MATHS (TIER II) MOCK TEST-38 (SOLUTION)

1. (C) Circumradius (R) $=8.5 \mathrm{~cm}$

In-radius (r) $=3 \mathrm{~cm}$
we have,
Hypotnuse $(\mathrm{AC})=2 \times \mathrm{R}$
$=2 \times 8.5=17 \mathrm{~cm}$
And,
$r=\frac{a+c-b}{2}$
$\Rightarrow 3=\frac{a+c-17}{2}$
$\Rightarrow 6=a+c-17$
$\Rightarrow \mathrm{a}+\mathrm{c}=23$
we know that the triplet $(8,15,17)$
So,
$\mathrm{a}=8, \mathrm{c}=15, \mathrm{~b}=17$
\therefore Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times a \times c$
$=\frac{1}{2} \times 8 \times 15=60 \mathrm{~cm}^{2}$
2. (A) Let the maximum marks $=x$

Pass marks $=x \times \frac{20}{100}+20=\frac{x}{5}+20$
IInd student get $=x \times 49 \%=x \times \frac{49}{100}$
Now,
$\left(\frac{x}{5}+20\right) \times \frac{100+22.5}{100}=x \times \frac{49}{100}$
$\Rightarrow\left(\frac{x}{5}+20\right) \times \frac{122.5}{100}=\frac{x+49}{100}$
$\Rightarrow x+100=2 x$
$\Rightarrow 2 x-x=100$
$\Rightarrow x=100$
3. (C) Let the salary $=₹ 100$

We have,
$12 \frac{1}{2} \%=\frac{1}{8}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

7. (D) A.T.Q,

In given figure, a is the side of square ABCD and equilateral $\triangle \mathrm{ABE}$.

Height of $\triangle \mathrm{ABE}$
$(\mathrm{EL})=a \times \frac{\sqrt{3}}{2}$
So, $\mathrm{ME}=\mathrm{a}+a \times \frac{\sqrt{3}}{2}=a\left(\frac{2+\sqrt{3}}{2}\right)$
Area of $\triangle \mathrm{EDC}=\frac{1}{2} \times a \times a\left(\frac{2+\sqrt{3}}{2}\right)$
Area of $\triangle \mathrm{ADE}=\frac{1}{2} \times \mathrm{DA} \times \mathrm{AE} \times \sin \left(90^{\circ}+60^{\circ}\right)$
$=\frac{1}{2} a \times a \times \frac{1}{2}$
Hence,
Area of $\triangle \mathrm{ADE}$
Area of $\triangle E D C$
$=\frac{\frac{1}{2} \times a \times a \times \frac{1}{2}}{\frac{1}{2} \times a \times a \times\left(\frac{2+\sqrt{3}}{2}\right)}=\frac{1}{2+\sqrt{3}}$
8. (D) Given that,
$x=a+l, y=b+l, \quad z=c+l$
Now,
$x-y=a+l-b-l$
$\Rightarrow x-y=a-b$
Similarly,
$y-z=b-c$
$z-x=c-a$
So,
$\frac{x^{2}+y^{2}+z^{2}-x y-y z-z x}{a^{2}+b^{2}+c^{2}-a b-a b-b c-c a}$
$=\frac{\frac{1}{2}\left[(x-y)^{2}+(y-z)^{2}(z-x)^{2}\right]}{\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]}$
$=\frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}=1$
9. (C) Least number which is divisble by 5,6 , 7 and $8=5 \times 3 \times 7 \times 8=840$
So,
the number which give remainder 3 when divided by $5,6,7$ and 8 is $(840 n+3)$
If this number is divided by 9
$=\frac{840 n+3}{9}=\frac{837 n+3 n+3}{9}$
Now,
we take $3 n+3$, put value of n
$n=1,3 \times 1+3=6$
$n=2,3 \times 2+3=9$
So,
Required number is $=840 \times 2+3$
$=1680+3=1683$
Sum of digits of number $=1+6+8+3=18$
10. (C) Total students $=1554$

Number of boys $=1554 \times \frac{4}{7}=888$
Number of Girls $=1554 \times \frac{3}{7}=666$
Let the number of boys who left the school is x.

$$
\begin{aligned}
& \frac{888-x}{666+30}=\frac{7}{6} \\
& \Rightarrow(888-x) \times 6=696 \times 7 \\
& \Rightarrow 5328-6 x=4872 \\
& \Rightarrow 6 x=5328-4872 \\
& \Rightarrow 6 x=456 \\
& \Rightarrow x=76
\end{aligned}
$$

11. (A) Ratio of the volume of these cones
$\frac{V_{1}}{V_{2}}=\frac{1}{2}$
We know that,

$\left(\frac{h}{H}\right)^{3}=\frac{V^{1}}{V_{2}} \Rightarrow \frac{h}{\mathrm{H}}=\left(\frac{1}{2}\right)^{\frac{1}{3}}$
$\Rightarrow \mathrm{h}: \mathrm{H}=1: \sqrt[3]{2}$
Now,
$\mathrm{H}-\mathrm{h}=\sqrt[3]{2}-1$
So,
Ratio AO^{\prime} and $\mathrm{OO}^{\prime}=1: \sqrt[3]{2}-1$
12. (C) Given,
$x=101$
$y=99$
Now,
$\frac{x^{3}-y^{3}}{x^{2}-y^{2}}-\frac{3 x y}{x+y}$
$=\frac{(x-y)\left(x^{2}+y^{2}+x y\right)}{(x+y)(x-y)}-\frac{3 x y}{x+y}$
$=\frac{x^{2}+y^{2}+x y-3 x y}{x+y}$
$=\frac{x^{2}+y^{2}-2 x y}{x+y}$
$=\frac{(x-y)^{2}}{x+y}=\frac{(101-99)^{2}}{101+99}$
$=\frac{4}{200}=\frac{1}{50}$
13. (B) $9.4 \overline{1}+0 . \overline{7}+0.00 \overline{1}$
$=9.411 \ldots \ldots+0.777$ \qquad + 0.001...
$=10.189 \ldots=10.189$
14. (D) Given,
$12 \mathrm{M} \times 10=20 \mathrm{~W} \times 12$
$\frac{\mathrm{M}}{\mathrm{W}}=\frac{2}{1}$
Now,
$(8 \mathrm{M}+4 \mathrm{~W}) \times 9+(8 \mathrm{M}+14 \mathrm{w}) \times x=12 \mathrm{M} \times 10$
$\Rightarrow(8 \times 2+4 \times 1) \times 9+(8 \times 2+14 \times 1) \times x=12 \times 2 \times 10$
$\Rightarrow 180+30 x=240$
$\Rightarrow 30 x=60$
$\Rightarrow x=2$ days
15. (B) Given that $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are in geometric progression
And,
$R=(P+Q) \times \frac{\left(100-\frac{275}{9}\right)}{100}$
$\Rightarrow \frac{\mathrm{R}}{\mathrm{P}+\mathrm{Q}}=\frac{625}{900}$
$\Rightarrow \frac{\mathrm{R}}{\mathrm{P}+\mathrm{Q}}=\frac{25}{36}$
PQRS
162025
$r=\frac{5}{4}$,
So,
S $=25 \times \frac{5}{4}=\frac{125}{4}$

