SSC TIER II (MATHS) MOCK TEST - 33 (SOLUTION)

1. (B) Consider $f(x)=x^{3}-3 x^{2}+\mathrm{a} x-\mathrm{b}$

On putting $x=2$, we get
$2^{3}-3(2)^{2}+2 a-b=0$
$\Rightarrow 2 \mathrm{a}-\mathrm{b}=4$ \qquad
Now, on putting $x=3$ in $f(x)$, we get
$(3)^{3}-3(3)^{2}+3 a-b=0$
$\Rightarrow 3 \mathrm{a}-\mathrm{b}=0$
On solving equation (i) and (ii), we get $\mathrm{a}=-4$ and $\mathrm{b}=-12$
Then, $\mathrm{a}-\mathrm{b}=-4+12=8$
2. (A) $\frac{3}{4} \rightarrow \frac{5}{6}$

Here increment is same in both numerator and denominator
i.e., $5-3=2$

$$
6-4=2
$$

\therefore Required number $=2$
3. (B) A.T.Q,

A	B	C
3	4	4
5	5	4

$15 \quad 20 \quad 16$
Then,
A: B:C $=15: 20: 16$
Now, $(15+20+16)$ units $=255$
$\Rightarrow 51$ units $=255$
$\Rightarrow 1$ unit $=5$
Then, second number $=20$ units

$$
=20 \times 5=100
$$

4. (B) Here,
$90=9 \times 10$
and, $72=8 \times 9$
In such type of questions smaller number becomes the answer
$\therefore \sqrt{90-\sqrt{90-\sqrt{90}}}-\sqrt{72-\sqrt{72-\sqrt{72}}}$
$=9-8=1$
5. (C) Here, the difference
i.e., $9-6,10-7,11-8$ is same which is 3
Now, LCM of 9, 10 and $11=990$
Then, required number
$=990 \times 101-3=99987$
6. (C) Here,

Digits between 1 and $9=9$,
Digits between 10 and $99=90$
and, Digits between 100 and $250=151$
\therefore Required digits
$=9 \times 1+90 \times 2+151 \times 3=642$
7. (B) Required average
$=\frac{64 \times 46+36 \times 38}{64+36}=\frac{4312}{100}=43.12$
8. (B)

Here, 2 units $=8$
$\Rightarrow 1$ unit $=4$
Then, sum of the numbers $=(3+4)$ units

$$
=7 \times 4=28
$$

9. (C) Let the two numbers be $89 x$ and $89 y$

Then, LCM $=89 x y$
A.T.Q,

$$
\begin{aligned}
& 89 x y=2136 \\
& \Rightarrow x y=24
\end{aligned}
$$

On solving, we get
$x=3, y=8$
It is the only pair which has no common factor.
Then, required difference $=89(y-x)$

$$
=89 \times 5=445
$$

10. (A) A.T.Q,
$a+b=15$
and, $a b=35$
Now, $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}}=\frac{15}{35}=\frac{3}{7}$
11. (B) A.T.Q,

Now,
$5(\mathrm{~A}+\mathrm{B})+2(\mathrm{~B}+\mathrm{C})-2 \mathrm{C}+19 \mathrm{C}=36$
$\Rightarrow 5 \times 3+2 \times 2+17 \mathrm{C}=36$
$\Rightarrow 17 \mathrm{C}=36-19=17$
$\Rightarrow \mathrm{C}=1$
And, efficiency of $B=2-1=1$
Then, time taken by B to complete the work $=\frac{36}{1}=36$ days

KD Campus Pvt. Ltd

12. (D) A.T.Q,

His remaining salary
$=1-\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{7}\right)=\frac{5}{14}$
Now, $\frac{5}{14}$ units $=₹ 15000$
Then, his income $=1$ unit
$=15000 \times \frac{5}{14}=₹ 42000$
13. (A) A.T.Q,

Here, Work done by A and B in 2 hours $=3+2=5$ units
Then, time taken to fill the tank
$=\frac{30}{5} \times 2=12$ hours
14. (B) $20 \% \Rightarrow \frac{1}{5}$

$$
\begin{aligned}
& \frac{4}{5} \rightarrow \mathrm{SP}_{2} \times 26 \\
& 5 \mathrm{MRP} \times 26
\end{aligned}
$$

$10 \% \Rightarrow \frac{1}{10}$

$$
\begin{aligned}
9 & \rightarrow \mathrm{SP}_{1} \times 13 \\
10 & \rightarrow \mathrm{MRP} \times 13
\end{aligned}
$$

$30 \% \Rightarrow \frac{3}{10}$

$$
\begin{aligned}
& \frac{13}{10} \rightarrow \mathrm{SP}_{1} \times 9 \\
& \rightarrow \mathrm{CP} \times 9
\end{aligned}
$$

