SSC TIER II (MATHS) MOCK TEST - 40 (SOLUTION)

1. (C) P can complete the work in $10 \times 5=50$ days
Q can complete the work in
$\frac{20}{40} \times 100=50$ days
R can complete the work in
$=16 \times 3=48$ days
$\therefore \mathrm{R}$ will complete the work first
2. (D) In 7 days total work finished by A and B
$=\frac{7}{18}$
Remaining work $=\frac{11}{18}$
\therefore Required number of days
$=33 \times \frac{18}{11}=54$ days
3. (D) A.T.Q,

\therefore Ratio $=212: 318$
\therefore Required percentage
$=\frac{212}{212+318} \times 100=\frac{212}{530} \times 100=40 \%$
4. (A) Let speed of second person $=x$
A.T.Q,
$\frac{600}{x+4}=40$
$\Rightarrow x=11 \mathrm{~m} / \mathrm{s}$
Required time $=\frac{600}{11-4}$
$=\frac{600}{7}=85.71$ seconds
5.

(A) $\sqrt{602+\sqrt{511+\sqrt{296+\sqrt{752+\sqrt{1024}}}}}$
$=\sqrt{602+\sqrt{511+\sqrt{296+\sqrt{752+32}}}}$
$=\sqrt{602+\sqrt{511+\sqrt{296+28}}}$
$=\sqrt{602+\sqrt{511+18}}$
$=\sqrt{602+23}=\sqrt{625}=25$
6. (A) Given,
$8^{\mathrm{m}}=16777216$
$\Rightarrow 8^{\mathrm{m}-3}=\frac{8^{m}}{8^{3}}=\frac{16777216}{8 \times 8 \times 8}=32768$
7. (D) $\frac{3}{7}<\frac{14}{17}<\frac{11}{13}<\frac{23}{27}$
8. (B) For c to be maximum A and B should be minimum, i.e, zero.
So,
$809+6 \mathrm{C} 6+507=1972$
$\Rightarrow 6 \mathrm{C} 6=656$
$\therefore \mathrm{C}=5$
9. (A) $\frac{3}{7}<\frac{23}{40}<\frac{7}{12}$
$\therefore \mathrm{A}$ is the correct answer.
10.
(C) If $\mathrm{A}: \mathrm{B}: \mathrm{C}=\frac{1}{4}: \frac{1}{5}: \frac{1}{6}=15: 12: 10$
\therefore C's share $=\frac{10}{37} \times 1665=₹ 450$
Now,
If $A: B: C=4: 5: 6$
\therefore C's share $=\frac{6}{15} \times 1665=₹ 666$
\therefore Required amount $=666-450=₹ 216$
11. (C) Let, there is only one mango and C.P. of mango $=₹ x$
A.T.Q,
$\frac{160 x}{100}-\frac{130 x}{100}=6$
$\Rightarrow x=₹ 20$
\therefore Required selling price
$=20 \times \frac{130}{100}=₹ 26$
12. (C) Let, $\mathrm{CP}_{1}=100$, S.P. ${ }_{1}=105$

Now, $\mathrm{CP}_{2}=95$ and S.P. $._{2}=95 \times \frac{110}{100}$

$$
=104.5
$$

So, S.P. $._{1}-$ S.P. $_{._{2}}=0.5$ units $\rightarrow 4$
\therefore Required C.P. $=\frac{100}{0.5} \times 4=₹ 800$

Campus

KD Campus Pvt. Ltd

13. (A) Let total books $=x$
then,
total C.P. $=3 x$
\therefore Total S.P. $=\frac{x}{3} \times 4+\frac{x}{2} \times 5+\frac{x}{6} \times 3$
$=\frac{13 x}{3}$
So,
profit percent $=\frac{\frac{13 x}{3}-3 x}{3 x} \times 100$
$=\frac{4 x}{9 x} \times 100=44 \frac{4}{9} \%$
14. (D) Let the selling price for both traders is ₹ 100 .
The cost price for trader who calculates profit on selling price $=80$
cost price for IInd trader
$=\frac{100 \times 100}{120}=\frac{250}{3}$
Difference in profit
$=(100-80)-\left(100-\frac{250}{3}\right)$
$=20-\frac{50}{3}=\frac{10}{3}$
Required selling price
$=\frac{100}{\left(\frac{10}{3}\right)} \times 105=₹ 3150$
15. (D) A.T.Q,

\therefore Required ratio $=72: 67.5=16: 15$
16. (B) The total many he would have got after 5 years
$=\frac{18000 \times 5 \times 10}{100}=₹ 9000$
But, he got the amount after 3 years in real $=9000-4980=₹ 4020$
Let real rate of interest $=$ R\%

So,
$\frac{18000 \times 3 \times \mathrm{R}}{100}=4020$
$\Rightarrow R=\frac{402}{18 \times 3}=7 \frac{4}{9} \%$
17. (A) Let the sum $=₹ 100$

Now, the total compound interest if com-
pounded half yearly $=6+6+0.36$
= 12.36%
And, that the total simple interest $=12 \%$
The difference between C.I and S.I
= $12.36-12=.36 \%$
\therefore Required sum $=\frac{100}{.36} \times 36=₹ 10000$
18. (C) Let, he borrows the money $=₹ 100$