Required percentage
$=\frac{\frac{125}{4}-20}{20} \times 100 \%$
$=\frac{45}{4 \times 20} \times 100=56.25 \%$
16. (B) $\mathrm{S}_{\max }-\mathrm{s}_{\text {actual }} \alpha \sqrt{n}$
and, $\mathrm{S}_{\text {max }}-\mathrm{S}_{\text {actual }}=\mathrm{k} \sqrt{n}$
Now, $60-48=\mathrm{k} \sqrt{36}$
$\Rightarrow 12=\mathrm{k} \times 6$
$\Rightarrow \mathrm{k}=2$
Now,
$\mathrm{s}_{\text {act }}=0$
$\Rightarrow 60-0=2 \sqrt{n}$
$\Rightarrow 60=2 \sqrt{n}$
$\Rightarrow n=900$
So, maximum number of wagons will be 899.
17. (B) $a+b+c=11, a b+b c+c a=20$
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)$
$\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=(a+b+c)\left[(a+b+c)^{2}-3(a b+b c+c a)\right]$
$=11[121-60]=11 \times 61=671$
18. (D) Volume of ditch $=1 \times b \times h$
$=(48 \times 16.5 \times 4) \mathrm{m}^{3}$
Volume of cylinder $=\pi \mathrm{r}^{2} \times h$
$=\frac{22}{7} \times 2 \times 2 \times 56=(22 \times 4 \times 8) \mathrm{m}^{3}$
Required fraction $=\frac{22 \times 4 \times 8}{48 \times 16.5 \times 4}=\frac{2}{9}$
19. (C) Average area $=\frac{\text { Totalarea }}{\text { number of squares }}$

$$
\begin{aligned}
& =\frac{1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots \ldots \ldots n^{2}}{n} \\
& =\frac{n(n+1)(2 n+1)}{6 \times n} \\
& =\frac{(n+1)}{2} \frac{(2 n+1)}{3}
\end{aligned}
$$

20. (C)

Let height of telegram post $=x+y$
$\tan 75^{\circ}=\frac{x}{10 \sqrt{3}}$
$\Rightarrow \frac{\sqrt{3}+1}{\sqrt{3}-1}=\frac{x}{10 \sqrt{3}}$
$\Rightarrow 2+\sqrt{3}=\frac{x}{10 \sqrt{3}}$
$\Rightarrow x=20 \sqrt{3}+30=20 \times 1.732+30$
$=64.64 \mathrm{~m}$
Now, $\cos 75^{\circ}=\frac{10 \sqrt{3}}{y}$
$\Rightarrow \frac{\sqrt{3}-1}{2 \sqrt{2}}=\frac{10 \sqrt{3}}{y}$
$\Rightarrow y=\frac{20 \sqrt{6}}{\sqrt{3}-1}$
$\Rightarrow y=\frac{20 \times 2.45}{1.732-1}$
$\Rightarrow y=\frac{20 \times 2.45}{.732}$
$\Rightarrow y=66.94 \mathrm{~m}$
Now, height of poll $=64.64+66.94$
$=131.58 \mathrm{~m}=132 \mathrm{~m}$ (Approx)
21. (A) $\frac{x^{2}+y^{2}+z^{2}-64}{x y-y z-z x}=-2$
$\Rightarrow x^{2}+y^{2}+z^{2}-64=-2 x y+2 y z+2 z x$
$\Rightarrow x^{2}+y^{2}+z^{2}+2 x y-2 y z-2 z x=64$
$\Rightarrow(x+y-z)^{2}=8^{2}$
$\Rightarrow x+y-z=8$
$\Rightarrow x+y=8+z$
$\therefore 8+z=3 z$
$\Rightarrow 2 z=8 \Rightarrow z=4$
22. (C)

$\cos \left(10^{\circ} 6^{\prime} 32^{\prime \prime}\right)=\frac{1}{a}$
$\sin \left(79^{\circ} 53^{\prime} 28^{\prime \prime}\right)+\tan \left(10^{\circ} 6^{\prime} 32^{\prime \prime}\right)$
$=\cos \left(10^{\circ} 1^{\prime} 32^{\prime \prime}\right)+\frac{\sqrt{a^{2}-1}}{1}$
$=\frac{1}{a}+\sqrt{a^{2}-1}=\frac{1+a \sqrt{a^{2}-1}}{a}$
23. (A) $64 \times$ volume of bucket $=\frac{2}{3} \times$ volume of tank. volume of bucket $=\frac{2}{3} \times \frac{(2.4)^{3}}{64} \mathrm{~m}^{3}$
$=144 \times 1000 \mathrm{~cm}^{3}=144$ litre
24. (C) $4 a^{2}+9 b^{2}+12 a-24 b+25$
$=(2 a)^{2}+2 \times 2 a \times 3+9+(3 b)^{2}-2 \times 3 b \times 4+16$
$=(2 a+3)^{2}+(3 b-4)^{2}$
$=A+B$ (say)
$A \& B$ are the perfect squares so minimum value of $A \& B=0$
so, minimum value of given expression $=0$
25. (B)