Now, $\mathrm{SP}_{2}=26 \times 4=104$
and, $\mathrm{CP}=90$
Then, profit $\%=\frac{104-90}{90} \times 100$
$=\frac{14}{90} \times 100=15.55 \%$
15. (A) Let the speed of the vehicle be $v \mathrm{~km} / \mathrm{h}$ and time t minutes
Then, distance $=v \times t$
Now, $(v+3)(t-20)=v t$
$\Rightarrow v t+3 t-20 v-60=v t$
$\Rightarrow 3 t-20 v=60$ \qquad (i)
and, $(v-3)(t+30)=v t$
$\Rightarrow v t+30 v-3 t-90=v t$
$\Rightarrow 30 v-3 t=90$
On solving equation (i) and (ii), we get $10 v=150$
$\Rightarrow v=15$
On putting the value of v in equation (i), we get
$3 t-20 \times 15=60$
$\Rightarrow 3 t=60+300=360$
$\Rightarrow t=120 \mathrm{~min}=2$ hours
Then, distance $=15 \times 2=30 \mathrm{~km}$
16. (B) Time taken by A to reach the station Q $=350 / 50=7$ hours
and, rest $=1$ hour
$\frac{200}{\mathrm{P}-350 \mathrm{~km}-\mathrm{Q}}$
Now, total time $=7+1=8$ hours
Then,
Distance travelled by B in 8 hours
$=25 \times 8=200 \mathrm{~km}$
Now, remaining distance $=150 \mathrm{kms}$
and, relative speed $=50+25$

$$
=75 \mathrm{kms} / \mathrm{hr}
$$

Then, time taken $=\frac{150}{75}=2$ hours
Now,
Total time taken $=7+1+2=10$ hours
\therefore Required time $=7 a m+10$ hours

$$
=5 \mathrm{pm}
$$

17. (D) Expenditure of A, B and C

	75%	80%	85%
Saving	25%	20%	15%
Given	$15:$	$16:$	12

Then, salary of $\mathrm{A}=\frac{15}{25} \times 100=60$
salary of $B=\frac{16}{20} \times 100=80$
and, salary of $\mathrm{C}=\frac{12}{15} \times 100=80$
Now, Ratio of salary of A, B, C
=60: 80: 80
$=3: 4: 4$
A.T.Q,
$(3+4+4)$ units $=₹ 88000$
$\Rightarrow 11$ units $=₹ 88000$
$\Rightarrow 1$ unit $=₹ 8000$
Then,
Difference between salaries of A and C
$=(4-3)$ units
$=1$ unit $=₹ 8000$

KD Campus Pvt. Ltd

18. (B) Net decrement $=\left(\frac{20 \times 20}{100}\right) \%$

$$
=4 \%
$$

19. (A)A.T.Q,

Milk Water
$\begin{array}{lll}4 & 1 & \times 3 \\ 3 & 2 & \times 4\end{array}\left[\begin{array}{l}\text { because the quantity } \\ \text { of milk will remain } \\ \text { same }\end{array}\right]$
$\left.\begin{array}{llll}\text { Initially } & 12 & : & 3 \\ \text { Now } & 12 & : & 8\end{array}\right) 5$
A.T.Q,
$(12+3)$ units $=60$
$\Rightarrow 15$ units $=60$
$\Rightarrow 1$ unit $=4$
Then, required quantity of water to be added $=5$ units $=5 \times 4=20$ litres
20. (C) A.T.Q,
C.P. of 15 articles $=\mathrm{SP}$ of 12 articles

Then, Profit percent $=\frac{15-12}{12} \times 100 \%$
$=25 \%$
21. (B) A.T.Q,
$\frac{\mathrm{p}\left[\frac{\mathrm{r}}{100}\right]^{2}\left[3+\frac{\mathrm{r}}{100}\right]}{\mathrm{p}\left[\frac{\mathrm{r}}{100}\right]^{2}}=\frac{17}{5}$
$\Rightarrow \frac{\mathrm{r}}{100}=\frac{17}{5}-3=\frac{2}{5}$
$\Rightarrow \mathrm{r}=\frac{2}{5} \times 100=40 \%$
\therefore Rate of interest $=40 \%$
22. (B)

$96 \times \frac{75}{100}=72$
Now, votes secured by wining candidate $=72 \%$
and, votes secured by the losing candidate $=96-72=24 \%$
Then, difference of votes $=72-24=48 \%$
Now, $48 \%=9600$
$\Rightarrow 1 \%=200$
Then,
Total number of votes $=100 \%$
$=100 \times 200=20000$
23. (C) A.T.Q,
40% marks $=$ pass marks +40
and, 20% marks $=$ pass marks -50
Now, difference of the marks
$(40-20) \%=40+50$
$\Rightarrow 20 \%=90$
And,
Maximum marks $=100 \%$
$=90 / 20 \times 100=450$
Then, minimum marks to pass the exam
$=450 \times \frac{20}{100}+50=90+50=140$
$=90+50=140$
24. (C) Time 4 year 10 year 15 year Rate $\quad 15 \% \quad 9 \% \quad 12 \%$

Principal	P_{1}	P_{2}	P_{3}
SI	$\mathrm{P}_{1} \times 60$	$\underline{\mathrm{P}}_{2}-$	$\times 90$
$\mathrm{P}_{3} \times 180$			

Now, the ratio of the principals $P_{1}: P_{2}: P_{3}=3: 2: 1$
25. (D) A.T.Q,

$$
\begin{aligned}
& \frac{5 x-8000}{6 x-12000}=\frac{4}{3} \\
& \Rightarrow 15 x-24000=24 x-48000 \\
& \Rightarrow 9 x=24000
\end{aligned}
$$

Then, income of $B=6 x=\frac{24000}{9} \times 6$

$$
\text { = ₹ } 16000
$$

26. (A)