The interest he pay $=5 \%$
Now,
the interest he receives
$=4+4+.16=8.16 \%$
\therefore Required sum $=\frac{100}{8.16-5} \times 221.2$

$$
\text { = ₹ } 7000
$$

19. (B) Ratio of speed $=12 \times 9: 15 \times 6=6: 5$
20. (C)

M W
Vessel A $\quad=4: 5 \xrightarrow{\times 6} 24: 30$

Vessel B $\quad=5: 1 \xrightarrow{\times 9} 45: 9$
Final mixture $=5: 4 \xrightarrow{\times 6} 30: 24$

\therefore Required ratio $=15: 6=5: 2$
21. (D) Let the capacity of vessels be 105l, 70l, $35 l$

Milk
Water

vessel 1	$\frac{5}{7} \times 105=75$	30

vessel $2 \quad \frac{4}{5} \times 70=56 \quad 14$
vessel $3 \frac{4}{5} \times 35=28$
7
Now,
total water in the final mixture
$=\frac{1}{3} \times 30+\frac{1}{2} \times 14+\frac{1}{7} \times 7=10+7+1=18 l$

Campus

KD Campus Pvt. Ltd

Total quantity of final mixture
$=\frac{105}{3}+\frac{70}{2}+\frac{35}{7}=75 l$
\therefore Required percentage $=\frac{18}{75} \times 100=24 \%$
22. (B) Let average age of new comes $=x$ years the increase in total age after 4 years
$=11 \times 4=44$
A.T.Q,
$44+4 x=36 \times 4$
$\Rightarrow 4 x=144-44=100$
$\Rightarrow x=25$ years
23. (A) Average of Ist five prime numbers
$=\frac{2+3+5+7+11}{5}=\frac{28}{5}$
Average of Ist ten prime number
$=\frac{2+3+5+7+11+13+17+19+23+29}{10}$
$=\frac{129}{10}$
\therefore Required ratio $=\frac{28}{5}: \frac{129}{10}=56: 129$
24. (B) Ratio of girls and boys $=4: 5$
\therefore Required average
$=\frac{75 \times 4+87 \times 5}{9}=81.66$
25. (B) Let the workdone by $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ in day will be A, B \& C respectively
A. T.Q,
$\frac{A}{B+C}=\frac{1_{\times 5}}{3_{\times 5}}=\frac{5}{15}$
$\frac{B}{A+C}=\frac{1_{\times 4}}{4_{\times 4}}=\frac{4}{16}$
Now,
Efficiency $=\mathrm{A}: \quad \mathrm{B}: \quad \mathrm{C}$
So, the time taken by
$A=\frac{(5+4+7) \times 30}{5}=96$ days
26. (B) Let the work done by A in one day $=\mathrm{A}$ and, work done by B in one day $=B$
A.T.Q,

Total work $=36(\mathrm{~A}+\mathrm{B})=30(\mathrm{~A}+\mathrm{B})+10 \mathrm{~A}$
$\Rightarrow 6 \mathrm{~B}=4 \mathrm{~A}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}=\frac{3}{2}$
\therefore Required time $=\frac{(3+2) \times 36}{2}=90$ days
27.
(B) Given that
$(1 \mathrm{M}+3 \mathrm{~W}+4 \mathrm{~B}) \longrightarrow 96$ days
($2 \mathrm{M}+8 \mathrm{~B}$)
$(2 \mathrm{M}+3 \mathrm{~W}) \longrightarrow 120$ days

480
$\therefore 2 M+8 B=6$
$\Rightarrow 1 M+4 B=3$
And, $3 W=5-3$
$\Rightarrow \mathrm{W}=\frac{2}{3}$
And, $2 \mathrm{M}=4-2$
$\Rightarrow M=1$
And also, $8 \mathrm{~B}=6-2$
$\Rightarrow \mathrm{B}=\frac{1}{2}$
\therefore Ratio the efficiency of M, W and B
$=1: \frac{2}{3}: \frac{1}{2}$
So, $(5 M+12 B)$ can complete the work
$=\frac{480}{5+6}=43 \frac{7}{11}$ days
28. (B)

Now, the inlet pipe fills the tank
$=\frac{100}{3}$ hours
So,
the capacity of tank
$=\frac{100}{3} \times \frac{6}{2} \times 60=6000$ litres
29. (B) A beats C by $45+25=70$ seconds
\because C covers 280 meters in 70 seconds
\therefore Speed of $\mathrm{C}=4$ meters $/$ second
Now, the time taken by C in one km
$=\frac{1000}{4}=250$ seconds
\therefore time taken by A $=250-70$
$=180$ seconds $=3$ minutes
30. (B) Let the original speed of a man $=x \mathrm{~km} / \mathrm{h}$ We have the formula,
Distance $=\frac{\mathrm{S}_{1} \times \mathrm{S}_{2}}{\left(\mathrm{~S}_{1}-\mathrm{S}_{2}\right)} \times \mathrm{t}$
So, A.T.Q,
$\frac{x \times(x+3)}{3} \times \frac{40}{60}=\frac{x \times(x-2)}{2} \times \frac{40}{60}$
$\Rightarrow 2 x+6=3 x-6$
$\Rightarrow x=12 \mathrm{~km} / \mathrm{h}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

