SSC TIER II (MATHS) MOCK TEST - 31 (SOLUTION)

1. (C) We know that
$x^{3}+y^{3}+z^{3}-3 x y z$
$=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$=(x+y+z)\left[(x+y+z)^{2}-3(x y+x y+z x)\right]$
A.T.Q,
$\frac{a^{3}}{b^{3}}+\frac{b^{3}}{c^{3}}+\frac{c^{3}}{a^{3}}-3$
$=\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left[\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2}-3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\right]$
On putting the values, we get
$\frac{a^{3}}{b^{3}}+\frac{b^{3}}{c^{3}}+\frac{c^{3}}{a^{3}}-3=9\left[9^{2}-3 \times 11\right]$
$=9(81-33)=432$
2. (C)

Here, $\triangle \mathrm{OAC} \sim \triangle \mathrm{AMC}$
$\Rightarrow \frac{\mathrm{OA}}{\mathrm{AM}}=\frac{\mathrm{AC}}{\mathrm{MC}}$
$\Rightarrow \frac{r}{6}=\frac{10}{8}$
$\Rightarrow \mathrm{r}=\frac{15}{2}$
Then,
Diameter $=2 \times$ radius
$=2 \times \frac{15}{2}=15 \mathrm{~cm}$
3. (D) Let the distance of the circular track be 180 m (LCM of 36 and 20)
Then,
Velocity of Vipul $=\frac{180}{36}=5 \mathrm{~m} / \mathrm{s}$
and, relative velocity of Vipul and Sumit
$=\frac{180}{20}=9 \mathrm{~m} / \mathrm{s}$
Now, Velocity of Sumit $=9-5=4 \mathrm{~m} / \mathrm{s}$ Then, Time taken by Sumit to complete
one round $=\frac{180}{4}=45 \mathrm{sec}$.
4. (C)

In figure,

$$
\begin{aligned}
& \Delta \mathrm{FDQ} \cong \triangle \mathrm{BCQ} \\
& \text { and, } \triangle \mathrm{EDP} \cong \triangle \mathrm{BAP} \\
& \text { Then, } \mathrm{FD}=\mathrm{BC} \\
& \text { and, } \mathrm{DE}=\mathrm{AB} \\
& \text { Now, Area of the } \triangle \mathrm{BEF} \\
& =\operatorname{ar}(\mathrm{ABCD})+\operatorname{ar}(\mathrm{DEF}) \\
& =80+\frac{1}{2} \times \mathrm{DE} \times \mathrm{FD} \\
& =80+\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC} \\
& =80+\frac{1}{2} \times 80=120 \mathrm{~cm}^{2}
\end{aligned}
$$

5. (A) A.T.Q,

Train takes $(24-8)=16$ seconds to travel a distance of 90 m (length of platform)

So, speed of train $=\frac{90}{16}=\frac{45}{8} \mathrm{~m} / \mathrm{s}$
As train takes 8 sec . to cross the men
So, length of the train $=\frac{45}{8} \times 8=45 \mathrm{~m}$
6. (D)

In the figure,
O is the centre of circle.
and, $\mathrm{RL}=\frac{a}{2}$
Using pythagoras, we get
$\mathrm{OL}=\sqrt{r^{2}-\frac{a^{2}}{4}}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

We know that KL is equal to the side of square.
So, $\mathrm{KO}+\mathrm{OL}=\mathrm{KL}$
$\Rightarrow \mathrm{r}+\sqrt{r^{2}-\frac{a^{2}}{4}}=\mathrm{a}$
$\Rightarrow \sqrt{r^{2}-\frac{a^{2}}{4}}=\mathrm{a}-\mathrm{r}$
Squaring both sides, we get
$r^{2}-\frac{a^{2}}{4}=a^{2}+r^{2}-2 a r$
$\Rightarrow \frac{5 a^{2}}{4}=2 \mathrm{ar} \Rightarrow \mathrm{r}=\frac{5 a}{8}$
\therefore Radius of the circle $=\frac{5 a}{8}$ units
7. (C)

Taking points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and T concyclic, we get
$\angle \mathrm{RTP}=180^{\circ}-135^{\circ}=45^{\circ}$
Now, taking points $\mathrm{P}, \mathrm{T}, \mathrm{S}$ and R concylic, we get
$\angle \mathrm{RPT}=180^{\circ}-100^{\circ}=80^{\circ}$
Then,
In $\triangle \mathrm{PRT}$,
$\angle \mathrm{PRT}=180^{\circ}-(\angle \mathrm{RTP}+\angle \mathrm{RPT})$
$=180^{\circ}-\left(45^{\circ}+80^{\circ}\right)=55^{\circ}$
8. (D) Let the length of each candle $=3 \times 4=$ 12 units