A.T.Q,

$$
2 \text { units }=30
$$

$\Rightarrow 1$ unit $=15$
Now,
$\begin{aligned} & A \rightarrow 15 \\ & B \rightarrow 45\end{aligned}>45<\begin{aligned} & 3 \\ & 1\end{aligned}$
Then, time taken by A and B to complete the work $=\frac{45}{4}=11 \frac{1}{4}$ days

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

27. (B) A.T.Q,
$A \times \frac{80}{100} \times \frac{115}{100}=2990$
$\Rightarrow \mathrm{A}=\frac{2990 \times 100 \times 100}{80 \times 115}=3250$
\therefore Required price of the bicycle $=₹ 3250$
28. (B) A.T.Q,

Rate of interest $=8 \frac{3}{4} \%=\frac{35}{4} \%$
Then, half yearly rate $=\frac{35}{8} \%$
We know that the difference between compound interst and simple interest for
2 years $=P\left[\frac{r}{100}\right]^{2}$
\therefore Required difference $=14400\left[\frac{35}{800}\right]^{2}$

$$
\text { = ₹ } 27.5625
$$

29. (C) A.T.Q,
$(5 \mathrm{M}+8 \mathrm{~W}) 12=(3 \mathrm{M}+7 \mathrm{~W}) 16$
$\Rightarrow 15 \mathrm{M}+24 \mathrm{~W}=12 \mathrm{M}+28 \mathrm{~W}$
$\Rightarrow 3 \mathrm{M}=4 \mathrm{~W}$
$\Rightarrow \frac{\mathrm{M}}{\mathrm{W}}=\frac{4}{3}$
Let 8 men and 4 women completes the work in x days
Then,
$(5 \mathrm{M}+8 \mathrm{~W}) \times 12=(8 \mathrm{M}+4 \mathrm{~W}) \times x$
$\Rightarrow(5 \times 4+8 \times 3) 12=(8 \times 4+4 \times 3) x$
$\Rightarrow 44 \times 12=44 \times x$
$\Rightarrow x=12$ days
\therefore Required time $=12$ days
30. (A) Let the length of the platform be $x \mathrm{~m}$ A.T.Q,
$(250+x)$ m distance travelled in 50 seconds.
and, $(150+x) \mathrm{m}$ distance travelled in 40 seconds.
Then, $(250-150=100 \mathrm{~m})$ distance will be travelled in $50-40=10$ seconds
\therefore Velocity of the train $=10 \mathrm{~m} / \mathrm{s}$
Now, distance travelled in 50 sec
$=50 \times 10=500 \mathrm{~m}$
Then, length of the platform $=500-250$ $=250 \mathrm{~m}$
31. (A) Alcohol Water
$\left(\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right.$

Here, Water to be taken out $=\frac{3-2}{3}=\frac{1}{3}$
32. (B) A.T.Q,

A	B	C
12000×3	16000×6	20000×9
$\frac{+27000 \times 9}{279000}$	$\frac{+25000 \times 6}{246000}$	$\frac{+10000 \times 3}{210000}$

Now, Ratio of profit of A, B and C = 279:246:210 = $93: 82: 70$
33. (C) CP of the article $=\frac{1220+1780}{2}=₹ 1500$
34. (D) Total C.P. of 60 kg wheat
$=35 \times 10.5+25 \times 15$
$=367.5+375=₹ 742.5$
Now,
S.P. $=\frac{742.5}{100} \times 130=₹ 965.25$
S.P. of 1 kg wheat $=\frac{965.25}{60}=₹ 16.08$
35. (D) A.T.Q,

Students who do not play football
$=100-40=60 \%$
and, students who do not play cricket
$=100-60=40 \%$
and, students who neither play cricket
nor cricket = 15%
\therefore Students who play both the games
$=100-(60+40-15)=15 \%$
36. (B) A.T.Q,
$\begin{aligned} & A+B \rightarrow 20 \\ & B+C \rightarrow 30 \\ & C+A \rightarrow 18\end{aligned}>180<\begin{aligned} & 9 \\ & 6 \\ & 10\end{aligned}$
Here, efficiency of A, B and C
$=\frac{9+6+10}{2}=\frac{25}{2}$
Then,
Time taken by A, B and C to complete the work $=\frac{180}{25} \times 2=\frac{72}{5}=14 \frac{2}{5}$ days
37. (B)

Now, 5 units $=20$
$\Rightarrow 1$ unit $=4$
Then, cost price of article $=100$ units $=100 \times 4=₹ 400$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

38. (A) Let the digit of ten's place be x

Then, digit of unit place $=2 x$
Now, the two digit number
$=10 \times x+2 x=12 x$
After interchanging the digits of the number, the number becomes
$10 \times 2 x+x=21 x$
A.T.Q,
$21 x-12 x=27$
$\Rightarrow x=3$
Then, required difference $=2 x-x$

$$
=x=\mathbf{3}
$$

39. (C) A.T.Q,

Depreciation in the price of sugar
$=20 \%=\frac{1}{5}$
Now, additional amount of sugar
$=\frac{1}{5-1}=\frac{1}{4}$
Here, $\frac{1}{4}$ units $=3 \mathrm{~kg}$
Then, original amount of sugar $=1$ unit
$=4 \times 3=12 \mathrm{~kg}$
Now, total amount of sugar after the depreciation of price $=12+3=15 \mathrm{~kg}$
\therefore Required price of sugar $=\frac{480}{15}=₹ 32$
40. (D) We know that,

