Campus

KD Campus Pvt. Ltd

SSC TIER II (MATHS) MOCK TEST - 39 (SOLUTION)

1. (B) A.T.Q,

Time taken by first runner
$=\frac{2000}{20}=100 \mathrm{sec}$
Time taken by second runner
$=\frac{2000}{25}=80 \mathrm{sec}$
Time taken by third runner
$=\frac{2000}{40}=50 \mathrm{sec}$
\therefore Required time
$=$ L.C.M of 100, 80 and $50=400 \mathrm{sec}$
2. (C) A.T.Q,
\therefore Required H.C.F $=a^{3} b^{4} c^{5}$
3. (C) A.T.Q,
$\frac{8^{14} \times 45^{38} \times 12^{18}}{8^{12} \times 5^{22}}=2^{6} \times 5^{16} \times 3^{76} \times 2^{36} \times 3^{18}$
\therefore Number of prime factor

$$
=6+16+76+36+18=152
$$

4. (D) Let two consecutive numbers are 5 and 3
A.T.Q,
$5^{2}-3^{2}=(5-3)(5+3)=16$
Hence, it is always divisible by 8 .
5. (A) Let average age of 30 students $=x$ years
A.T.Q,
$30 x+159=33(x+3)$
$\Rightarrow 3 x=60$
$\Rightarrow x=20$
\therefore Average age of 33 students $=23$ years
6. (C) A.T.Q,

Total age of Vinay and his wife at the time of marriage $=27+24=51$ years
Total present age of Vinay, his wife and his son $=23 \times 3=69$ years
Hence, present age of the son
$=69-51-12=6$ years
7. (B) Let x be the number of students in least row.
So, through opitons B,
$x+x+3+x+6+x+9+x+12+x+15=630$
$\Rightarrow 6 x=630-45$
$\Rightarrow x=97.5$
$\therefore 6$ can not be the number of rows.
8. (C) A.T.Q,

Total age of A, B and C
$=\frac{(22 \times 2+21 \times 2+24 \times 2)}{2}=67$
\therefore Ages of A, B and C
$=(67-21 \times 2),(67-24 \times 2)$ and $(67-22 \times 2)$
$=25,19,23$ years
9. (D) A.T.Q,

Total score after 59 innings $(58 \times 58)+117$
$=3481$ runs
\therefore Average of 59 innings $=\frac{3481}{59}=59$ runs
Runs scored in 60th innings
$=(60 \times 61)-3481=179$
10. (B) Let the average expenditure $=₹ x$
$44 x+34.5=50(x-1.5)$
$\Rightarrow 44 x+34.5=50 x-75$
$\Rightarrow 6 x=109.5$
\therefore Original expenditure
$=\frac{109.5}{6} \times 44=₹ 803$
11. (B) A.T.Q,

Ratio of the previous year income
$=\frac{4}{4} \times 3: \frac{5}{6} \times 5=18: 25$
Previous year income of sunil
$=\frac{21500}{43} \times 18=₹ 9000$
12. (D) Let the price of T.V. $=₹ x$
A.T.Q,
$\frac{4000+x}{12}=\frac{2700+x}{9}$
$\Rightarrow 4 x-3 x=12000-10800$
$\Rightarrow x=₹ 1200$
\therefore Price of T.V. $=₹ 1200$
13. (B) A.T.Q,

Let total number of workers = 1600

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

\therefore Required fraction $=\frac{1000}{1600}=\frac{5}{8}$
14. (A) A.T.Q,
$60^{2}-59^{2}=(60-59)(60+59)$
Value of the expression $=$ sum of numbers from 31 to 60
Required value
$=\frac{60 \times 61}{2}-\frac{30 \times 31}{2}=1365$
15. (B) Let the numbers are $(a-d), a$ and $(a+d)$
A.T.Q,
$42=a+d+a+a-d$
$\Rightarrow 3 a=42$
$\Rightarrow a=14$
and, $2730=(a+d)(a)(a-d)$
$\Rightarrow 196-d^{2}=195$
$\Rightarrow d=1$
$\Rightarrow d=1$
\therefore Smallest number $=14-1=13$
16. (A) A.T.Q,
$\frac{16 x+6}{3 x-2}=\frac{27}{5}$
$\Rightarrow 80 x+30=81 x-54$
$\Rightarrow x=84$
\therefore Total number of appeared students
$=84 \times 16=1344$
17. (D) A.T.Q,