Rate of burning of first candle $=\frac{12}{4}=3$ units/hour
Rate of burning of second candle $=\frac{12}{3}$
$=4$ units/hour
Now, let the required time take $=\mathrm{t}$ hours
According to the question,
$\frac{12-3 t}{12-4 t}=\frac{2}{1}$
$\Rightarrow 12-3 \mathrm{t}=24-8 \mathrm{t}$
$\Rightarrow 5 \mathrm{t}=12$
$\Rightarrow t=\frac{12}{5}=2$ hours 24 minute
9. (C) We know that,
interior angle + exterior angle $=180^{\circ}$ A.T.Q,
$9 \times$ exterior angle $=180^{\circ}$
\Rightarrow exterior angle $=20^{\circ}$
Then,
$n=\frac{360^{\circ}}{\text { exterior angle }}=\frac{360^{\circ}}{20^{\circ}}=18$
\therefore Number of sides of polygon $=18$
10. (D) The percentage increase in the number of members of the club
$=\frac{183-150}{150} \times 100=22 \%$
Using alligation Method,
$+15 \%$

Men Women
$(3+7)$ units $=10$ units $=150$
$\Rightarrow 1$ unit $=15$
Then, difference $=7-3=4$ units

$$
=4 \times 15=60
$$

11. (A)

	A	B	C
Income	5	7	12
Expenditure	6	8	15

Now,
A saves $\frac{1}{3}$ of his income
i.e. expenditure $=5 \times \frac{2}{3}=\frac{10}{3}$
$\Rightarrow 6$ units $=\frac{10}{3}$
$\Rightarrow 1$ units $=\frac{5}{9}$
Then,
On multiplying expenditure by 5 and income by 9 , the new ratio becomes

	A	B	C
Income	45	63	108
Expenditure	30	40	75
Saving	15	23	33

\therefore The required ratio $=15: 23: 33$
12. (B)

Here, O is the centre of the sphere with radius r
Using pythagoras, we get
$\mathrm{AC}=\sqrt{15^{2}+8^{2}}=17 \mathrm{~cm}$
Now, $\triangle \mathrm{AEO} \sim \Delta \mathrm{ADC}$
$\frac{\mathrm{AO}}{\mathrm{AC}}=\frac{E O}{\mathrm{DC}}$
$\Rightarrow \frac{15-\mathrm{r}}{17}=\frac{\mathrm{r}}{8}$
$\Rightarrow 17 \mathrm{r}=120-8 \mathrm{r}$
$\Rightarrow 25 \mathrm{r}=120$
$\Rightarrow \mathrm{r}=\frac{120}{25}=4.8 \mathrm{~cm}$
\therefore Radius of sphere $=4.8 \mathrm{~cm}$
13. (D) For area to be maximum
$\mathrm{PS}=\mathrm{SR}=\mathrm{RQ}$
and, $\angle \mathrm{POS}=\angle \mathrm{SOR}=\angle \mathrm{QOR}$
As we know that total angle at
the centre $=360^{\circ}$
$\Rightarrow 3 \angle \mathrm{POS}+135^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{POS}=75^{\circ}$
Now,
$\cos 135^{\circ}=\frac{\mathrm{OP}^{2}+\mathrm{OQ}^{2}-\mathrm{PQ}^{2}}{2 \mathrm{OP} . \mathrm{OQ}}$
$\Rightarrow \frac{-1}{\sqrt{2}}=\frac{r^{2}+r^{2}-(2+\sqrt{2})}{2 r^{2}}$
$\Rightarrow \frac{-2 r^{2}}{\sqrt{2}}=2 \mathrm{r}^{2}-(2+\sqrt{2})$
$\Rightarrow \mathrm{r}^{2}(2+\sqrt{2})=(2+\sqrt{2})$
$\Rightarrow \mathrm{r}=1$
Now, area of quadrilateral
$=\frac{1}{2} r^{2} \sin 135^{\circ}+\frac{3}{2} r^{2} \sin 75^{\circ}$
$=\frac{1}{2} \times \frac{1}{\sqrt{2}}+\frac{3}{2} \times \frac{\sqrt{3}+1}{2 \sqrt{2}}=\frac{3 \sqrt{3}+5}{4 \sqrt{2}}$
14. (c) $x=-\frac{1}{2}, y=-\frac{1}{2}$
15. (B)

Draw $E Q\|A D, P S\| B C$ and $R E \| B C$
Now, in $\triangle \mathrm{ADC}$,
$\mathrm{EQ} \| \mathrm{AD}$ and E is the
mid point of AC
So, by m.p.t. Q will be the mid point of
DC.