Net discount of two successive discounts
$=x+y-\frac{x y}{100}$
Now, net discount of 20% and 15%
$=20+15-\frac{20 \times 15}{100}=32$
Then, net discount of 32% and 10%
$=32+10-\frac{32 \times 10}{100}=42-3.2$
$=38.8 \%$
41. (C) A.T.Q,
$a^{4}+1-a^{2}=0$
$\Rightarrow a^{2}+\frac{1}{a^{2}}=1$
$\Rightarrow a^{2}+\frac{1}{a^{2}}+2=3$
$\Rightarrow a+\frac{1}{a}=\sqrt{3}$
On cubing both sides, we get
$\left(a+\frac{1}{a}\right)^{3}=3 \sqrt{3}$
$\Rightarrow a^{3}+\frac{1}{a^{3}}+3 \sqrt{3}=3 \sqrt{3}$
$\Rightarrow a^{3}+\frac{1}{a^{3}}=0$
$\Rightarrow a^{6}+1=0$
$\Rightarrow a^{6}=-1$
Now, $a^{18}+a^{12}+a^{6}+1$
$=(-1)^{3}+(-1)^{2}+(-1)+1=0$
42. (A) A.T.Q,
$\sec \theta-\tan \theta=\frac{4}{5}$
and, $\sec \theta+\tan \theta=\frac{5}{4}$.
$\left.\sec ^{2} \theta-\tan ^{2} \theta=1\right]$
On solving equation (i) and (ii), we get
$2 \sec \theta=\frac{4}{5}+\frac{5}{4}=\frac{41}{20}$
$\Rightarrow \sec \theta=\frac{41}{40}$
$\Rightarrow \cos \theta=\frac{40}{41}$
$\Rightarrow \sin \theta=\sqrt{1-\cos ^{2} \theta}=\frac{9}{41}$
43. (C)

Area of $\Delta \mathrm{DCM}=\frac{1}{2} \times \mathrm{DM} \times \mathrm{CN}$
$=\frac{1}{2} \times 60 \times 40=1200 \mathrm{~m}^{2}$
If a triangle and a parallelogram lie on the same base and between same parallel lines, then parallelogram has double area than area of triangle.
Then,
Required area $=1200 \times 2=2400 \mathrm{~m}^{2}$
44. (B) Area of the pyramid
$=$ Area of base $+4 \times$ (Area of $\Delta \mathrm{ABC})$
Here, height of the $\triangle \mathrm{ABC}$
$=\sqrt{15^{2}+8^{2}}=17 \mathrm{~m}$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Then,
Required area $=16^{2}+4\left[\frac{1}{2} \times 16 \times 17\right]$
$=256+544=800 \mathrm{~m}^{2}$
45. (B) A.T.Q,

$a=48 \cot 60^{\circ}=\frac{48}{\sqrt{3}}$
and, $\mathrm{b}=48 \cot 30^{\circ}=48 \sqrt{3}$
Then,
Required distance $=\mathrm{b}-\mathrm{a}=48 \sqrt{3}-\frac{48}{\sqrt{3}}$
$=48\left[\sqrt{3}-\frac{1}{\sqrt{3}}\right]=48 \times \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=32 \sqrt{3} \mathrm{~m}$
46. (C) A.T.Q,
$a^{3}+b^{3}+c^{3}-3 a b c$
$=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
$=\frac{1}{2}[495+496+497]\left[1^{2}+1^{2}+2^{2}\right]$
$=\frac{1}{2} \times 1488 \times 6=4464$
47. (A) A.T.Q,
$\frac{1-\cos \theta}{1+\cos \theta}=\frac{7}{24}$
$\Rightarrow \frac{2 \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}=\tan ^{2} \frac{\theta}{2}=\frac{7}{24}$
Now, $\sec ^{2} \frac{\theta}{2}+\tan ^{2} \frac{\theta}{2}=1+2 \tan ^{2} \frac{\theta}{2}$
$=1+\frac{7}{12}=\frac{19}{12}$
48. (B) A.T.Q,

Slope of the line $2 x+y+3=0$ is -2
Then,
Slope of perpendicular line will be $\frac{1}{2}$
$\left(\because \mathrm{m}_{1} \times \mathrm{m}_{2}=-1\right)$
Now, equation of perpendicular line
$\frac{y-4}{x-3}=\frac{1}{2}$
$\Rightarrow 2 \mathrm{y}-8=x-3$
$\Rightarrow x-2 y+5=0$
On solving both the equations,
$x=-\frac{11}{5}$ and $y=\frac{7}{5}$
49. (D) Using pythagoras, we get
$\mathrm{AD}=\sqrt{15^{2}+20^{2}}=25 \mathrm{~cm}$
AD is the radius of the quadrant.
\therefore Radius of quadrant $=25 \mathrm{~cm}$
50. (D) Slant height of the cone

$l=\sqrt{h^{2}+\mathrm{r}^{2}}=\sqrt{48^{2}+14^{2}}=50 \mathrm{~cm}$
Now, Total surface area
$=$ C.S.A. of cone + C.S.A. of hemisphere
$=\pi \mathrm{r} l+2 \pi \mathrm{r}^{2}=\pi \mathrm{r}[l+2 \mathrm{r}]$
$=\frac{22}{7} \times 14[50+28]$
$=22 \times 2 \times 78=3432 \mathrm{~cm}^{2}$
51. (B)