Ist : 2nd : 3rd
6 : 7

	4	$:$	5
24	$:$	28	$:$

Now,
$24 x \times 35 x=7560$
$\Rightarrow x^{2}=9$
$\Rightarrow x=3$
\therefore Required sum $=3(24+28+35)=261$
18. (C) Let B takes x days to finish the work and A takes $x+8$ days to finish the work. A.T.Q,
$\frac{3(x+8)}{4}=\frac{x}{4}+9$
$\Rightarrow 3 x+24=x+36$
$\Rightarrow 2 x=12$
$\Rightarrow x=6$
\therefore Time taken by A $=8+6=14$ days
19. (A) Let time taken by first and second are a days and b days respectively.
A.T.Q,
$\frac{1}{a}+\frac{1}{b}=\frac{1}{9}$
$\Rightarrow 9(a+b)=a b$
and,
$\frac{1}{2 a}+\frac{2}{b}=\frac{1}{6}$
$\Rightarrow 6 b+24 a=2 a b$
Solving equation (i) and (ii), we get
$6 b+24 a=2[9(a+b)]$
$\Rightarrow 6 a=12 b$
$\Rightarrow a=2 b$
$6 b+24(2 b)=2 a b$
$\Rightarrow 54 b=2 a b$
$\Rightarrow a=27$
\therefore Required number of days $=27$ days
20. (B) Let P works for x days
$\frac{32}{x}+\frac{68}{8-x}=25$ (Per day work)
On solving, we get
$\Rightarrow x=4$
\therefore One day work of $\mathrm{A}=8$
\therefore Required number of days $=\frac{192}{8}$

$$
=24 \text { days }
$$

21. (C) A.T.Q,

Pipe $\mathrm{A} \rightarrow 16$
Pipe $\mathrm{B} \rightarrow 24 \xrightarrow[3]{4} \xrightarrow{4} \xrightarrow{4}+96$
Pipe $\mathrm{C} \rightarrow 32$
Work done by pipe B and C in 6 minutes = 42 units
Work done by pipe A in 4 minutes $=24$ units
$=\frac{96-42-24}{6+3}=\frac{30}{9}=\frac{10}{3} \mathrm{~min}$
Total time taken to fill the tank
$=6+4+\frac{10}{3}=13 \frac{1}{3} \mathrm{~min}$
22. (C) Let they work together for x days
A.T.Q,

One day work of B and $\mathrm{C}=\frac{1}{p}$ and,
One day work of A and $\mathrm{B}=\frac{1}{q}$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
One day work of A, B and C
$=\frac{1}{p}+\frac{1}{q}-\frac{1}{2 x}$
Now,
$\frac{1}{p}+\frac{1}{q}-\frac{1}{2 x}=\frac{1}{x}$
$\Rightarrow \frac{q+p}{p q}=\frac{3}{2 x}$
$\Rightarrow x=\frac{3 p q}{2(p+q)}$
23. (A) A.T.Q,
$\begin{aligned} & \mathrm{A}+\mathrm{B} \rightarrow 12 \\ & \mathrm{~B}+\mathrm{C} \rightarrow 18 \\ & \mathrm{C}+\mathrm{A} \rightarrow 16\end{aligned}>144 \underbrace{12}_{9}$
\therefore Required of time $=\frac{144 \times 2}{29}=9 \frac{27}{29}$ days
24. (B) A.T.Q,