31. (A) A.T.Q,

Ratio of the distance travelled by P \& Q
= 40:60 = $2: 3$
Now, $1 \longrightarrow 80$
So,
the total distance $=5 \times 80=400 \mathrm{~km}$
32. (B) Let speed of boys in still water $=x$

Let fixed time $=\mathrm{t}$
Now,
the distance covered along the current $=(5+x) t$

And,
distance covered against the current
$=(x-5) t$
A.T.Q,
$(5+x) \mathrm{t}=2[\mathrm{t}(x-5)]$
$\Rightarrow x=15 \mathrm{~km} / \mathrm{hr}$
33. (C) Let number $=100$
if increased by $x \%$, it becomes $(100+x)$ Now,
the reduction when number becomes $(100+x)$ to 100
$y=\frac{x}{100+x} \times 100$
Required ratio $=x: \frac{x \times 100}{100+x}$
$=(100+x): 100$
34. (C) Total increase from 2014 to 2016
$=20+20+\frac{20 \times 20}{100}=44 \%$
Total increase from 2014 to 2017
$=44+25+\frac{25 \times 44}{100}=80 \%$
A.T.Q,
$\because 80 \%=7000$
$\therefore 100 \%=\frac{7000 \times 100}{80}=1750 \times 5=8750$
35. (A) Let cost price one kite $=x$
from options
If 3 kites given free of cost,
then, total discount $=3 x$
\therefore Net discount percent
$=\frac{3 x}{30 x} \times 100=10 \%$
Hence, (A) is the correct answer.
36. (B) $\left(\sin ^{2} x-\cos ^{2} x\right)\left(1-\sin ^{2} x \cos ^{2} x\right)$ $=\left(\sin ^{2} x-\cos ^{2} x\right)\left[\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-\sin ^{2} x \cos ^{2} x\right]$
$\left(\because \sin ^{2} x+\cos ^{2} x=1\right)$
$=\left(\sin ^{2} x-\cos ^{2} x\right)$
$\left[\sin ^{4} x+\cos ^{4} x+\sin ^{2} x \cos ^{2} x\right]$
$=\sin ^{6} x-\cos ^{6} x$
$\left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)\right]$
37. (D) $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)$
$=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}}=2-\sqrt{3}$
And,
$\cot 15^{\circ}=\frac{1}{2-\sqrt{3}}=2+\sqrt{3}$
$\tan 15^{\circ} \cot 75^{\circ}+\cot 15^{\circ} \tan 75^{\circ}$
$=(2-\sqrt{3})^{2}+(2+\sqrt{3})^{2}$
$=4+3-4 \sqrt{4}+4+3+4 \sqrt{4}=14$
38. (B) As we know that,
$\sec ^{2} \theta-\tan ^{2} \theta=(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)$
$=1$
Given,
$\sec \theta+\tan \theta=3+\sqrt{10}$
$\sec \theta-\tan \theta=\frac{1}{\sqrt{10}+3}=\sqrt{10}-3$
On adding equation (i) and (ii). we get,
$\Rightarrow 2 \sec \theta=2 \sqrt{10}$
$\Rightarrow \cos \theta=\frac{1}{\sqrt{10}}$ And,
$\sin \theta=\sqrt{1-\left(\frac{1}{\sqrt{10}}\right)^{2}}=\frac{3}{\sqrt{10}}$
So,
$\sin \theta+\cos \theta=\frac{1}{\sqrt{10}}+\frac{3}{\sqrt{10}}=\frac{4}{\sqrt{10}}=\frac{2 \sqrt{2}}{\sqrt{5}}$
39. (A) $a \sin ^{12} A+b \sin ^{10} A+c \sin ^{8} A+d \sin ^{6} A-1=0$
$\Rightarrow a \sin ^{12} A+b \sin ^{10} A+c \sin ^{8} A+d \sin ^{6} A=(1)^{3}$
$\Rightarrow a \sin ^{12} A+b \sin ^{10} A+c \sin ^{8} A+d \sin ^{6} A$
$=\left(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right)^{3}$
But, we have
$\cos a+\cos ^{2} A=1$
$\Rightarrow \cos A=\sin ^{2} A$
$\Rightarrow \cos ^{2} \mathrm{~A}=\sin ^{4} \mathrm{~A}$
so, the expression becomes,
$\Rightarrow a \sin ^{12} \mathrm{~A}+\mathrm{b} \sin ^{10} \mathrm{~A}+\mathrm{c} \sin ^{8} \mathrm{~A}+d \sin ^{6} \mathrm{~A}$

$$
=\left(\sin ^{2} \mathrm{~A}+\sin ^{4} \mathrm{~A}\right)^{3}
$$

$\Rightarrow a \sin ^{12} A+b \sin ^{10} A+c \sin ^{8} A+d \sin ^{6} A$
$=\sin ^{12} \mathrm{~A}+\sin ^{6} \mathrm{~A}+3 \sin ^{8} \mathrm{~A}+3 \sin ^{10} \mathrm{~A}$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

On comparing both sides. We get
$a=1, b=3, c=3$ and $d=1$
So,
$\frac{\mathrm{b}}{\mathrm{a}}+\frac{\mathrm{c}}{\mathrm{d}}=\frac{3}{1}+\frac{3}{1}=6$
40. (C) Case-I