Here, side HE $=\sqrt{\left(\frac{\mathrm{a}}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}=\frac{a}{\sqrt{2}}$
Now, sum of areas of all the squares
$=a^{2}+\left(\frac{a}{\sqrt{2}}\right)^{2}+\left(\frac{a}{2}\right)^{2}+$
$=a^{2}+\frac{a^{2}}{2}+\frac{a^{2}}{4}+$
$=\frac{a^{2}}{1-\frac{1}{2}}=2 a^{2}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

52. (A)

Here, AD = DE
So,
$\angle \mathrm{DAE}=\angle \mathrm{DEA}$
Now, in $\triangle \mathrm{ADE}$,
Let $\angle \mathrm{DAE}=x^{\circ}$
Then, $150^{\circ}+x^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow 2 x=30^{\circ}$
$\Rightarrow x=15^{\circ}$
53. (B)

Let $\mathrm{CD}=x \mathrm{~cm}$
Then,
$\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$
$\Rightarrow 9 \times 4=(3+x) \times 3$
$\Rightarrow \frac{36}{3}=3+x$
$\Rightarrow x=12-3=9$
\therefore Length of CD $=9 \mathrm{~cm}$
54. (A) A.T.Q,
$3 \mathrm{~A}+2 \mathrm{~A}-60^{\circ}=90^{\circ}$
$\Rightarrow 5 \mathrm{~A}=150^{\circ}$
$\Rightarrow \mathrm{A}=30^{\circ}$
55. (B) Height of the building (h) $=\sqrt{\mathrm{ab}}$
$=\sqrt{16 \times 9}=\mathbf{1 2} \mathbf{c m}$
56. (A) Ratio of the volumes of right circular cylinder
$=\frac{\pi r_{1}^{2} h_{1}}{\pi r_{1}^{2} h_{2}}$
$=\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2} \times\left(\frac{h_{1}}{h_{2}}\right)=\left(\frac{2}{3}\right)^{2} \times \frac{3}{5}=\frac{4}{9} \times \frac{3}{5}=\frac{4}{15}$
\therefore Required ratio $=4: 15$
57. (B) Here,
$a+b+c=129+127-356=0$
$\therefore a^{3}+b^{3}+c^{3}=3 a b c$
$\Rightarrow a^{3}+b^{3}+c^{3}-3 a b c=0$
58. (C)

Here,
$\angle \mathrm{APB}=90^{\circ}\left(\because\right.$ angle in semicircle is $\left.90^{\circ}\right)$
Now, $\angle \mathrm{APC}=90^{\circ}-55=35^{\circ}$
and, $\angle \mathrm{APC}=\angle \mathrm{ABC}$
Then, $\angle \mathrm{ABC}=\angle \mathrm{BCD}=35^{\circ}$
59.
(A) $\frac{1-\sin \theta}{\cos \theta}=\frac{\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}}$

$$
\begin{aligned}
& =\frac{\left(\cos \frac{\theta}{2}-\sin \frac{\theta}{2}\right)^{2}}{\left(\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right)\left(\cos \frac{\theta}{2}-\sin \frac{\theta}{2}\right)} \\
& =\frac{\cos \frac{\theta}{2}-\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}+\sin \frac{\theta}{2}}=\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}} \\
& =\frac{\tan \frac{\pi}{4}-\tan \frac{\theta}{2}}{1+\tan \frac{\pi}{4} \tan \frac{\theta}{2}}=\tan \left[\frac{\pi}{4}-\frac{\theta}{2}\right]
\end{aligned}
$$

60. (B) Volume of the toy $=$ volume of cone + volume of cylinder + volume of hemisphere

$=\frac{1}{3} \pi r^{2} h+\pi r^{2} h+\frac{2}{3} \pi r^{3}$
$=\pi \mathrm{r}^{2}\left[\frac{h}{3}+h+\frac{2}{3} \mathrm{r}\right]$
$=\frac{22}{7} \times 21 \times 21\left[\frac{48}{3}+21+\frac{2}{3} \times 21\right]$
$=22 \times 3 \times 21[51]=70686 \mathrm{~m}^{3}$

KD Campus Pvt. Ltd

61. (B) In $\triangle \mathrm{ABE}$,

$\sin 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{AB}}=\frac{16}{\mathrm{AB}}$
$\Rightarrow \frac{1}{2}=\frac{16}{\mathrm{AB}}$
$\Rightarrow A B=32 \mathrm{~cm}$
\therefore Length of the wire $=32 \mathrm{~m}$
62. (A) A.T.Q,
$\frac{\cos x \cos y-\sin x \sin y}{\cos x \cos y+\sin x \sin y}=\frac{a+b}{a-b}$
By applying componendo and dividedendo method, we get
$\frac{\cos x \cos y}{\sin x \sin y}=\frac{a}{b}$
$\Rightarrow \cot x . \cot y=\frac{a}{b}$
$\Rightarrow \tan x \cdot \tan y=\frac{a}{b}$
63. (C) We know that,