\therefore Efficiency of Nitin $=\frac{72-(9+8) 3}{7}=3$
Ratio of efficiency $=9: 8: 3$
Ratio of time $=3: 3: 7$
Ratio of wages $=27: 24: 21$

$$
=9: 8: 7
$$

\therefore Share of Naveen $=\frac{7200}{24} \times 9=₹ 2700$
Share of Naresh $=\frac{7200}{24} \times 8=₹ 2400$ and,
Share of Nitin $=\frac{7200}{24} \times 7=₹ 2100$
25. (D) A.T.Q,
$4 M+6 W+9 C=\frac{17600}{11}=1600$
$5 \mathrm{M}+4 \mathrm{~W}+6 \mathrm{C}=\frac{8460}{6}=1410 \ldots \ldots$.
Solving equation (i) and (ii), we get
$9 \mathrm{M}+10 \mathrm{~W}+15 \mathrm{C}=3010$ \qquad
and,
$3 M+3 W+8 C=\frac{16020}{9}=1780 .$.
On solving equation (iii) and (iv), we get $6 \mathrm{M}+7 \mathrm{~W}+7 \mathrm{C}=1230$
\therefore Required amount $=1230 \times 9=₹ 11070$
26. (C) A.T.Q,
$x+\frac{15}{x}=8$
$\Rightarrow x^{2}+15-8 x=0$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
30. (C) A.T.Q,
$a^{2}-b^{2}=x$
$b^{2}-c^{2}=y$
and, $c^{2}-a^{2}=z$
Now,
$x+y+z=a^{2}-b^{2}+b^{2}-c^{2}+c^{2}-a^{2}=0$
$\therefore\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}$
$=3\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right)$
$\Rightarrow 3(a-b)(a+b)(b-c)(b+c)(c+a)(c-a)$
33. (B) A.T.Q,
$A=2 \times 2 \times 2(x+1)^{2}(x+2)(x+6)$
B $=2 \times 2 \times 5(x+1)(x+2)(x+2)(x+7)$
\therefore L.C.M of the polynonimals
$=40(x+1)^{2}(x+2)^{2}(x+6)(x+7)$
34. (C) A.T.Q,
$\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=\frac{12}{5}$
$\Rightarrow \frac{x}{y}+\frac{y}{x}+2=\frac{144}{25}$
$\Rightarrow x^{2}+y^{2}+2 x y=\frac{144}{25} x y$
Now,
$(x+y)^{2}=(12)^{2}$
$\Rightarrow x^{2}+y^{2}+2 x y=144$
$\therefore \frac{144}{25} x y=144$
$\Rightarrow x y=25$
35. (D) A.T.Q,
$a x+b y=8$
$b x-a y=4$
Squaring and adding equation (i) and (ii), we get
$a^{2} x^{2}+b^{2} y^{2}+a^{2} y^{2}+b^{2} x^{2}=80$
$\Rightarrow x^{2}\left(a^{2}+b^{2}\right)+y^{2}\left(a^{2}+b^{2}\right)=80$
$\Rightarrow\left(x^{2}+y^{2}\right)\left(a^{2}+b^{2}\right)=80$
$\Rightarrow x^{2}+y^{2}=10$
36. (D) A.T.Q,

Required number of books
$=8200 \times \frac{15}{100} \times \frac{3}{5}=738$
37. (A) A.T.Q,

Required ratio
$=8200 \times \frac{21}{100} \times \frac{3}{7}: 8200 \times \frac{18}{100} \times \frac{5}{6}$
$=3: 5$
38. (C) A.TQ,

Required number of books
$=8200\left[\frac{21}{100} \times \frac{4}{7}+\frac{18}{100} \times \frac{5}{6}+\frac{15}{100} \times \frac{3}{5}+\frac{10}{100} \times \frac{3}{10}+\frac{36}{100} \times \frac{7}{9}\right]$
$=5494$
39. (A) A.T.Q,

Required ratio $=5494:(8200-5494)$

Campus

KD Campus Pvt. Ltd

40. (B) A.T.Q,

Required number of books
$=8200 \times \frac{15}{100}+8200 \times \frac{10}{100}$
$=1230+820=2050$
41. (C) A.T.Q,
$\frac{r_{1}}{r_{2}}=\frac{l_{1}}{l_{2}} \times \frac{\theta_{2}}{\theta_{2}}$
\therefore Required ratio $=75^{\circ}: 45^{\circ}=5: 3$
42. (C) A.T.Q,

43. (A) A.T.Q,
$\frac{1}{2} \times \frac{1}{\sqrt{2}} \times \frac{1}{2}-\frac{1}{\sqrt{3}} \times 2+\frac{5 \times 1}{12 \times 1}$
$=\frac{1}{4 \sqrt{2}}-\frac{2}{\sqrt{3}}+\frac{5}{12}$
$=\frac{3 \sqrt{2}-16 \sqrt{3}+10}{24}$
44. (B)