Given triangle
is an isosceles triangle
so, height of this triangle $=\sqrt{10^{2}-6^{2}}$

$$
=8
$$

this perpendicular from the top will pass through the diametrically opposite points of each circle. Therefore, the length of the perpendicular will be same as the sum of all the diameters.
so, circumference of all circles
$=\pi \times$ diameter
$=\pi \times 8$
$=8 \pi$
26. (C) Let the expenditure of Ram $=400$
then the savings of Ram $=100$
Income - Saving = Expenditure

$600-112=488$
$\%$ increase in expenditure $=\frac{88}{400} \times 100$ $=22 \%$
27. (A)
$\mathrm{Q} \rightarrow 64 \mathrm{~h} \xrightarrow[3]{\mathrm{P}} \underset{\mathrm{Q}}{4} 192$ total capacity of tank
Water filled by pipe Q in 32 hour
$=32 \times 3=96$ units
Remaining water $=192-96=96$ unit
\therefore Required time $=\frac{96}{4}=24$ hours
09555208888
28. (A) Present average age of family (8members)
$=18+2=20$ years
total age of the 8 members $=20 \times 8$
$=160$ years
after addition of baby average age
= 18 years
total age of these 9 members $=18 \times 9$
= 162 years
Age of child = 162-160
$=2$ years
29. (B) Let the age of A after 15 years $=2 x$

So, age of his son $=x$
5 years ago,
Age of A $=4 \times$ age of his son
$\Rightarrow 2 x-20=4(x-20)$
$\Rightarrow 2 x-20=4 x-80$
$\Rightarrow x=30$
Now, the present age of $\mathrm{A}=2 \times 30-15$ $=45$ Years.
30. (A) Discount given by dealer
$=\left(30+20-\frac{30 \times 20}{100}\right) \%=44 \%$
So, the customer got less what he expected.
31. (D) Let cost price of an article $=100$

total profit to $\mathrm{A}=11$
profit \% = 11\%
32. (D) Given that
$\frac{a}{b}=\frac{b}{c}$
$\Rightarrow b^{2}=a c$
Now, $\frac{a^{4}}{b^{4}}=\frac{a^{4}}{(a c)^{2}}$
$\Rightarrow \frac{a^{4}}{b^{4}}=\frac{a^{2}}{c^{2}}$
$\Rightarrow a^{4}: b^{4}=a^{2}: c^{2}$
33. (B) $\frac{(3)^{102.4} \times(243)^{5.3}}{3^{107.4} \times 3^{13.5}}$
$=3^{102.4+26.5-107.4-13.5}=3^{8}=6561$
34. (B) $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{100 \times 101}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots \frac{1}{100}-\frac{1}{101}$
$=1-\frac{1}{101}=\frac{100}{101}$
35.
(D) $\frac{\sqrt{7}}{\sqrt{(3+\sqrt{7})^{2}}-\sqrt{(3-\sqrt{7})^{2}}}$
$=\frac{\sqrt{7}}{3+\sqrt{7}-3+\sqrt{7}}=\frac{\sqrt{7}}{2 \sqrt{7}}=\frac{1}{2}$
36. (C) Distance $=\frac{s_{1} \times s_{2}}{\left(s_{1}-s_{2}\right)} \times$ time
$=\frac{40 \times 96}{(96-40)} \times\left(2+\frac{6}{60}\right)=\frac{40 \times 96}{56} \times \frac{21}{10}$
$=144 \mathrm{~km}$
37. (A) \cot
$41^{\circ}\left(\cot 49^{\circ} \cdot \cos ^{2} 33^{\circ}+\frac{1}{\tan 49^{\circ} \cdot \sec ^{2} 57^{\circ}}\right)$
$=\cot 41^{\circ} \cdot \cot 49^{\circ} \cdot \cos ^{2} 33^{\circ}+\frac{\cot 41^{\circ}}{\cot 41^{\circ} \cdot \sec ^{2} 57^{\circ}}$
$=\cos ^{2} 33^{\circ}+\cos ^{2} 57^{\circ}$
$=\cos ^{2} 33^{\circ}+\sin ^{2} 33^{\circ}=1$
38. (B)

In isocoles $\triangle \mathrm{ABC}$ -
$\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$
let $\mathrm{AC}=\mathrm{BC}=x$
Now, In $\triangle \mathrm{CBD}$,
$\cos 45^{\circ}=\frac{x^{2}+6^{2}-(2 \sqrt{5})^{2}}{2 \times x \times 6}$
$\Rightarrow \frac{1}{\sqrt{2}}=\frac{x^{2}+36-20}{2 \times x \times 6}$
$\Rightarrow 6 \sqrt{2} x=x^{2}+16$
$\Rightarrow x^{2}-6 \sqrt{2} x+16=0$
$\Rightarrow x=\frac{6 \sqrt{2}+\sqrt{72-64}}{2 \times 1}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\left[\right.$ by formula $\left.x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]$
$\Rightarrow x=\frac{6 \sqrt{2}+2 \sqrt{2}}{2}$
$\Rightarrow x=4 \sqrt{2}$
and, $\mathrm{AB}=x \times \sqrt{2}$
$\Rightarrow \mathrm{AB}=4 \sqrt{2} \times \sqrt{2}=8 \mathrm{~cm}$
$\therefore \mathrm{AD}=8-6=2 \mathrm{~cm}$.
39. (C) $x+\frac{1}{x-9}=(x-9)+\frac{1}{x-9}+9$
we know that minimum value of
$(x-9)+\frac{1}{x-9}$ is -2
So, min. value of $x+\frac{1}{x-9}$
$=-2+9=7$
40. (D) $4-\frac{5}{1+\frac{1}{3+\frac{1}{2+\frac{1}{4}}}}=4-\frac{155}{40}=\frac{5}{40}=\frac{1}{8}$
$\frac{1}{8}$ part $\Rightarrow 10 \mathrm{~min}$
$\frac{3}{5}$ part $\Rightarrow 10 \times 8 \times \frac{3}{5}=48 \mathrm{~min}$.
41. (B) Given
$\frac{p}{x}+\frac{q}{y}+\frac{r}{z}=1$
and, $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=0$
$\Rightarrow x q r+y p r+z p q=0$
Now
$\frac{p^{2}}{x^{2}}+\frac{q^{2}}{y^{2}}+\frac{r^{2}}{z^{2}}$
$=\left(\frac{p}{x}+\frac{q}{y}+\frac{r}{z}\right)^{2}-2\left(\frac{p q}{x y}+\frac{q r}{y z}+\frac{p r}{z x}\right)^{2}$
$=1-2 .\left(\frac{z p q+x q r+y p r}{x y z}\right)^{2}=1-2 \times 0=1$
42. (C) Speed of tiger $=5 \times 8=40 \mathrm{~m} / \mathrm{min}$ Speed of Dear $=4 \times 5=20 \mathrm{~m} / \mathrm{min}$ Distance between them $=50 \times 8=400 \mathrm{~m}$ time taken by tiger to catch dear
$=\frac{400}{(40-20)}=20 \mathrm{~min}$
\therefore Distance travelled by tiger
$=40 \times 20=800 \mathrm{~m}$
43. (C) Given