Diagonals of a rhombus intersect each other at 90°.
By using pythagoras, we get
Side of rhombus $=\sqrt{12^{2}+9^{2}}=15$
Then, perimeter of rhombus
$=15 \times 4=60 \mathrm{~m}$
64. (A) A.T.Q,
$2 \sec \theta=y+\frac{1}{y}$
squaring both sides, we get
$4 \sec ^{2} \theta=y^{2}+\frac{1}{y^{2}}+2$
$\Rightarrow 4 \sec ^{2} \theta-4=y^{2}+\frac{1}{y^{2}}+2-4$
$\Rightarrow 4 \tan ^{2} \theta=\left(y-\frac{1}{y}\right)^{2}$
$\Rightarrow y-\frac{1}{y}=2 \tan \theta$
Adding equation (i) and (ii), we get
$2 \sec \theta+2 \tan \theta=y+\frac{1}{y}+y-\frac{1}{y}=2 y$
$\Rightarrow \sec \theta+\tan \theta=y$
65. (D) A.T.Q,

Volume of the hall
$=\frac{1}{3} \times$ area of the base \times height
$=\frac{1}{3} \times 15.75 \times 22 \times 5$
$=577.5 \mathrm{~m}^{3}$
Then,
Volume of air needed to one person
$=\frac{577.5}{22}=26.25 \mathrm{~m}^{3}$
66. (C) A.T.Q,
$\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}=38$
$\Rightarrow \frac{\left(x+\sqrt{x^{2}-1}\right)^{2}+\left(x+\sqrt{x^{2}-1}\right)^{2}}{x^{2}-\left(x^{2}-1\right)}=38$
$\Rightarrow 2\left(x^{2}+x^{2}-1\right)=38$
$\Rightarrow 2 x^{2}-1=19$
$\Rightarrow 2 x^{2}=20$
$\Rightarrow x=\sqrt{10}$
67. (B)

A.T.Q,
$\mathrm{O}^{\prime} \mathrm{A}=6 \mathrm{~cm}$
Then,
$\mathrm{O}^{\prime} \mathrm{M}=6-2=4 \mathrm{~cm}$
Now, $A M=\sqrt{6^{2}-4^{2}}=\sqrt{20}=2 \sqrt{5}$
Then, $\mathrm{AB}=2 \mathrm{AM}=4 \sqrt{5} \mathrm{~cm}$
\therefore length of the required chord $=4 \sqrt{5} \mathrm{~cm}$

KD Campus Pvt. Ltd

68. (A) A.T.Q,
$\operatorname{cosec}^{2} 67^{\circ}+\frac{1}{\cot ^{2} 37^{\circ}}-\tan ^{2} 23^{\circ}-\operatorname{cosec}^{2} 53^{\circ}$
$+\sin 53^{\circ}+\tan 37^{\circ} \cdot \tan 53^{\circ}-\cos 37^{\circ}$
$=\operatorname{cosec}^{2} 67^{\circ}+\tan ^{2} 37^{\circ}-\cot ^{2} 67^{\circ}-\sec ^{2} 37^{\circ}$
$+\sin 53^{\circ}+\tan 37^{\circ} \cot 37^{\circ}-\sin 53^{\circ}$
$=\left(\operatorname{cosec}^{2} 67^{\circ}-\cot ^{2} 67^{\circ}\right)-\left(\sec ^{2} 37^{\circ}-\tan ^{2} 37^{\circ}\right)$
$+\left(\sin 53^{\circ}-\sin 53^{\circ}\right)+\tan 37^{\circ} \times \frac{1}{\tan 37^{\circ}}$
$=1-1+0+1=1$
69. (B) A.T.Q,
$x+\frac{1}{x}=3$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=3^{2}-2=7$
and, $x^{3}+\frac{1}{x^{3}}=3^{3}-3 \times 3=18$
Multiplying equation (i) and (ii), we get
$\Rightarrow\left[x^{2}+\frac{1}{x^{2}}\right]\left[x^{3}+\frac{1}{x^{3}}\right]=7 \times 18$
$\Rightarrow x^{5}+\frac{1}{x^{5}}+x+\frac{1}{x}=126$
$\Rightarrow x^{5}+\frac{1}{x^{5}}=126-3=123$
70. (D)

A.T.Q,

Area of the rectangular field
$=60 \times 40=2400 \mathrm{~cm}^{2}$
and,
Volume of the soil taken out
$=\pi r^{2} h=\frac{22}{7} \times 14 \times 14 \times 6=3696 \mathrm{~m}^{3}$
Now,
Area of the circular portion
$=\pi r^{2}=\frac{22}{7} \times 14 \times 14=22 \times 28=616 \mathrm{~m}^{2}$ and,
Area on which soil has to spread
$=2400-616=1784 \mathrm{~m}^{2}$
Let the rise in level of the field be $h \mathrm{~m}$ Then,
$1784 \times h=3696$
$\Rightarrow h=\frac{3696}{1784}=2.07 \mathrm{~m}=207 \mathrm{~cm}$
71. (A) Area of the shaded region
$=$ area of segment OACD - area of $\Delta \mathrm{OAB}$
$=\pi r^{2} \frac{\theta}{360}-\frac{1}{2} r^{2} \sin \theta$
$=r^{2}\left[\frac{22}{7} \times \frac{75}{360}-\frac{1}{2} \sin 75^{\circ}\right]$
$=17.5 \times 17.5\left[\frac{55}{7 \times 12}-\frac{1}{2}\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)\right]$
$=52.62 \mathrm{~cm}^{2}$
72. (A) A.T.Q,
$\tan 3 x=1$
$\Rightarrow 3 x=45^{\circ}$
$\Rightarrow x=15^{\circ}$
Now,
$\sin 2 x+\cos 4 x$
$=\sin \left(2 \times 15^{\circ}\right)+\cos \left(4 \times 15^{\circ}\right)$
$=\sin 30^{\circ}+\cos 60^{\circ}=1$
73. (B) Ratio of circumradius and inradius in an equilateral triangle is always $2: 1$
74. (B) In $\triangle \mathrm{ADE}$,
$\tan \theta=\frac{\mathrm{DE}}{\mathrm{AE}}=\frac{1.5}{\mathrm{AE}}$