$\mathrm{AC}-\mathrm{BC}=4$
$\Rightarrow h-\mathrm{P}=4$
$\Rightarrow h^{2}=(4 \sqrt{3})^{2}+\mathrm{P}^{2}$
$\Rightarrow h^{2}-\mathrm{P}^{2}=48$

Campus

KD Campus Pvt. Ltd

In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 60^{\circ}$
$\Rightarrow \frac{h}{x}=\sqrt{3}$
In $\triangle \mathrm{ABD}$,
$\frac{\mathrm{AB}}{\mathrm{BD}}=\tan 45^{\circ}$
$=\frac{h}{x+50}=1$
From equation (i) and (ii), we get
$\Rightarrow x+50=\sqrt{3} x$
$\Rightarrow x=\frac{50}{\sqrt{3}-1}$
$\Rightarrow x=25(\sqrt{3}+1) \mathrm{m}$
$\therefore h=\sqrt{3} \times 25(\sqrt{3}+1) \mathrm{m}$
\therefore Height of tower $=25(\sqrt{3}+3) \mathrm{m}$
48. (C) A.T.Q,

In $\Delta \mathrm{PQR}$,
$\frac{h}{120}=\frac{1}{\sqrt{3}}$
$\Rightarrow h=40 \sqrt{3} \mathrm{~m}$
\therefore Speed of the ballon
$=\frac{40 \sqrt{3}}{10}=4 \times 1.73$
$=6.92$ meter/ Min.
49. (B) A.T.Q,
$\sin \theta-\cos \theta=\sqrt{2} \cos \theta$
$\Rightarrow \sin \theta=\cos \theta+\sqrt{2} \cos \theta$
$\Rightarrow \cos \theta=\frac{\sin \theta}{\sqrt{2}+1}$
$\Rightarrow \cos \theta=(\sqrt{2}-1) \sin \theta$
$\therefore \sin \theta+\cos \theta=\sqrt{2} \sin \theta$
50. (C) A.T.Q,
$\sin 2 \theta+\sin \theta=6 \cos \theta+3$
$\Rightarrow 2 \sin \theta \cos \theta+\sin \theta=6 \cos \theta+3$
$\Rightarrow 2 \sin \theta \cos \theta+\sin \theta-6 \cos \theta-3=0$
$\Rightarrow \sin \theta(2 \cos \theta+1)-3(2 \cos \theta+1)=0$
$\Rightarrow(\sin \theta-3)(2 \cos \theta+1)=0$
$\Rightarrow(\sin \theta-3)(2 \sin \theta+1)=0$
$\Rightarrow \sin \theta=3$ or $-\frac{-1}{2}$
51. (B) A.T.Q,

Area of triangle is maximum, when triangle is right angled
\therefore Third side $=\sqrt{6^{2}+8^{2}}=10 \mathrm{~cm}$
52. (D) A.T.Q,

In $\triangle B A Q$,
$\mathrm{BQ}^{2}=3^{2}+4^{2}$
$\Rightarrow \mathrm{BQ}=5 \mathrm{~cm}$
$\angle \mathrm{PBQ}=90^{\circ} \quad(\because$ angle of segment $)$
$\Delta \mathrm{QBP} \sim \Delta \mathrm{QAB}$
$\therefore \frac{x+3}{5}=\frac{5}{3}$
$\Rightarrow 3 x+9=25$
$\Rightarrow x=\frac{16}{3} \mathrm{~cm}$
\therefore Radius of circle $=\frac{\frac{16}{3}+3}{2}=\frac{25}{6} \mathrm{~cm}$,
\therefore Circumference of the circle
$=2 \pi \mathrm{r}=2 \times \pi \times \frac{25}{6}=\frac{25}{3} \pi \mathrm{~cm}$
53. (A) A.T.Q,