$$
\begin{aligned}
& x+\frac{3}{4 x}=5 \\
& \Rightarrow(x-5)=-\frac{3}{4 x} \\
& \Rightarrow x(x-5)=-\frac{3}{4}
\end{aligned}
$$

Now,
$\frac{13}{x^{2}-5 x+4}=\frac{13}{x(x-5)+4}$
$=\frac{13}{\frac{-3}{4}+4}=\frac{13}{\frac{13}{4}}=4$
44. (B)

$\triangle \mathrm{ABC}$ is a right angle triangle and BP \& CQ are medians.
So,
$\mathrm{BP}^{2}+\mathrm{CQ}^{2}=\frac{5}{4} \mathrm{BC}^{2}=\frac{5}{4} \times 8^{2}$
$=\frac{5}{4} \times 64=80 \mathrm{~cm}$
45. (D) $3^{625}, 4^{500}, 5^{375}, 6^{250}$
$=\left(3^{5}\right)^{125},\left(4^{4}\right)^{125},\left(5^{3}\right)^{125},\left(6^{2}\right)^{125}$
$=(243)^{125},(256)^{125},(125)^{125},(36)^{125}$
\therefore Greatest number $=(256)^{125}=4^{500}$
46. (B) $\frac{1-x^{4}}{1+x} \div \frac{1+x^{2}}{x} \times \frac{\left(1-x^{3}\right)}{x^{2}\left(1+x^{2}+x\right)}$

$$
=\frac{\left(1+x^{2}\right)\left(1-x^{2}\right)}{1+x} \times \frac{x}{\left(1+x^{2}\right)} \times \frac{(1-x)\left(1+x^{2}+x\right)}{x^{2}\left(1+x^{2}+x\right)}
$$

$$
=\frac{(1+x)(1-x)(1-x)}{(1+x) x}=\frac{(1-x)^{2}}{x}
$$

47. (A) $\frac{9^{n}\left(3^{2}\right) \times\left(3^{\frac{-n}{2}}\right)^{-2}-27^{n}}{3^{3 m} \cdot 2^{3}}=\frac{1}{729}$
$\Rightarrow \frac{3^{2 n} \cdot 3^{2} \times 3^{n}-3^{3 n}}{3^{3 m} \cdot 2^{3}}=\frac{1}{729}$
$\Rightarrow \frac{3^{3 n+2}-3^{3 n}}{3^{3 m} .8}=\frac{1}{3^{6}}$

Campus

KD Campus Pvt. Ltd

$\Rightarrow \frac{3^{3 n}[8]}{3^{3 m} \times 8}=3^{-6}$
$\Rightarrow 3^{3(n-m)}=3^{-6}$
$\therefore 3(n-m)=-6$
$\Rightarrow n-m=-2$
$\Rightarrow m-n-2=0$
48. (B) $x+\frac{1}{x}=5$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=23$
$\Rightarrow x^{2}+\frac{1}{x^{2}}-2=21$
$\Rightarrow x-\frac{1}{x}=\sqrt{21}$
Now,
$x^{3}-\frac{1}{x^{3}}-3 \sqrt{21}$
$=21 \sqrt{21}$
$\Rightarrow x^{3}-\frac{1}{x^{3}}=24 \sqrt{21}$
49. (D We know that

$$
\begin{aligned}
& \frac{\mathrm{S}_{\mathrm{A}}}{\mathrm{~S}_{\mathrm{B}}}=\sqrt{\frac{t_{\mathrm{B}}}{t_{\mathrm{A}}}} \\
& \Rightarrow \frac{8}{\mathrm{~S}_{\mathrm{B}}}=\sqrt{\frac{16}{\frac{3}{\frac{64}{3}}}} \\
& \Rightarrow \frac{8}{\mathrm{~S}_{\mathrm{B}}}=\sqrt{\frac{1}{4}} \\
& \Rightarrow \mathrm{~S}_{\mathrm{B}}=8 \times 2 \\
& \Rightarrow \mathrm{~S}_{\mathrm{B}}=16 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

50. (A) Rate (r) $=7 \frac{1}{7}=\frac{1}{14}$

	Amount	Istallment
210	15×14	15×15
196	14×14	15×15
406		225 (I)
Installment $225 \rightarrow 1800$		
Amount $406 \rightarrow 8 \times 406=₹ 3248$		

51. (B) Let total cost of car $=1200$
three types costs are $=500,400,300$
New cost
52. (C)