If they are on the same side of the balloon,

A.T.Q,
$(3-1)$ units $=10$
$\sqrt{3}$ units $=\frac{10 \times \sqrt{3}}{2}=5 \sqrt{3}$
\therefore Required height $=5 \sqrt{3} \mathrm{~km}$
Case-II
If they are on either side of the balloon,

A.T.Q,
$(3+1)$ units $=10$
$\therefore \sqrt{3}$ units $=\frac{10 \times \sqrt{3}}{4}=\frac{5 \sqrt{3}}{2}$
\therefore Required height $=\frac{5 \sqrt{3}}{2} \mathrm{~km}$
Hence, (A) \& (B) both are correct.
41. (C) $\left(7^{6}-1\right)=\left(7^{3}+1\right)\left(7^{3}-1\right)$
$=342 \times 344$
$=57 \times 6 \times 43 \times 8$
$\therefore\left(7^{6}-1\right)$ is divisible by $43 \& 57$.
42. (C) Given equation,
$\Rightarrow x^{2}-(y-3) x-(y-7)=0$
Let the roots be A and B.
Sum of roots $(\mathrm{A}+\mathrm{B})=(y-3)$
Product of roots $(\mathrm{A} \times \mathrm{B})=-(y-7)$
A.T.Q,
$\mathrm{A}^{2}+\mathrm{B}^{2}=0 \quad$ (given)
$\Rightarrow(\mathrm{A}+\mathrm{B})^{2}-2 \mathrm{AB}=0$
$\Rightarrow(y-3)^{2}-2[-(y-7)]=0$
$\Rightarrow y^{2}-4 y-5=0$
$\Rightarrow(y-5)(y+1)=0$
$\Rightarrow y=5$
43. (A) ATQ,
$x=3 y \ldots$. (i)
and, $y=\frac{175 z}{100} \Rightarrow 4 y=7 z$.
From equation (i) and (ii)
$4 x=12 y=21 z$
$\Rightarrow x: y: z=21: 7: 4$
Let, x, y and z have 21A, 7A and 4A money respectively,
A.T.Q,
$\frac{21 \mathrm{~A}+7 \mathrm{~A}+4 \mathrm{~A}}{3}=128$
$\Rightarrow \mathrm{A}=\frac{128 \times 3}{32}=12$
x has the money $=12 \times 21=$ Rs. 252
44. (C) Let $\mathrm{y}=100$
$\therefore x=80$
$\frac{\mathrm{y}-x}{\mathrm{y}}=\frac{100-80}{100}=\frac{1}{5}$
and, $\frac{x}{x-y}=\frac{80}{80-100}=\frac{80}{-20}=-4$
45. (B) Total females $=\frac{25000}{5}=5000$

Total males $=20000$
Total educated person
$=\frac{5000 \times 60}{100}+\frac{20000 \times 95}{100}$
$=3000+19000=22000$
\therefore Required percentage $=\frac{22000}{25000} \times 100$

$$
=88 \%
$$

46. (B)

Wine : Water

$$
\begin{array}{lll}
3 & : & \xrightarrow{\times 18} 54: 36 \\
4 & : & 5 \xrightarrow{\times 10} 40: 50
\end{array}
$$

Final $1: \quad 1 \xrightarrow{\times 45} 45: 45$

KD Campus Pvt. Ltd

Ratio of both mixture = 5:9
\therefore Required mixture
$=\frac{3}{5} \times 9=\frac{27}{5}=5 \frac{2}{5}$ litre
47. (C)

Milk : Water

Vessel -I

$$
\frac{4}{7} \times 3=\frac{12}{7}: \quad \frac{3}{7} \times 3=\frac{9}{7}
$$

Vessel-II

$$
\frac{3}{5} \times 2=\frac{6}{5} \quad: \quad \frac{2}{5} \times 2=\frac{4}{5}
$$

Vessel-III

$$
\frac{5}{6} \quad: \frac{1}{6}
$$

Required ratio
$=\left(\frac{12}{7}+\frac{6}{5}+\frac{5}{6}\right):\left(\frac{9}{7}+\frac{4}{5}+\frac{1}{6}\right)$
$=\frac{360+252+175}{210}: \frac{270+168+35}{210}$
= 787: 473
48. (A) Circumference of the wheel
$=2 \times \frac{22}{7} \times 63=396 \mathrm{~cm}$
\because Wheel rotate 400 times per minute.
\therefore Distance travelled in one hour
$=396 \times 400 \times 60 \mathrm{~cm}$
\therefore Required speed
$=\frac{396 \times 400 \times 60}{100000}=95.04 \mathrm{~km} / \mathrm{hr}$.
49. (B) From 10 to 99 total keystrokes
$=90 \times 2=180$.
From 100 to 999 total keystrokes $=900$
$\times 3=2700$
and, there are 4 keystrokes to write 1000 .
Total keystrokes $=180+2700+4=2884$
50. (A) A.T.Q,
$(72-36) \propto \sqrt{16}$
$\Rightarrow 36=\mathrm{K} \times 4$
$\Rightarrow \mathrm{K}=9$
when the speed to be zero, let total compartments $=x$
So,
$72-0=\mathrm{K} \times \sqrt{x}$
$\Rightarrow 72=9 \times \sqrt{x}$
$\Rightarrow x=64$
Hence, the maximum number of compartments can be carried $=63$
51. (A)