Circumference $(\mathrm{R})=\frac{\mathrm{H}}{2}$
$\mathrm{H}=7 \times 2=14 \mathrm{~cm}$
and,
In radius $(\mathrm{r})=\frac{\mathrm{P}+\mathrm{B}-\mathrm{H}}{2}$
$\Rightarrow \mathrm{H}=7 \times 2=14 \mathrm{~cm}$
and, In radius $(\mathrm{r})=\frac{\mathrm{P}+\mathrm{B}-\mathrm{H}}{2}$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow P+B=4+14=18 \mathrm{~cm}$
Now,
$\mathrm{P}^{2}+\mathrm{B}^{2}+2 \mathrm{~PB}=324$
$\Rightarrow 2 \mathrm{~PB}=324-196$
$\Rightarrow \mathrm{PB}=64$
\therefore Area of triangle $=\frac{1}{2} \times 64=32 \mathrm{~cm}^{2}$
54. (C) A.T.Q,

$\Rightarrow \cos 30^{\circ}=\frac{\mathrm{MC}}{\mathrm{OC}}$
$\Rightarrow \mathrm{MC}=3 \mathrm{~cm}$
and, $\mathrm{BC}=6 \mathrm{~cm}$
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{AC}=6 \mathrm{~cm}$
In ODC
$\angle \mathrm{DOC}=\angle \mathrm{DCO}=\angle \mathrm{CDO}=60^{\circ}$
$\therefore \mathrm{CD}=2 \sqrt{3} \mathrm{~cm}$
\therefore Perimeter of ABDC
$=6+6+2 \sqrt{3}+2 \sqrt{3}$
$=12+4 \sqrt{3}=4(3+\sqrt{3}) \mathrm{cm}$
55. (C) A.T.Q,

Area of triangle PQR
$=\frac{1}{2} \times \mathrm{RQ} \times \mathrm{QP}=\frac{1}{2} \times \mathrm{PR} \times \mathrm{QS}$
$\Rightarrow \frac{1}{2} \times 12 \times 9=\frac{1}{2} \times \mathrm{QS} \times 15$
$\Rightarrow \mathrm{QS}=7.2 \mathrm{~cm}$
$\mathrm{PM}=9-7.2=1.8 \mathrm{~cm}$
and,
$\mathrm{NR}=12-7.2=4.8 \mathrm{~cm}$
\therefore Required ratio $=18: 48=3: 8$
56. (A) A.T.Q,

$\Delta \mathrm{ADC} \sim \Delta \mathrm{EFC}$
$\frac{\text { area of } \triangle \mathrm{ADC}}{\text { area of } \triangle \mathrm{EFC}}=\left(\frac{\mathrm{AD}}{\mathrm{EF}}\right)^{2}$
$\Rightarrow \frac{25}{16}=\frac{\mathrm{AD}}{\mathrm{EF}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{EF}}=\frac{5}{4}$
$\Rightarrow \mathrm{EF}=\frac{4 \times 2.5}{5}=2 \mathrm{~cm}$
57. (B) A.T.Q,
$\frac{(20)^{528}}{19}$
Required remainder $=(1)^{528}=1$
58. (C) Let the number of x
$\frac{x \times x \times 50}{3 \times 100}=12696$
$\Rightarrow x=276$
\therefore Required number $=276$
59. (A) A.T.Q,
$6 x-8 y-72=0$

\therefore Required length $=\sqrt{\left(\frac{-c}{a}\right)^{2}+\left(\frac{-c}{b}\right)^{2}}$
$=\sqrt{144+81}=\sqrt{225}=15$ units
60. (B) Let a, b and c are three sides of triangle
$\mathrm{a} \leq \mathrm{B} \leq \mathrm{C}$
A.T.Q,
$a=2$, side of possible triangle $=2,5,5$
$a=3$, side of possible triangle $=3,4,5$
$a=4$, side of possible triangle $=4,4,4$
\therefore Required numbers of triangle $=3$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
61. (A) A.T.Q,
$A=\frac{450 \times 96}{100}=432$
$\therefore \frac{450 \times(100-x) \times(100+x)}{100 \times 100}=432$
$\Rightarrow\left(100^{2}-x^{2}\right)=9600$
$\Rightarrow x^{2}=400$
$\Rightarrow x=20$
62. (B) Let the two digit number $=10 a+b$ A.T.Q,
$10 a+b=x \times 0.40$ \qquad
and,
$10 b+a=x \times 1.40$ \qquad
Solving equation (i) and (ii), we get,
$9(b-a)=x$
$\therefore x$ will be multiple of 9 .
and,
$\Rightarrow 10 a+b=\frac{x \times 40}{100}$
$\therefore x$ will be multiple of 5 .
\therefore Required value of $x=45$
63. (C) Let,
30% of $A=40 \% B=12 \mathrm{~kg}$
$\therefore \mathrm{A}=40 \mathrm{~kg}$
and, $B=30 \mathrm{~kg}$
\therefore Required percentage
$=\frac{24}{70} \times 100=34.28 \%$
64. (C) A.T.Q,