A.T.Q,
$\tan \theta=\frac{16}{9}$
Then, $\frac{16}{9}=\frac{1.5}{\mathrm{AE}}$
$\Rightarrow \mathrm{AE}=\frac{9 \times 1.5}{16}=\frac{27}{32} \mathrm{~m}$
\therefore Length of the shadow of $\operatorname{man}=\frac{27}{32} \mathrm{~m}$
75. (C)

A.T.Q,
$\angle \mathrm{BOC}=110^{\circ}$
Then, $\angle \mathrm{OBC}=\frac{180^{\circ}-110^{\circ}}{2}=35^{\circ}$
and, $\angle \mathrm{ABO}=80^{\circ}-35^{\circ}=45^{\circ}$
Now, $\angle \mathrm{AOB}=180^{\circ}-2 \times 45=90^{\circ}$
and, $\angle \mathrm{AOC}=360^{\circ}-\left[90^{\circ}+110^{\circ}\right]=160^{\circ}$
Then, $\angle \mathrm{OAC}=\frac{180^{\circ}-160^{\circ}}{2}=10^{\circ}$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

76. (A) Number of diagonals of polygon
$=\frac{n(n-3)}{2}=\frac{50(50-3)}{2}$
$=25 \times 47=1175$
77. (B) Let exterior angle of polygon be x

Then, interior angle $=4 x$
Now, $4 x+x=180^{\circ}$
$\Rightarrow x=36^{\circ}$
Then,
Number of sides $=\frac{360^{\circ}}{\text { exterior angle }}$
$=\frac{360^{\circ}}{36^{\circ}}=10$
78. (B) A.T.Q,
$\frac{\sin ^{6} \theta-\cos ^{6} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}$
$=\frac{\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(\sin ^{4} \theta+\cos ^{4} \theta+\sin ^{2} \theta \cos ^{2} \theta\right)}{\left(\sin ^{2} \theta-\cos ^{2} \theta\right)}$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-\sin ^{2} \theta \cos ^{2} \theta$
$=1-\sin ^{2} \theta \cos ^{2} \theta$
$=1-\frac{1}{4}(2 \sin \theta \cos \theta)^{2}$
$=1-\frac{1}{4}(\sin 2 \theta)^{2}$
$=\frac{4-\sin ^{2} 2 \theta}{4}=\frac{3+\cos ^{2} 2 \theta}{4}$
79. (B)

The triangle in which the line which is perpendicular to the opposite line and also bisects the line is isosceles triangle)
\therefore ADB is an isosceles triangle
Then, $\mathrm{AD}=\mathrm{DB}$
Let $\angle \mathrm{DAB}$ and $\angle \mathrm{DBA}$ be x
Then, $x+x+36+44=180^{\circ}$
$\Rightarrow x=50^{\circ}$
\therefore Required angle $=50^{\circ}$
80. (D) A.T.Q,
$a=2+\sqrt{3}$ \qquad
Then, $\frac{1}{a}=2-\sqrt{3}$

Adding equation (i) and (ii), we get
$a+\frac{1}{a}=4$
Cubing both sides, we get
$a^{3}+\frac{1}{a^{3}}+3 \times 4=64$
$\Rightarrow a^{3}+\frac{1}{a^{3}}=52$
81. (C) $\frac{126}{109}$
82. (C)

A.T.Q,
$\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$
$\therefore \angle \mathrm{AOB}=60^{\circ}$
Then, $\angle \mathrm{APB}=180^{\circ}-\angle \mathrm{AOB}$

$$
=180^{\circ}-60^{\circ}=120
$$

83. (B) A.T.Q,

Change in the capacity of cask
$=\frac{3}{4}-\frac{3}{5}=\frac{3}{20}$
Now,
$\left(\frac{3}{20}\right)$ units $=5-2=3$
$\Rightarrow 1$ unit $=20$
\therefore Required number of bottles $=20$
84. (B) Area covered by minutes hand in 30 minutes
$=\frac{\pi r^{2} \theta}{360}=\frac{22}{7} \times 21 \times 21 \times \frac{180^{\circ}}{360^{\circ}}=693 \mathrm{~cm}^{2}$
85. (B) A.T.Q,
$x^{4}+\frac{1}{x^{4}}=119$
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=121$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=11$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Subtracting 2 and taking square root of both sides, we get
$\left(x-\frac{1}{x}\right)=3$
$\Rightarrow x^{3}-\frac{1}{x^{3}}-3 \times 3=27$
$\Rightarrow x^{3}-\frac{1}{x^{3}}=36$
86. (A) A.T.Q,
$6 \sin ^{2} \theta+4 \sin ^{2} \theta+4 \cos ^{2} \theta=8$
$\Rightarrow 6 \sin ^{2} \theta=4 \Rightarrow \sin ^{2} \theta=\frac{2}{3}$
Then, $\cos ^{2} \theta=\frac{1}{3} \Rightarrow \sec ^{2} \theta=3$
$\Rightarrow \tan ^{2} \theta=\sec ^{2} \theta-1=3-1=2$
$\Rightarrow \tan \theta=\sqrt{2}$
87. (B) A.T.Q,