Given equilateral triangle $\triangle \mathrm{ABC}$ side of 9 cm .
So, side of hexagone will be 3 cm each Area of Hexagone DEFGHI
$=6 \times \frac{\sqrt{3}}{4} \times a^{2}=6 \times \frac{\sqrt{3}}{4} \times 3^{2}$
$=\frac{27}{2} \sqrt{3}=13.5 \sqrt{3} \mathrm{~cm}^{2}$
58. (C) Average age of whole class

$$
=\frac{2 \times 50+8 \times 0+10 \times 60}{20}=\frac{700}{20}=35
$$

59. (D) Required sum $=\angle 1+\angle 2+\angle 3+\angle 4+\angle 5$

$$
\begin{aligned}
& =(\mathrm{n}-4) 180^{\circ} \\
& =(5-4) \times 180^{\circ} \\
& =180^{\circ}
\end{aligned}
$$

60. (B) Let these amounts are equal in 't' years So,
$700+\frac{700 \times 12 \times t}{100}=830+\frac{830 \times 10 \times t}{100}$
$\Rightarrow 84 t-83 t=830-700$
$\Rightarrow t=130$ years
61. (C) A.T.Q,

Overall rate of interest
$=\frac{3850}{7700} \times 100 \%=50 \%$
Ist rate of 6 years $=6 \times 12 \frac{1}{2}=75 \%$
IIrd rate of 6 years $=6 \times 6 \frac{2}{3}=40 \%$
By alligation method,

Ratio of amounts $\rightarrow 2$: 5
$7 \rightarrow 7700$
$1 \rightarrow 1100$
Ist part $=2 \times 1100=₹ 2200$
IInd part $=5 \times 1100=₹ 5500$
62. (C) Ist method

Difference between C.I and S.I for 3 years
$=1.5+1.5+1.5+.075=₹ 4.575$
Alternate method
Difference between C.I \& S.I
$=\frac{p \times r \times r \times(300+r)}{100 \times 100 \times 100}$
$=\frac{600 \times 5 \times 5 \times 305}{100 \times 100 \times 100}=₹ 4.575$
63. (C) Area of path (inside) $=(1+b-2 x) \times 2 x$
$=(500+400-2 \times 5) \times 2 \times 5$
$=890 \times 10=8900 \mathrm{~m}^{2}$
64. (B) Let ABEFGH is a regular hexagone.

And $A C$ is a side of regular pentagon In $\triangle \mathrm{AOB}$
$\angle \mathrm{ABO}=\angle \mathrm{BOA}=\angle \mathrm{BAO}=60^{\circ}$
In a regular pentagone angle at centre O .
$\angle \mathrm{AOC}=\frac{360^{\circ}}{5}=72^{\circ}$
So,
$\angle \mathrm{BOC}=60+72=132^{\circ}$
In $\triangle \mathrm{BOC}-$
$\angle \mathrm{CBO}=\frac{180^{\circ}-132^{\circ}}{2}=24^{\circ}$
So,
$\angle \mathrm{PBO}=24^{\circ}$
$\angle \mathrm{ABP}=\angle \mathrm{ABO}-\angle \mathrm{PBO}$
$=60^{\circ}-24^{\circ}=36^{\circ}$
External angle, $\angle \mathrm{APC}=\angle \mathrm{ABP}+\angle \mathrm{BAP}$
$=36^{\circ}+60^{\circ}=96^{\circ}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
65. (C) In a trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{DC}$.

$\mathrm{AB}=77 \mathrm{~cm}, \mathrm{DC}=60 \mathrm{~cm}$
$\mathrm{AD}=25 \mathrm{~cm}, \mathrm{BC}=26 \mathrm{~cm}$
Now,
We draw EC parallel to AD.
So,
$\mathrm{EC}=25, \mathrm{~EB}=77-60=17 \mathrm{~cm}$
In \triangle ECB-
$\mathrm{s}=\frac{25+26+17}{2}=34 \mathrm{~cm}$
Area of triangle ECB
$=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{34(34-17)(34-25)(34-26)}$
$=\sqrt{34 \times 17 \times 9 \times 8}=204 \mathrm{~cm}^{2}$
Now again,
Area of $\Delta \mathrm{ECB}=\frac{1}{2} \times \mathrm{EB} \times h$
$\Rightarrow 204=\frac{1}{2} \times 17 \times h$
$\Rightarrow h=\frac{408}{17}$
$\Rightarrow h=24 \mathrm{~cm}$
So,
Area of trapezium $=\frac{1}{2} \times h \times(\mathrm{AB}+\mathrm{CD})$
$=\frac{1}{2} \times 24 \times(77+60)$
$=12 \times 137=1644 \mathrm{~cm}^{2}$
66. (B) Given,

Total milk $=20$ litres
taken out milk and replaced $=10$ litres
Remaining milk after $=4$ times taken out
$=$ Initital milk $\times\left(1-\frac{x}{c}\right)^{h}$
$=20 \times\left(1-\frac{10}{20}\right)^{4}$
$=20 \times \frac{1}{16}=1.25$ litres
67. (B) $\frac{13^{1002}}{170}=\frac{\left(13^{2}\right)^{501}}{170}=\frac{(169)^{501}}{170}$
$=\frac{(170-1)^{501}}{170}=-1$ or 169
68. (B) Greatest number that divide 19411 and 43031 leaving remaining 19 and 23
$=$ HCF of [(19411-19), (43031-23)]
$=\mathrm{HCF}$ of $[19392,43008]=192$
69. (B) $(\tan \theta+\sec +1)(\cot \theta-\operatorname{cosec} \theta+1)-3=x$
$\Rightarrow x=\left(\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}+1\right)\left(\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}+1\right)-3$
$\Rightarrow x=\frac{(\sin \theta+1+\cos \theta)(\sin \theta+\cos \theta-1)}{\sin \theta \cdot \cos \theta}-3$
$\Rightarrow x=\frac{(\sin \theta+\cos \theta)^{2}-1^{2}}{\sin \theta \times \cos \theta}-3$
$\Rightarrow x=\frac{\sin ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta}-3$
$\Rightarrow x=\frac{1+2 \sin \theta \cos \theta-1}{\sin \theta \sin \theta}-3$
$\Rightarrow x=2-3$
$\Rightarrow x=-1$
Alternate method-
By assuming value of θ
take $\theta=45^{\circ}$
$x=\left(\tan 45^{\circ}+\sec 45^{\circ}+1\right)\left(\cot 45^{\circ}-\operatorname{cosec} 45^{\circ}\right.$
$+1)-3$
$=(1+\sqrt{2}+1)(1-\sqrt{2}+1)-3$
$=(2+\sqrt{2})(2-\sqrt{2})-3$
$\therefore x=-1$
70. (C) A.T.Q,