Cost price of article $=\frac{220 \times 100}{88}=₹ 250$
\therefore Required selling price $=\frac{250 \times 112}{100}$

$$
=₹ 280
$$

65. (B) Let the number of articles $=x$
A.T.Q,
$(x-2) \times 7=119$
$\Rightarrow x=17+2=19$
\therefore Total number of articles $=19$
66. (B) A.T.Q,

Amount after one year
$=\frac{12000 \times 125}{100}=₹ 15000$
After after two year
$=\frac{15000 \times 75}{100}=₹ 11250$
\therefore Loss $\%=\frac{12000-11250}{12000} \times 100=6.25 \%$
67. (D) Let the cost price of radio $=₹ x$

Selling price of radio $=\frac{125 \times x}{100}=\frac{5 x}{4}$
Profit $=\frac{x}{4}$
Now,
Cost price $=₹(x-100)$
and,
Selling price $=₹\left(\frac{5}{4} x-75\right)$
Profit $=₹\left(\frac{x}{4}+25\right)$
A.T.Q,
$\frac{x}{4} \times \frac{125}{100}=\frac{x}{4}+25$
$\Rightarrow \frac{5 x}{16}-\frac{x}{4}=25$
$\Rightarrow \frac{x}{16}=25$
$\Rightarrow x=400$
\therefore Original cost price $=₹ 400$
68. (A) A.T.Q,

$\therefore 35$ units $=₹ 105$
and,
Cost price of the article $=\frac{105}{35} \times 100$
= ₹ 300
69. (B) A.T.Q,

Selling price of remaining butter
$=\frac{360 \times 85}{100}=₹ 306$
\therefore Selling price of butter
$=\frac{306}{5}=₹ 61.2 / \mathrm{kg}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
70. (C) A.T.Q,

Cost price of first article
$=\frac{6000 \times 100}{120}=₹ 5000$
\therefore Cost price of second article
$=6000+1000=₹ 7000$
\therefore loss $=\frac{1000}{7000} \times 100=14.28 \%$
71. (C) A.T.Q,

Required cost
$=6[2 \times 10(20+12)-(5 \times 4+3(3 \times 2))]$
= ₹3612
72. (B) A.T.Q,

Side of square $=\sqrt{1024}=32 \mathrm{~cm}$
\therefore Radius of each plate $=\frac{32}{4}=8 \mathrm{~cm}$
\therefore Circumference of each plate
$=2 \times \frac{22}{7} \times 8=50.28 \mathrm{~cm}$
73. (D) A.T.Q,
$3 \pi r^{2}+P=12 \pi r^{2}$
$\Rightarrow \mathrm{P}=9 \mathrm{r}^{2}$
Now,
$3 \pi r^{2}+9 \pi r^{2}=\pi(r+6)^{2} \times 3$
$\Rightarrow 12 \pi r^{2}=3 \pi(r+6)^{2}$
$\Rightarrow 9 r^{2}-36 r-108=0$
$\Rightarrow(r-6)(r+2)=0$
Original radius of cylinder $=6 \mathrm{~cm}$
74. (A) A.T.Q,

Total volume of 6 shperes and 6 cones
$=\left[\pi \times 6 \times 6 \times 6+\frac{1}{3} \pi \times 6 \times 6 \times 6\right]$
$=1728 \pi \mathrm{~cm}^{3}$
\therefore Required number of shperes
$=\frac{1728 \pi}{\frac{4}{3} \pi \times 3 \times 3 \times 3}=48$
75. (C) Let the height of cylinder be h and cone be H

$$
\pi \mathrm{r}^{2} h=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{H}
$$