Volume of the prism $=405 \sqrt{3}$
Now, Area of the base \times height $=405 \sqrt{3}$
$\Rightarrow 6 \times \frac{\sqrt{3}}{4} \times 3 \times 3 \times \mathrm{h}=405 \sqrt{3}$
$\Rightarrow h=30 \mathrm{~m}$
\therefore Height of the prism $=30 \mathrm{~cm}$
88. (C) Coordinates of $P(0,5)$
$=\frac{m_{1} x_{2}+m_{2} x_{2}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
$=\left[\frac{2 \mathrm{a}+18}{5}, \frac{2 \mathrm{~b}+9}{5}\right]$
Now, $\frac{2 a+18}{5}=0$
$\Rightarrow a=-9$
And, $\frac{2 b+9}{5}=5$
$\Rightarrow 2 \mathrm{~b}+9=25$
$\Rightarrow \mathrm{b}=8$
$\therefore(\mathrm{a}, \mathrm{b})=(-9,8)$
89. (A)

Here,
Side $B D=\sqrt{2} A B$
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{AB}}=\frac{\sqrt{2}}{1}$
Then,
Ratio of areas $=\left(\frac{\mathrm{BD}}{\mathrm{AB}}\right)^{2}=\left(\frac{\sqrt{2}}{1}\right)^{2}=2: 1$
90. (B) A.T.Q,
$0.9+0.99+0.999+$ \qquad
$=(1-0.1)+(1-0.01)+(1-0.001)$
$=(1+1+1$. n times $)-(0.1+0.01$
$+0.001$ \qquad n times)
$=n-\left[\frac{1}{10}+\frac{1}{100}+\ldots \ldots \ldots . . n\right.$ times $]$
$=n-\left[\frac{\frac{1}{10}\left[1-\frac{1}{10^{n}}\right]}{1-\frac{1}{10}}\right]$
$=n-\left[\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)\right]$
91. (B) Ratio of Males and Female in all villages

	Male	Female
A	750	250
B	750	500
C	550	200
D	800	700
E	1200	1300
F	900	1100

\therefore Required ratio $=200: 1200=1: 6$
92. (B) Number of literate females of villages D
$=700 \times \frac{65}{100}=455$
and, number of literate females of village
$\mathrm{F}=1100 \times \frac{45}{100}=495$
Then, total number of literate females of villages D and $\mathrm{F}=495+455=950$
Now,
Required percentage $=\frac{950}{1800} \times 100=52.8 \%$
93. (C) Number of males of villages B, C and D
$=750+550+800=2100$
And,
Number of females of villages A, E and F $=250+1300+1100=2650$
Then, required ratio $=2100: 2650=42: 53$

Campus
 KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

94. (B) Total number of males $=4950$ and, total number of females $=4050$
Then, required percentage
$=\frac{4950-4050}{4050} \times 100=22 \frac{2}{9} \%$
95. (A) Number of males of villages A, C and D $=2100$
And,
number of males of villages B, E and F=2850 Then,
Required difference $=2850-2100=750$
96. (D) Total number of students studying medicine in all the years $=16800$
and, total number of students studying engineering $=21800$

Then, required percentage
$=\frac{16800}{21800} \times 100=77.06 \%$
97. (B) 8.43% decrease which is maximum in year 1998
98. (C) Total number of students in 2001 in all the sections $=16700$
Then, required percentage
$=\frac{4250}{16700} \times 100=25.45 \%$
99. (A) Total number of students of commerce in all the years = 16500
Then, required average
$=\frac{16500}{6}=2750$
100. (B) $14200: 15200=71: 76$

SSC TIER II (MATHS) MOCK TEST - 33 (ANSWER KEY)

1. (B)	11. (B)	21. (B)	31. (A)	41. (C)	51. (B)	61. (B)	71. (A)	81. (C)	91. (B)
2. (A)	12. (D)	22. (B)	32. (B)	42. (A)	52. (A)	62. (A)	72. (A)	82. (C)	92. (B)
3. (B)	13. (A)	23. (C)	33. (C)	43. (C)	53. (B)	63. (C)	73. (B)	83. (B)	93. (C)
4. (B)	14. (B)	24. (C)	34. (D)	44. (B)	54. (A)	64. (A)	74. (B)	84. (B)	94. (B)
5. (C)	15. (A)	25. (D)	35. (D)	45. (B)	55. (B)	65. (D)	75. (C)	85. (B)	95. (A)
6. (C)	16. (B)	26. (A)	36. (B)	46. (C)	56. (A)	66. (C)	76. (A)	86. (A)	96. (D)
7. (B)	17. (D)	27. (B)	37. (B)	47. (A)	57. (B)	67. (B)	77. (B)	87. (B)	97. (B)
8. (B)	18. (B)	28. (B)	38. (A)	48. (B)	58. (C)	68. (A)	78. (B)	88. (C)	98. (C)
9. (C)	19. (A)	29. (C)	39. (C)	49. (D)	59. (A)	69. (B)	79. (B)	89. (A)	99. (A)
10. (A)	20. (C)	30. (A)	40. (D)	50. (D)	60. (B)	70. (D)	80. (D)	90. (B)	100.(B)

[^0]Note:- If you face any problem regarding result or marks scored, please contact 9313111777

[^0]: Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

 Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