Since D divides line $B C$ in the ratio $1: 2$.
$\therefore \mathrm{BD}=\mathrm{DQ}$
Similarly, by m.p.t in $\triangle B E Q$, we get
$\mathrm{BP}=\mathrm{PE}$
Now, Again in $\triangle \mathrm{ADC}, \mathrm{TE} \| \mathrm{DC}$ and E is the mid point of AC.
So, by m.p.t AT = TD
Now, in $\triangle \mathrm{BRE}, \mathrm{SP} \| \mathrm{RE}$, is the mid point of BE.
So, BS = SR
Similarly in $\triangle \mathrm{ABD}, \mathrm{TP}=\mathrm{PD}$
Here, we get, AT = TD
and $\mathrm{TP}=\mathrm{PD}$
We know that,
$\mathrm{AD}=\mathrm{AT}+\mathrm{TD}=2 \mathrm{TD}=4 \mathrm{PD}$
$\frac{\mathrm{AD}}{\mathrm{PD}}=\frac{4}{1}$
Subtract 1 from both sides,
$\frac{A D}{P D}-1=\frac{4}{1}-1$
$\frac{\mathrm{AD}-\mathrm{PD}}{\mathrm{PD}}=\frac{3}{1} \Rightarrow \frac{\mathrm{AD}}{\mathrm{PD}}=3: 1$
16. (C) Given,
$x \sqrt{x}+y \sqrt{y}=152$
and,
$x \sqrt{y}+y \sqrt{x}=120$
$\Rightarrow \sqrt{x y}(\sqrt{x}+\sqrt{y})=120$
Now,
$(\sqrt{x}+\sqrt{y})^{3}=x \sqrt{x}+y \sqrt{y}+3 \sqrt{x} y(\sqrt{x}+\sqrt{y})$

$K D$
 Campus
 K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

On putting the values, we get
$(\sqrt{x}+\sqrt{y})^{3}=152+3 \times 120=512$
$\Rightarrow \sqrt{x}+\sqrt{y}=8$ \qquad
On putting the value of equation (iii) in (ii), we get
$\sqrt{x y}=\frac{120}{8}=15$
Squaring equation (iii), we get
$x+y+2 \sqrt{x y}=64$
$\Rightarrow x+y+2 \times 15=64$
$\Rightarrow x+y=64-30=34$
17. (D) $\left.\begin{array}{rl}\mathrm{S} & \rightarrow 20 \\ \mathrm{~J} & \rightarrow 36\end{array}\right\rangle 180<\begin{gathered}9 \\ 5\end{gathered}$

Work done by Satyapreet in 10 days
$=9 \times 10=90$ units
Then, Remaining work $=180-90$
$=90$ units
Now, time taken by Jaspreet to com-
plete the work $=\frac{90}{5}=18$ days
\therefore Required time $=18-4=14$ days
18. (B) Let the number of boys in the class be $5 x$ and $3 x$ respectively.
Then, A.T.Q,
$(5 x-5)=(3 x-13)^{2}$
$\Rightarrow 5 x-5=9 x^{2}+169-78 x$
$\Rightarrow 9 x^{2}-83 x+174=0$
On solving, we get $x=6$
\therefore Total number of students

$$
=5 x+3 x=8 \times 6=48
$$

19. (C)

Let $\angle \mathrm{LQR}=\theta$
Then, By symmetry
We find $\angle P Q S=\theta$
and, $\angle \mathrm{KLQ}=2 \theta$
Now,
$K Q=\frac{Q M}{\cos \theta}$
$M Q=L Q \sin 2 \theta$
and, $\mathrm{LQ}=6 \sqrt{3} \cos \theta$ \qquad
From equation (i), (ii) and (iii), we get
$K Q=\frac{6 \sqrt{3} \cos \theta \sin 2 \theta}{\cos \theta}=6 \sqrt{3} \sin 2 \theta$
$\Rightarrow \mathrm{KQ}=6 \sqrt{3} \times \frac{2 \tan \theta}{1+\tan ^{2} \theta}$
let $\mathrm{PQ}=\mathrm{a}$
Then, $\mathrm{KQ}=\frac{a}{2}$
On putting the values, we get
$\frac{a}{2}=\frac{6 \sqrt{3} \times 2 \times \frac{P S}{P Q}}{1+\left(\frac{P S}{P Q}\right)^{2}}$
$\Rightarrow \frac{a}{2}=\frac{12 \sqrt{3} \times 6 \sqrt{3}}{a\left[1+\left(\frac{6 \sqrt{3}}{a}\right)^{2}\right]}$
$\Rightarrow \frac{a}{2}=\frac{216}{a} \times \frac{a^{2}}{\left(a^{2}+108\right)}$
$\Rightarrow a^{2}+108=432$
$\Rightarrow a^{2}=324$
$\Rightarrow a=18$
$\therefore \mathrm{PQ}=18$ units
(D) We know that