$\Rightarrow H=3 h$
Now,
$\frac{15}{8}(2 \pi . r . h)=\pi \mathrm{rl}$
$\Rightarrow 15 h=4 \sqrt{(3 h)^{2}+r^{2}}$
$\Rightarrow 15 h=4 \sqrt{9 h^{2}+r^{2}}$
$\Rightarrow 225 h^{2}=144 h^{2}+16 r^{2}$
$\Rightarrow 81 h^{2}=16 \mathrm{r}^{2}$
$\Rightarrow \frac{r}{h}=9: 4$
76. (B) A.T.Q,
$3 x+4 x+5 x+8 x=360^{\circ}$
$\Rightarrow x=18^{\circ}$
\therefore Second largest angle at the quadrilateral $=90^{\circ}$
\therefore Largest angle of triangle $=90^{\circ}$
Other angles $=30^{\circ}, 60^{\circ}$
\therefore Second largest angle of the triangle
$=60^{\circ}$
77. (A) A.T.Q,

Volume of the iron $=\pi \times 18\left(5^{2}-4^{2}\right)$

$$
=162 \pi \mathrm{~cm}^{3}
$$

and,
Weight of iron
$=9 \times 162 \times \frac{22}{7}=4582.28 \mathrm{~kg}$
78. (A) A.T.Q,

Required number of cubes
$=(8-2)(10-2)(14-2)$
$=576$
79. (B) A.T.Q,

Area of incircle
$=\frac{22}{7} \times \frac{84}{2 \sqrt{3}} \times \frac{84}{2 \sqrt{3}}=1848 \mathrm{~cm}^{3}$
80. (A) A.T.Q,

Area of isosceles triangle
$=\frac{b}{4} \sqrt{4(a)^{2}-b^{2}}$
Now,
$\frac{5 x}{4} \sqrt{64 x^{2}-25 x^{2}}=5 \sqrt{39}$
$\Rightarrow x^{2} \cdot \sqrt{39}=4 \sqrt{39}$
$\Rightarrow x=2 \mathrm{~cm}$
\therefore Length of third side $=5 \times 2=10 \mathrm{~cm}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
81. (A) A.T.Q,

Third year
2400
100
$100+4$
$100+4+4+.16$
2 nd year
2500
100
$100+4$
Ist year
2500
100
Amount at the end of three years
$=7500+616.16=₹ 8116.16$
82. (D) A.T.Q,
$4000 \xrightarrow{40 \%} 1600$
$3600 \xrightarrow{40 \%} 1440$
$3040 \xrightarrow{40 \%} 1216$
Amount of the end of first year
$=4000+1600=₹ 5600$
Remaining amount after the payment
$=5600-2000=₹ 3600$
Amount at the end of second year
$=3600+1400=₹ 5040$
Remaining amount after the payment = 5040-2000 = ₹3040
Amount to be paid at the end of third year to clear all his due
$=3040+1216=₹ 4256$
83. (B) A.T.Q,

SI for one year $=\frac{9000}{3}=₹ 3000$
Rate $=\frac{3000}{30000} \times 100=10 \%$
Now,
30000
3000
$3000+300$
$3000+300+300+30$
\therefore Required difference $=₹ 930$
84. (C) Let principal amount $=100$
A.T.Q,

Principal Amount
100120
$100 \quad 100+8 r$
Now,
$\frac{120}{100+8 r}=\frac{4000}{5000} \Rightarrow r=6.25 \%$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
90. (D) A.T.Q,

In 2 hours tank will be fill
$=(2-1) \times 2=2$ units
\therefore Required time $=\frac{10-2}{2}=4$ hours
91. (B) Let the speed of Jatin $=x \mathrm{~km} / \mathrm{hr}$
A.T.Q,

	UP		down
Time	9	$:$	7
Speed	7	$:$	9
$\Rightarrow \frac{x+3}{x-3}$	$=\frac{9}{7}$		

By componendo and dividendo
$\frac{x+3+x-3}{x+3-x+3}=\frac{9+7}{9-7}$
$\Rightarrow \frac{2 x}{6}=\frac{16}{2}$
$\Rightarrow x=24$
\therefore Speed of Jatin in still water $=24 \mathrm{~km} / \mathrm{hr}$
92. (B) A.T.Q,