Required ratio $=x^{2}: x^{2} \sin 45^{\circ}=\sqrt{2}: 1$
52.
(B) $\frac{37}{13}=2+\frac{1}{x+\frac{1}{y+\frac{1}{z}}}$
$\Rightarrow \frac{11}{13}=\frac{1}{x+\frac{1}{y+\frac{1}{z}}}$
$\Rightarrow \frac{13}{11}=x+\frac{1}{y+\frac{1}{z}}$
$\Rightarrow 1+\frac{2}{11}=x+\frac{1}{\mathrm{y}+\frac{1}{\mathrm{z}}}$
$x=1$,
And $\frac{2}{11}=\frac{1}{y+\frac{1}{z}}$
$\Rightarrow \frac{11}{2}=\mathrm{y}+\frac{1}{\mathrm{z}}$
$\Rightarrow 5+\frac{1}{2}=y+\frac{1}{z}$
On Comparing,
$y=5, z=2$
$\therefore y-x-z=5-1-2=2$
53. (B) $x=\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}} \Rightarrow \frac{x}{\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}$

Applying componendo \& dividendo
$\Rightarrow \frac{x+\sqrt{2}}{x-\sqrt{2}}=\frac{\sqrt{3}+\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{3}-\sqrt{2}}$
$\Rightarrow \frac{x+\sqrt{2}}{x-\sqrt{2}}=\frac{2 \sqrt{3}+\sqrt{2}}{-\sqrt{2}}$ \qquad
Similerly,
$\frac{x}{\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
Applying componendo \& dividendo
$\Rightarrow \frac{x+\sqrt{3}}{x-\sqrt{3}}=\frac{2 \sqrt{2}+\sqrt{3}}{(-\sqrt{3})}$
Adding equation (i) \& (ii)

KD Campus Pvt. Ltd
$\frac{x+\sqrt{2}}{x-\sqrt{2}}+\frac{x+\sqrt{3}}{x-\sqrt{3}}=-\left(\frac{2 \sqrt{3}+\sqrt{2}}{\sqrt{2}}+\frac{2 \sqrt{2}+\sqrt{3}}{\sqrt{3}}\right)$
$=-\left(\frac{6+\sqrt{6}+4+\sqrt{6}}{\sqrt{6}}\right)=-2\left(\frac{5+\sqrt{6}}{\sqrt{6}}\right)$
54.
C) $\sqrt{x}=\frac{2.35}{235}=\frac{1}{100}$
$\Rightarrow x=\frac{1}{10000}$
Now,
$\sqrt{y}=\frac{1628}{1.628}=1000$
$\Rightarrow \mathrm{y}=1000000$
So, $x y=\frac{1000000}{10000}=100$
55. (B) Let total students $=\mathrm{A}$

Then, the total contribution
$=\left(A \times A+\frac{A \times A}{100}\right)=A^{2}+\frac{A^{2}}{100}$
A.T.Q,
$A^{2}+\frac{A^{2}}{100}=22725$
On solving this equation with the help of the options. we get, $A=150$
So, the number of students $=150$
56. (B) Let first term $=\mathrm{A}$
and, the common difference $=\mathrm{D}$
A.T.Q.
$A+2 D=-6$ \qquad
$A+6 D=14$ \qquad
from equation (i) \& (ii)
$D=5 \& A=-16$
So, the sum of the first 15 terms
$=\frac{\mathrm{n}}{2}[2 \mathrm{~A}+(\mathrm{N}-1) \mathrm{D}]=\frac{15}{2}[-32+14 \times 5]$
$=\frac{15}{2}[38]=285$
57. (C) Length of $\mathrm{PQ}=\frac{32-16}{2}=8 \mathrm{~cm}$.
58. (B) The ratio of sides $=\frac{1}{2}: \frac{1}{5}: \frac{1}{6}=15: 6: 5$

Let the sides of triangle are 15A, 6A \& 5A
A.T.Q
$15 A+6 A+5 A=208$
$\Rightarrow A=8$
59. (B)

Let the side of this equilateral $\triangle \mathrm{ABC}$ is a . A.T.Q,

In radius + Circum-radius $=\frac{\sqrt{3}) \sqrt{3}+\sqrt{2} *}{4}$
$\Rightarrow \frac{a}{2 \sqrt{3}}+\frac{a}{\sqrt{3}}=\frac{\sqrt{3}) \sqrt{3}+\sqrt{2} *}{4}$
$\Rightarrow \frac{3 \mathrm{a}}{2 \sqrt{3}}=\frac{\sqrt{3}(\sqrt{3}+\sqrt{2})}{4}$
$\Rightarrow a=\frac{\sqrt{3}+\sqrt{2}}{2}$
So, the height of $\triangle \mathrm{ABC}=\mathrm{a} \times \frac{\sqrt{3}}{2}$
$=\frac{\sqrt{3}+\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}(\sqrt{3}+\sqrt{2})}{4} \mathrm{~cm}$
60. (B) Let radius of the circle $=R$
A.T.Q
$\frac{22}{7} \times \mathrm{R}^{2}=(1127.6164) \times \frac{22}{7}$
$\Rightarrow R=33.58 \mathrm{~m}$
Circumference $=2 \times \frac{22}{7} \times 33.58 \mathrm{~m}$
\therefore Required time $=\frac{2 \times 22 \times 33.58 \times 7}{7 \times 12}$
$=123.12$ seconds
61. (B) Let radius of sphere $P=R_{1}$ $\&$ radius of spheere $Q=R_{2}$
A.T.Q
$4 \pi R_{1}^{2}=\frac{900}{100}\left(4 \pi R_{2}^{2}\right)$
$\Rightarrow R_{1}=3 R_{2}$
The Volume of P
$=\frac{4}{3} \pi R_{1}{ }^{3}=\frac{4}{3} \pi\left(3 R_{2}\right)^{3}=36 \pi R_{2}{ }^{3}$
And, the volume of $\mathrm{Q}=\frac{4}{3} \pi \mathrm{R}_{2}{ }^{3}$
\therefore Required percentage
$=\frac{104 \times \pi \mathrm{R}_{2}{ }^{3} \times 100}{3 \times 36 \pi \mathrm{R}_{2}{ }^{3}}=\frac{2600}{27}=96.3 \%$