Let the weight of $1000 \mathrm{gm}=100 /-$
$09 \times 1000 \mathrm{gm}-100 /-\times 9$
$10 \times 900 \mathrm{gm}-120 /-\times 10$

Over all profit $=\frac{300}{900} \times 100=33 \frac{1}{3} \%$
71. (D) $\operatorname{Sin} 12^{\circ} \cdot \operatorname{Sin} 24^{\circ} . \operatorname{Sin} 48^{\circ} \cdot \operatorname{Sin} 84^{\circ}$
$=\frac{\sin 12^{\circ} \cdot \sin 48^{\circ} \cdot \sin 72^{\circ} \cdot \sin 24^{\circ} \cdot \sin 84^{\circ}}{\sin 72^{\circ} .}$
$=\frac{1}{4} \frac{\sin \left(3 \times 12^{\circ}\right) \cdot \sin 24^{\circ} \cdot \sin 84^{\circ}}{\sin 72^{\circ}}$
$\left[\because \sin \theta \cdot \sin (60-\theta) \sin (60+\theta)=\frac{1}{4} \sin 3 \theta\right]$
$=\frac{1}{4} \sin 24^{\circ} \cdot \sin 36^{\circ} \cdot \frac{\sin 84^{\circ}}{\sin 72^{\circ}}$
$=\frac{1}{4} \times \frac{1}{4} \frac{\sin \left(3 \times 24^{\circ}\right)}{\sin 72^{\circ}}=\frac{1}{16}$
72. (B) We have

Capital \times Time $=$ Profit
So,

	A	$:$	B	$:$	C
profit	5	$:$	6	$:$	11
Time	2	$:$	3	$:$	6
Capital	$=\frac{5}{2}$	$:$	$\frac{6}{3}$	$:$	$\frac{11}{6}$
	$=15$	$:$	12	$:$	11

73. (D) Area of triangle
$=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
$=\frac{1}{2}|t(t+2-t)+(t+2)(t-t+2)+(t+3)(t-2-t-2)|$
$=\frac{1}{2}|2 t+2 t+4-4 t-12|$
$=\frac{1}{2} \times|-8|=4$ sq. Unit
74. (A) Internal angle of a regular polygone
$=\frac{(n-2) \times 180^{\circ}}{n}$
Accoding to question,
$\frac{\frac{(5 n-2) \times 180^{\circ}}{5 n}}{\frac{(6 n-2) \times 180^{\circ}}{6 n}}=\frac{24}{25}$
$\Rightarrow \frac{(5 n-2) \times 6}{(6 n-2) \times 5}=\frac{24}{25}$
$\Rightarrow \frac{5 n-2}{6 n-2}=\frac{4}{5}$
$\Rightarrow 25 n-10=24 n-8$
$\Rightarrow n=2$
So, No of sides are 10, 12.
75. (C) Let speed of these trains $x \& y$.
length of Ist train $=x \times 27=27 x$
length of IInd train $=y \times 17=17 y$
When they crossed each other
$(x+y) \times 23=27 x+17 y$
$\Rightarrow 23 x+23 y=27 x+17 y$
$\Rightarrow 4 x=6 y$
$\Rightarrow \frac{x}{y}=\frac{3}{2}$
$\Rightarrow x: \mathrm{y}=3: 2$

76 (C) Let the number is $(x+24)$, divisible by x.
Now,
$\frac{2(x+24)}{x}=$ Remainder (11)
$\frac{48}{x}=$ Remainder (11)
Divisor $(x)=48-11=37$
77. (A)

	A	$:$	B
Capital-	7	$:$	9

Now,
profit $=7 \times 3+7 \times \frac{1}{3} \times 6: 9 \times 4+9 \times \frac{2}{3} \times 5$
$=21+14: 36+30$
= 35 : 66
total profit $=35+66=101$ units
101 units \qquad 10201

1 unit \qquad 101
Share of $A=35 \times 101=₹ 3535 /-$
Share of B=66×101= ₹6666/-
78. (C) $216^{\sin \theta} \cdot 1296^{\cos \theta}$
$=6^{3 \sin \theta} \cdot 6^{4 \cos \theta}$
$=6^{3 \sin \theta+4 \cos \theta}$
Maximum Value of $3 \sin \theta+4 \cos \theta$
$=\sqrt{3^{2}+4^{2}}=5$
Now,
Maximum value of $6^{3 \sin \theta+4 \cos \theta}=6^{5}=7776$
79. (B) $x+\frac{1}{x}=3$
$x^{2}+\frac{1}{x^{2}}=7$ and $x^{3}+\frac{1}{x^{3}}=27-9=18$
$x^{5}+\frac{1}{x^{5}}=\left(x^{3}+\frac{1}{x^{3}}\right) \times\left(x^{2} \times \frac{1}{x^{2}}\right)-\left(x+\frac{1}{x}\right)$
$=18 \times 7-3=123$
Now,

$$
\begin{aligned}
& x^{7}+\frac{1}{x^{7}}=\left(x^{5} \times \frac{1}{x^{5}}\right)\left(x^{2}+\frac{1}{x^{2}}\right)-\left(x^{3}+\frac{1}{x^{3}}\right) \\
& \Rightarrow x^{7}+\frac{1}{x^{7}}=123 \times 7-18 \\
& \Rightarrow x^{7}+\frac{1}{x^{7}}=861-18
\end{aligned}
$$

