.	(A)	78.	(A)	98.	(D)	118. (A)
19.	(D)	39.	(C)	59.	(A)	79.	(B)	99.	(B)	119. (B)
20.	(C)	40.	(C)	60.	(A)	80.	(C)	100.	(D)	120. (D)

Note : If your opinion differ regarding any answer, please message the mock test and Question number to 8860330003

Note : *If you face any problem regarding result or marks scored, please contact :* 9313111777

Note : Whatsapp with Mock Test No. and Question No. at 705360571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.