Campus

KD Campus Pvt. Ltd

62. (D) The equations of the sides $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ \& SP are
$x+2 y=3$ \qquad
$x=1$
$x-3 y=4$
$5 x+y=-12$
On solving equation (i) \& (ii). We get
The co-ordinate of point $Q=(1,1)$
Now, Solving (ii) \& (iii). We get
R = (1,-1)
Solving (iii) \& (iv), we get
$\mathrm{S}=(-2,-2)$
And solving equation (i) \& (iv) we get $\mathrm{P}=(-3,3)$
Now, the slope of line PR (m_{1})
$=\frac{3+1}{-3-1}=-1$
And,
the slope of line $\mathrm{QS}\left(\mathrm{m}_{2}\right)=\frac{-2-1}{-2-1}=1$
Now,
$m_{1} \times m_{2}=-1 \times 1=-1$
So,
the angle between these equation $=90^{\circ}$
63. (C) Let radius of circle $=R$
A.T.Q
$\frac{22}{7} \times \mathrm{R}^{2}=1386 \Rightarrow \mathrm{R}=21 \mathrm{~cm}$
Now, diameter of circle $=$ side of square
$=$ side of triangle
\therefore Perimeter of $\triangle B C E=42 \times 3=126 \mathrm{~cm}$
area of $\triangle \mathrm{DCF}=\frac{\sqrt{3}}{4} \times 42 \times 42=441 \sqrt{3} \mathrm{~cm}^{2}$
\therefore required ratio $=126: 441 \sqrt{3}$
$=6: 21 \sqrt{3}=2: 7 \sqrt{3}$
64. (A) $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$
$=4 \sqrt{3} x^{2}+8 x-3 x-2 \sqrt{3}$
$=4 \mathrm{x}(\sqrt{3} x+2)-\sqrt{3}(\sqrt{3} \mathrm{x}+2)$
$=(4 \mathrm{x}-\sqrt{3})(\sqrt{3} x+2)$
So, $(4 x-\sqrt{3})$ is a factor of this equation.
65. (B) $\frac{1}{\mathrm{p}+1}+\frac{1}{\mathrm{q}+1}+\frac{1}{\mathrm{r}+1}$
$=\frac{p}{p^{2}+p}+\frac{q}{q^{2}+q}+\frac{r}{r^{2}+r}$
$=\frac{p}{q+r+p}+\frac{q}{p+q+r}+\frac{r}{q+p+r}=1$
66. (B) $a^{2}+b^{2}=7 a b$
dividing both sides by ab ,
$\Rightarrow \frac{a}{b}+\frac{b}{a}=7$
squaring both sides,
$\Rightarrow \frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}+2=49 \Rightarrow \frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}=47$
67.

(C) $\sqrt{1+\frac{72}{289}}=\sqrt{\frac{361}{289}}=\frac{19}{17}$

Now, $1+\frac{x}{17}=\frac{19}{17} \Rightarrow \frac{x}{17}=\frac{2}{17}$
$\Rightarrow x=2$
68.
(C) $\frac{(a-b)^{2}}{3(b-c)(c-a)}+\frac{(b-c)^{2}}{3(c-a)(a-b)}+\frac{(c-a)^{2}}{3(a-b)(b-c)}$
$=\frac{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}{3(a-b)(b-c)(c-a)}$
$=\frac{3(a-b)+(b-c)+(c-a)}{3(a-b)(b-c)(c-a)}=1$
69. (B)

$5 x+7 y=35$
$\Rightarrow \frac{x}{7}+\frac{y}{5}=1$
This line passes through Ist, 2nd \& 4th quadrant
70. (C) $\operatorname{cosec} \theta+\cot \theta=\sqrt{3}$
as we know that $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$
$\therefore(\operatorname{cesec} \theta-\cot \theta)(\operatorname{cosec} \theta+\cot \theta)=1$
$\Rightarrow \operatorname{cosec} \theta-\cot \theta=\frac{1}{\sqrt{3}}$
Adding eqution (i) \& (ii),
$2 \operatorname{cosec} \theta=\sqrt{3}+\frac{1}{\sqrt{3}}=\frac{4}{\sqrt{3}}$
$\Rightarrow \operatorname{cosec} \theta=\frac{2}{\sqrt{3}}$
$\Rightarrow \theta=60^{\circ}$
$\therefore \cos \frac{\theta}{2}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