$\Rightarrow x^{7}+\frac{1}{x^{7}}=843$
80. (C) Let speed $=x \mathrm{~km} / \mathrm{h}$ and
time $=$ y hours
Acc. to question
$x y=(x+5)\left(y-\frac{2}{3}\right)$
$\Rightarrow x y=x y+5 y-\frac{2}{3} x-\frac{10}{3}$
$\Rightarrow 2 x-15 y=-10$
and,
$x y=(x-2)\left(y+\frac{1}{2}\right)$
$\Rightarrow x y=x y+\frac{1}{2} x-2 y-1$
$x-4 y=2$ \qquad
On solving (i) and (ii) we have
$x=10, \quad y=2$
Distance $=x y=10 \times 2=20 \mathrm{~km}$
Alternate method :-
We have formula
Distance $=\frac{S_{1} \times S_{2}}{\left(S_{1}-S_{2}\right)} \times$ time
Now let speed $=x$
Distance $=\frac{x \times(x+5)}{5} \times \frac{40}{60}=\frac{x \times(x-2) \times 30}{2 \times 60}$
$\Rightarrow(x+5) \times 8=15(\mathrm{x}-2)$
$\Rightarrow 8 x+40=15 x-30$
$\Rightarrow 7 x=70$
$\Rightarrow x=10$
\therefore Distance $=\frac{10 \times 15}{5} \times \frac{40}{60}=20 \mathrm{~km}$
81. (B) According to question

Water	Milk	$=$	Total
Initial	25	$=$	7
Final	$1_{\times 5}$	$=$	5
	$1_{\times 5}=5$	$=$	10

So, water add in final $=\frac{3}{10}$ Unit or, alternative method :
Water (in itial) Water (add)

So, Required fraction $=\frac{3}{10}$ part
82. (B)
S. P of racket $=400-400 \times \frac{15}{100}-40$
$=₹ 300 \mathrm{Rs}$.
Now, CP of racket when profit is 20%
$=\frac{300}{120} \times 100=₹ 250$.
83.
B) $\cos \left(\frac{\pi}{4}-x\right) \cdot \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)$
$=\left(\frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x\right) \cdot\left(\frac{1}{\sqrt{2}} \cos y+\frac{1}{\sqrt{2}} \sin y\right)-$
$\left(\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x\right) \cdot\left(\frac{1}{\sqrt{2}} \cos y-\frac{1}{\sqrt{2}} \sin y\right)$
$=\frac{1}{\sqrt{2}}(\cos x+\sin x)(\cos y+\sin y) \times \frac{1}{\sqrt{2}}-$
$\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}(\cos x-\sin x)(\cos y-\sin y)$
$=\frac{1}{2}(\cos x \cos y+\cos x \sin y+\sin x \cos y+$ $\sin x \sin y)-\frac{1}{2}(\cos x \cos y-\cos x \sin y-\sin x$ $\cos y+\sin x \sin y)$
$=\frac{1}{2}[\cos x \cos y+\cos x \sin y+\sin x \cos y+$ $\sin x \cdot \sin y-\cos x \cos y+\cos x \sin y+\sin x$ $\cos y-\sin x \sin y)$
$=\frac{1}{2}[2 \sin x \cos y+2 \cos x \sin y]$
$=\sin (x+y)$
84. (C)

Given,
$\mathrm{AB}=15 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}, \mathrm{AD}=5 \mathrm{~cm}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}$
$=\frac{1}{2} \times \mathrm{BC} \times 5$
We have,
Circumradius (R) $=\frac{a b c}{4 \times \Delta}$
$=\frac{A B \times A C \times B C}{4 \times \frac{1}{2} \times B C \times 5}=\frac{15 \times 12}{2 \times 5}$
$=18 \mathrm{~cm}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

85. (A)

Side of small square $=20 \mathrm{~cm}$
Diagonal of innermost square $=20 \times \sqrt{2}$
$=20 \sqrt{2} \mathrm{~cm}$
Distance between these circles $=1.414 \mathrm{~cm}$ $=\sqrt{2} \mathrm{~cm}$

Diagonal of outermost square
$=20 \sqrt{2}+8 \times \sqrt{2}=28 \sqrt{2} \mathrm{~cm}$
Side of this square $=\frac{28 \sqrt{2}}{\sqrt{2}}=28 \mathrm{~cm}$
\therefore Area $=28^{2}=784 \mathrm{~cm}^{2}$
86. (B) Work done in 8 days by both of them $=\frac{8}{25}$

Rest work done by Ram $\frac{17}{25}$ work $=34$ days
Ram complete total work
$=\frac{34 \times 25}{17}$ day $=50$ days
87. (A) L.C.M of $45 \mathrm{~min}, 1 \mathrm{~h} 20 \mathrm{~min}, 1$ hour $\&$ $1 \frac{1}{2} h=\frac{3}{4} h, \frac{4}{3} h, 1 h, \frac{3}{2} h$
L.C. $M=\frac{12}{1} h$

So, they ring together after 12 hours i.e at 12 mid night
$88 \quad\left(\right.$ B $^{20} \times(343)^{4} \times(16)^{4} \times 1331 \times 100$ $=2^{60} \times 7^{12} \times 2^{16} \times(11)^{3} \times 2^{2} \times 5^{2}$ total Prime factors $=60+12+16+3+2+2$ = 95
89. (B) Required ratio
$=\frac{15}{100} \times 4600 \times \frac{3}{5}: \frac{22}{100} \times 4600 \times \frac{1}{2}=9: 11$
90. (A) Total number of employees in accounts department $=4600 \times \frac{8}{100}=368$