L
$L+B-D=\frac{L}{4}$
$\Rightarrow \frac{3 \mathrm{~L}+4 \mathrm{~B}}{4}=\mathrm{D}$
and,
$\mathrm{L}^{2}+\mathrm{B}^{2}=\left(\frac{3 \mathrm{~L}+4 \mathrm{~B}}{4}\right)^{2}$
$\Rightarrow 16 \mathrm{~L}^{2}+16 \mathrm{~B}^{2}=9 \mathrm{~L}^{2}+16 \mathrm{~B}^{2}+24 \mathrm{LB}$
$\Rightarrow 7 \mathrm{~L}^{2}=24 \mathrm{LB}$
$\Rightarrow \frac{\mathrm{L}}{\mathrm{B}}=\frac{24}{7}$
\therefore Required ratio $=24: 7$
93. (A) Let the capacity of vessel $=x$ litre
A.T.Q,
$\frac{16}{25}=\left(1-\frac{6}{c}\right)^{2}$
$\Rightarrow \frac{4}{5}=\frac{c-6}{c}$
$\Rightarrow \mathrm{c}=30$
\therefore Capacity of vessel $=30$ litres
94. (C) Let x and y be the LCM and HCF of the two numbers respectively.
A.T.Q,
$x+y=384$
and,
$x-y=336$
solving equation (i) and (ii), we get
$\Rightarrow x=360$
$\Rightarrow y=24$
$\mathrm{LCM}=360=24 \times 15$
$\mathrm{HCF}=24$
\therefore Possible prime factor is $(5,3)$
\therefore Required numbers $=120,72$
95. (A) A.T.Q,
$1+3+6+5+6+9=30$
\therefore Required unit place digit $=0$
96. (B) A.T.Q,

Total number of females in Cities B, E and,
$F=\frac{1200 \times 40}{100}+\frac{600 \times 60}{100}+\frac{1000 \times 20}{100}$
$=480+360+200=1040$
97. (A) A.T.Q,

Average population of the Cities
$=\frac{900+1200+800+1500+600+1000}{6}$
$=1000$
98. (C) A.T.Q,

Required ratio $=\frac{800 \times 20}{100}: \frac{600 \times 40}{100}$

$$
=2: 3
$$

99. (D) A.T.Q,

Total number of femles in Cities A, C and F
$=\frac{900 \times 60}{100}+\frac{800 \times 80}{100}+\frac{100 \times 20}{100}$
$=540+640+200=1380$
100. (B) A.T.Q,

Required ratio
$=\frac{900 \times 40}{100}: \frac{1500 \times 50}{100}=12: 25$

SSC TIER II (MATHS) MOCK TEST - 39 (ANSWER KEY)

1. (B)	11. (B)	21. (C)	31. (B)	41. (C)	51. (B)	61. (A)	71. (C)	81. (A)	91. (B)
2. (C)	12. (D)	22. (C)	32. (C)	42. (C)	52. (D)	62. (B)	72. (B)	82. (D)	92. (B)
3. (C)	13. (B)	23. (A)	33. (B)	43. (A)	53. (A)	63. (C)	73. (D)	83. (B)	93. (A)
4. (D)	14. (A)	24. (B)	34. (C)	44. (B)	54. (C)	64. (C)	74. (A)	84. (C)	94. (C)
5. (A)	15. (B)	25. (D)	35. (D)	45. (A)	55. (C)	65. (B)	75. (C)	85. (A)	95. (A)
6. (C)	16. (A)	26. (C)	36. (D)	46. (A)	56. (A)	66. (B)	76. (B)	86. (A)	96. (B)
7. (B)	17. (D)	27. (B)	37. (A)	47. (C)	57. (B)	67. (D)	77. (A)	87. (A)	97. (A)
8. (C)	18. (C)	28. (C)	38. (C)	48. (C)	58. (C)	68. (A)	78. (A)	88. (B)	98. (C)
9. (D)	19. (A)	29. (B)	39. (A)	49. (B)	59. (A)	69. (B)	79. (B)	89. (D)	99. (D)
10. (B)	20. (B)	30. (C)	40. (B)	50. (C)	60. (B)	70. (C)	80. (A)	90. (D)	100.(B)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