Campus

KD Campus Pvt. Ltd

71. (B) $x \cos \theta-y \sin \theta=3$
squaring both sides,
$x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta-2 x y \sin \theta \cos \theta=9$
......(i)
$x \sin \theta+y \cos =5$
squaring both sides,
$\Rightarrow x^{2} \sin ^{2} \theta+y^{2} \cos ^{2} \theta+2 x y \sin \theta \cos \theta$
$=25$. (ii)

Adding equation (i) \& (ii)
$x^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+y^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=34$
$\Rightarrow x^{2}+y^{2}=34$
72. (B)

$\Delta \mathrm{ABC}$ is a right angled triangle with right angle at A.
$\therefore \frac{A B}{B C}=\cos 30^{\circ}$
$\Rightarrow \mathrm{AB}=12 \sqrt{3} \times \frac{\sqrt{3}}{2}=18 \mathrm{~cm}$
$\because \frac{A C}{B C}=\sin 30^{\circ}$
$\Rightarrow \mathrm{AC}=\frac{1}{2} \times 12 \sqrt{3}=6 \sqrt{3} \mathrm{~cm}$
Area of triangle ABC
$=\frac{\mathrm{AB} \times \mathrm{AC}}{2}=\frac{\mathrm{AD} \times \mathrm{BC}}{2}$
$\Rightarrow \mathrm{AD}=\frac{6 \sqrt{3} \times 18}{12 \sqrt{3}}=9 \mathrm{~cm}$
73. (A)

In triangle ABC ,
$\tan 60^{\circ}=\frac{\mathrm{AC}}{\mathrm{AB}} \Rightarrow \mathrm{AB}=\frac{45}{\sqrt{3}}$
In $\triangle \mathrm{ABD}$,
$\tan \theta=\frac{\mathrm{BD}}{\mathrm{AB}}=\frac{15}{45} \times \sqrt{3}=\frac{1}{\sqrt{3}}$
74. (D) Let the sides are n and $2 n$
A.T.Q,
$\frac{\frac{(n-2) \times 180^{\circ}}{n}}{\frac{(2 n-2)}{2 n} \times 180^{\circ}}=\frac{2}{3}$
$\Rightarrow \frac{(n-2)}{(n-1)}=\frac{2}{3}$
$\Rightarrow n=4$
So, the number of sides are 4 and 8 .
75. (A) Percentage error

$$
=\frac{30}{45 \times 60} \times 100=\frac{10}{9}=1 \frac{1}{9} \%
$$

76. (B)

Let $\angle \mathrm{A}=\theta$ and $\angle \mathrm{B}=\alpha$
$\angle \mathrm{ACO}=\angle \mathrm{A}=\theta \quad(\because \mathrm{AO}=\mathrm{OC})$
And,
$\angle \mathrm{BDO}=\angle \mathrm{B}=\alpha(\because \mathrm{OB}=\mathrm{OD})$
$\angle \mathrm{AOC}=180^{\circ}-2 \theta$ and,
$\angle \mathrm{BOD}=180^{\circ}-2 \alpha$
Now,
$180^{\circ}-2 \theta+60^{\circ}+180^{\circ}-2 \alpha=180^{\circ}$
$\Rightarrow 2 \theta+2 \alpha=240$
$\Rightarrow \theta+\alpha=120^{\circ}$
$\therefore \angle \mathrm{E}=180^{\circ}-120^{\circ}=60^{\circ}$
77. (C) Let the side of square $=x$
we have,
total surface area of prism
$=$ Base Perimeter $\times h+2 \times$ base Area
$=4 x \times h+2 x^{2}$
A.T.Q,
$4 x \times 15+2 x^{2}=608$
$\Rightarrow 30 x+x^{2}=304$
$\Rightarrow x(x+30)=8 \times 38$
$\Rightarrow x=8 \mathrm{~cm}$
Now, the volume of prism
$=$ Base area \times height
$=8^{2} \times 15=960 \mathrm{~cm}^{2}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
78. (D) Total surface area of brick
$=2(l b+b h+h l)$
$=2(22.5 \times 10+22.5 \times 7.5+10 \times 7.5 \times 10)$
$=937.5 \mathrm{~cm}^{2}$
\therefore Total number of bricks
$=\frac{18.75 \times 10000}{937.5}=200$
79. (D) Volume of cone
$=\left(\frac{1}{3} \times\right.$ area of base \times height $)$
\because The volume of cone is directly proportional to the area of base. So,
Volume also increases by 87%
80. (C) Let and increase in height $=\mathrm{h}$