Number of women $=\frac{368 \times 1}{4}=92$
91. (C) Required number of males
$=\frac{1}{4} \times \frac{26}{100} \times 4600+\frac{1}{2} \times \frac{11}{100} \times 4600$
$=299+253=552$
92. (C) Total number of male employees
$=46 \times 11 \times \frac{1}{2}+46 \times 8 \times \frac{3}{4}+46 \times 15 \times \frac{3}{5}+$
$46 \times 26 \times \frac{1}{4}+46 \times 22 \times \frac{1}{2}+46 \times 18 \times \frac{5}{6}$
$=46 \times\left(\frac{11}{2}+6+9+\frac{13}{2}+11+15\right)$
$=46 \times 53$
Total number female employees
$=46 \times 11 \times \frac{1}{2}+46 \times 8 \times \frac{1}{4}+46 \times 15 \times \frac{2}{5}+$
$46 \times 26 \times \frac{3}{4}+46 \times 22 \times \frac{1}{2}+46 \times 18 \times \frac{1}{6}$
$=46\left(\frac{11}{2}+2+6+\frac{39}{2}+11+3\right)=46 \times 47$
Required ratio $=\frac{46 \times 53}{46 \times 47}=53: 47$
93. (C) Required percentage
$=\frac{\left(\frac{3}{4} \times \frac{26}{100} \times 4600\right)}{4600} \times 100=\frac{3 \times 26}{400} \times 100$
= 19.5\%
94. (A) $16 \frac{2}{3} \%=\frac{1}{6}$
let CP of both articles $=6 x$
S.P of Ist article $=7 x$
S.P of IInd article $=7 x+2400$

According to question
$12 x \times \frac{4}{3}=14 x+2400$
$\Rightarrow 16 x=14 x+2400$
$\Rightarrow x=1200$
\therefore C. P of the each article
$=6 \times 1200=₹ 7200$
95. (B) Let the age of $\mathrm{A}=x$

Now, the age of $\mathrm{C}=x+6$
the age of $\mathrm{B}=2 x$
According to question,
$\frac{2 x+3}{x+6}=\frac{7}{5}$
$\Rightarrow 10 x+15=7 x+42$
$\Rightarrow 3 x=27$
$\Rightarrow x=9$
\therefore the present age of $\mathrm{B}=9 \times 2=18$ years.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

96. (C) Downstream speed
$=\frac{1}{\frac{30}{7}}=\frac{7 \times 60}{30}=14 \mathrm{~km} / \mathrm{h}$
Upstream speed $=\frac{3}{\frac{45}{2}}=\frac{3 \times 2 \times 60}{45}=8 \mathrm{~km} / \mathrm{h}$
Speed of boat in still water
$=\frac{\text { down strem speed }+ \text { ups speed }}{2}=\frac{14+8}{2}$
$=11 \mathrm{~km} / \mathrm{hr}$
97. (C)

Let the length of AN be x.
We know that
$\mathrm{AN} \times \mathrm{AC}=\mathrm{AM}^{2}$
$\Rightarrow x \times 16=10^{2}$
$\Rightarrow x=\frac{25}{4} \mathrm{~cm}$
$\mathrm{AN}: \mathrm{AC}=\frac{25}{4}: 16=25: 64$
98. (A) A man can buy 5 egg less when price increased.
Price increased in amount
$=120 \times \frac{25}{100}=₹ 30$
Rate of eggs $=\frac{30}{5}=₹ 6 / \mathrm{egg}$.
or by alternative method
Final Price $=\frac{\text { Amount }}{\text { Quantity less } / \text { more }} \times \frac{\text { Percentage }}{100}$
$=\frac{120}{5} \times \frac{25}{100}=₹ 6 / \mathrm{egg}$
99. (C) Given series
$1,5,14,39,88$
$1+2^{2}=5$
$5+3^{2}=14$
$14+5^{2}=39$
$39+7^{2}=\quad 88$
$88+11^{2}=209$
Add in each term of squence of prime number i.e.
$2^{2}, 3^{2}, 5^{2}, 7^{2}, 11^{2}, 13^{2} .$. and so on
100. (B)

Let the radius of semi-circle $=r$
So, radius of Cone
$=\frac{1}{2} \times$ Radius of sheet $=\frac{1}{2} \mathrm{r}$
Slant height of Cone $(l)=$ radius of sheet = r
total surface area of cone
$=\pi \mathrm{R} l+\pi \mathrm{R}^{2}$
$=\pi \times \frac{1}{2} \mathrm{r} \times \mathrm{r}+\frac{\pi r^{2}}{4}=\frac{3 \pi r^{2}}{4}$
Ratio of surface area of sheet and cone
$=\frac{1}{2} \pi \mathrm{r}^{2}: \frac{3}{4} \pi \mathrm{r}^{2}=2: 3$

SSC TIER II (MATHS) MOCK TEST - 38 (ANSWER KEY)

1. (C)	11. (A)	21. (A)	31. (D)	41. (B)	51. (B)	61. (C)	71. (D)	81. (B)	91. (C)
2. (A)	12. (C)	22. (C)	32. (D)	42. (C)	52. (B)	62. (C)	72. (B)	82. (B)	92. (C)
3. (C)	13. (B)	23. (A)	33. (B)	43. (C)	53. (A)	63. (C)	73. (D)	83. (B)	93. (C)
4. (A)	14. (D)	24. (C)	34. (B)	44. (B)	54. (B)	64. (B)	74. (A)	84. (C)	94. (A)
5. (B)	15. (B)	25. (B)	35. (D)	45. (D)	55. (B)	65. (C)	75. (C)	85. (A)	95. (B)
6. (B)	16. (B)	26. (C)	36. (C)	46. (B)	56. (C)	66. (B)	76 (C)	86. (B)	96. (C)
7. (D)	17. (B)	27. (A)	37. (A)	47. (A)	57. (C)	67. (B)	77. (A)	87. (A)	97. (C)
8. (D)	18. (D)	28. (A)	38. (B)	48. (B)	58. (C)	68. (B)	78. (C)	88 (B)	98. (A)
9. (C)	19. (C)	29. (B)	39. (C)	49. (D)	59. (D)	69. (B)	79. (B)	89. (B)	99. (C)
10. (C)	20. (C)	30. (A)	40. (D)	50. (A)	60. (B)	70. (C)	80. (C)	90. (A)	100.(B)