So,
$\left[\frac{80}{100} \times(1000 \times 1000) \times \frac{5}{100}\right]$
$=(50 \times 20 \times h)$
$\Rightarrow h=\frac{400}{10}=40 \mathrm{~m}$
81. (B) Let there are x wides.
\therefore Total byes $=x+12$
And run scored by both openers $=32 x$
$\Rightarrow x+x+12+32 x=250$
$\Rightarrow 34 x=238$
$\Rightarrow x=7$
\therefore Total runs scored by both openers
$=32 \times 7$ = 224
Run scored by Sunil
$=\frac{5}{8} \times 224=28 \times 5=140$
82. (B) Because it takes 4 minutes to evacuate the crew and passengers, so the ship can travel for maximum 16 minutes
In 16 minutes, ship covered
$=15 \times \frac{16}{60}=4 \mathrm{~km}$
\therefore Rescue vessel has to travel the distance $=(12-4)=8 \mathrm{kms}$
and, the rescue vessel has 16 mintues.
\therefore Required speed
$=\frac{8}{16} \times 60=30 \mathrm{~km} / \mathrm{hr}$
83. (B) Let distance covered on bicyle $=x \mathrm{~km}$
A.T.Q,
$\frac{x}{17}+\frac{(90-x)}{8}=9$
from options
$x=34 \mathrm{kms}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Let, O is the centre of circle, i.e. mid point of BC.
$\because \mathrm{OD}=\mathrm{OB}=$ radius
$\therefore \angle \mathrm{ABC}=\angle \mathrm{BDO}=60^{\circ}$
$\therefore \mathrm{BDO}$ will be an equilateral triangle.
\therefore Area of $\triangle \mathrm{BDO}$
$=\frac{\sqrt{3} \times 7 \times 7}{4} \mathrm{~cm}^{2}$
Area of the sector BDOB
$=\pi \times 7 \times 7 \times \frac{60^{\circ}}{360^{\circ}}=\frac{49}{6} \pi \mathrm{~cm}^{2}$
\therefore Required area
$=2 \times\left[\frac{49 \pi}{6}-\frac{49 \sqrt{3}}{4}\right]$
$=49\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right] \mathrm{cm}^{2}$.
89. (B) Minimum value of $12 \sin x+16 \cos x$
$=-\left(\sqrt{12^{2}+16^{2}}\right)=-20$
So, the equation will be greater than zero or equal to zero if $\mathrm{A}=20$.
90. (B) Simple interest per year $=₹ 450$

Let the rate of interest be $\mathrm{R} \%$.
$450 \times \frac{\mathrm{R}}{100}=81$
$\Rightarrow R=\frac{81 \times 10}{45}=18 \%$
91. (B) Total cost for all the books
$=\frac{36000}{24} \times 100$
= ₹ 150000 .
Total cost for single book
$=\frac{400}{16} \times 100$
$=₹ 2500$.
\therefore Total books $=\frac{150000}{2500}=60$.
92. (C) Required angle $=\frac{36}{100} \times 360=129.6^{\circ}$
93. (C) Total cost $=\frac{480}{8} \times 100=₹ 6000$
\therefore Required S.P.
$=6000 \times \frac{120}{100} \times \frac{85}{100}=₹ 6120$.
94. (A) Cost price of all the books
$=\frac{144000 \times 100}{120}=₹ 120000$.
Paper cost
$=\frac{120000}{100} \times 36$
$=₹ 43,200$.
95. (D) Required percentage
$=\frac{32-24}{32} \times 100$
= 25%
96. (C) Required difference
$=500+1000+750$
$=2250$.
97. (D) Average number of boys
$=\frac{3500+4500+4750+2250+3250}{5}$
$=\frac{18250}{5}=3650$
Average number of girls
$=\frac{3000+3500+4000+1500+3750}{5}$
$=\frac{15750}{5}=3150$
Required difference
$=3650-3150=500$.
98. (A) Required ratio

$$
\begin{aligned}
& =\frac{3000+3500+1500}{4500} \\
& =\frac{8000}{4500}=16: 9 .
\end{aligned}
$$

99. (B) Required percentage

$$
\begin{aligned}
& =\frac{15750}{4000} \times 100 \\
& =393.75 \%
\end{aligned}
$$

100. (A) Required percentage
$=\frac{2250-1500}{1500} \times 100=50 \%$

Campus

KD Campus Pvt. Ltd

SSC TIER II (MATHS) MOCK TEST - 40 (ANSWER KEY)

1. (C)	11. (C)	21. (D)	31. (A)	41. (C)	51. (A)	61. (B)	71. (B)	81. (B)	91. (B)
2. (D)	12. (C)	22. (B)	32. (B)	42. (C)	52. (B)	62. (D)	72. (B)	82. (B)	92. (C)
3. (D)	13. (A)	23. (A)	33. (C)	43. (A)	53. (B)	63. (C)	73. (A)	83. (B)	93. (C)
4. (A)	14. (D)	24. (B)	34. (C)	44. (C)	54. (C)	64. (A)	74. (D)	84. (C)	94. (A)
5. (A)	15. (D)	25. (B)	35. (A)	45. (B)	55. (B)	65. (B)	75. (A)	85. (A)	95. (D)
6. (A)	16. (B)	26. (B)	36. (B)	46. (B)	56. (B)	66. (B)	76. (B)	86. (A)	96. (C)
7. (D)	17. (A)	27. (B)	37. (D)	47. (C)	57. (C)	67. (C)	77. (C)	87. (B)	97. (D)
8. (B)	18. (C)	28. (B)	38. (B)	48. (A)	58. (B)	68. (C)	78. (D)	88. (B)	98. (A)
9. (A)	19. (B)	29. (B)	39. (A)	49. (B)	59. (B)	69. (B)	79. (D)	89. (B)	99. (B)
10. (C)	20. (C)	30. (B)	40. (C)	50. (A)	60. (B)	70. (C)	80. (C)	90. (B)	100.(A)

Rough Space

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