Product of sides and altitudes remains equal as area of the triangle remains constant.
Let a, b, c be the sides of the triangle Then,
$24 \times a=8.4 \times b=11.2 \times c$
On simplificiation, we get
$60 a=21 b=28 c$
Now, LCM of $(60,21,28)=420$
Then,
$\frac{60 a}{420}=\frac{21 a}{420}=\frac{28 a}{420}$
$\Rightarrow \frac{a}{7}: \frac{b}{20}: \frac{c}{15}$
$\Rightarrow \mathrm{a}: \mathrm{b}: \mathrm{c}=7: 20: 15$
21. (D) $f(x)=x^{3}-3 x^{2}+x+1$ \qquad
As, α, β and γ are the roots of the equation
Then,
$f(x)=(x-\alpha)(x-\beta)(x-\alpha)$
Now, put $x=-1$
$f(-1)=(-1-\alpha)(-1-\beta)(-1-\gamma)$
And, put $x=-1$ in equation (i), we get
$f(-1)=-1^{3}-3(-1)^{2}-1+1=-4$
$\Rightarrow(-1-\alpha)(-1-\beta)(-1-\gamma)=-4$
$\Rightarrow(1+\alpha)(1+\beta)(1+\gamma)=4$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
22. (C)

A circle can be inscribed in a quadrilateral only if
$\frac{1}{O P}+\frac{1}{O R}=\frac{1}{O Q}+\frac{1}{O S}$
$\Rightarrow \frac{1}{O S}=\frac{1}{O P}+\frac{1}{O R}-\frac{1}{O Q}$
$\Rightarrow \frac{1}{O S}=\frac{1}{4}+\frac{1}{6}-\frac{1}{3}$
$\Rightarrow \frac{1}{O S}=\frac{1}{12}$
$\Rightarrow \mathrm{OS}=12 \mathrm{~cm}$
23. (D)

Given,
Base of triangle $=48 \mathrm{~cm}$
Then, $\mathrm{DC}=24 \mathrm{~cm}$
and, $\mathrm{AD}=10 \mathrm{~cm}$
Using pythagoras, we get
$\mathrm{AC}=\sqrt{24^{2}+10^{2}}=26 \mathrm{~cm}$
\therefore Perimeter $=\mathrm{AC}+\mathrm{AB}+\mathrm{BC}$

$$
=26+26+48=100 \mathrm{~cm}
$$

24. (B) As we know that
$\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
and given that, $\sin 2 \theta=\frac{2 a}{1+a^{2}}$
On comparing, we get
$\tan \theta=\mathrm{a}$
25. (C) To change radian into degree, we multiply by $\frac{180^{\circ}}{\pi}$
$\therefore 1^{c}=\left(\frac{180}{\pi}\right)^{\circ}=\left(\frac{180}{22} \times 7\right)^{\circ}$
$=\left(\frac{630}{11}\right)^{\circ}=57^{\circ} 16^{\prime}$
26. (A) Let the angles of the triangle be $\left(60^{\circ}-\mathrm{d}\right)$, 60° and $(60+\mathrm{d})^{\circ}$
least angle in degree $=(60-d)^{\circ}$
greatest angle in radian $=(60+\mathrm{d}) \times \frac{\pi}{180^{\circ}}$
Then, A.T.Q,
$\frac{(60-d)}{(60+d)} \times \frac{180^{\circ}}{\pi}=\frac{90}{\pi}$
$\Rightarrow \frac{60-d}{60+d}=\frac{1}{2}$
$\Rightarrow 120-2 d=60+d$
$\Rightarrow 3 \mathrm{~d}=60^{\circ}$
$\Rightarrow \mathrm{d}=20^{\circ}$
\therefore Greatest angle $=60^{\circ}+20^{\circ}=80^{\circ}$
27. (B) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)(\tan A+\cot A)$
$=\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right)\left(\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}\right)$
$=\frac{1-\sin ^{2} \mathrm{~A}}{\sin \mathrm{~A}} \times \frac{1-\cos ^{2} \mathrm{~A}}{\cos \mathrm{~A}} \times \frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}}{\cos \mathrm{~A} \cdot \sin \mathrm{~A}}$
$=\frac{\cos ^{2} A \times \sin ^{2} A}{\sin A \cdot \cos A} \times \frac{1}{\sin A \cdot \cos A}=1$
28. (D) $\left(\cos ^{4} A-\sin ^{4} A+1\right) \sec ^{2} A$
$=\left[\left(\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}\right)\left(\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}\right)+1\right] \cdot \sec ^{2} \mathrm{~A}$
$=\left[\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}+1\right] \cdot \sec ^{2} \mathrm{~A}$
$=\left[\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right] \cdot \sec ^{2} \mathrm{~A}$
$=2 \cos ^{2} \mathrm{~A} \cdot \sec ^{2} \mathrm{~A}=2$
29. (D) Given,
$\tan ^{4} \mathrm{~A}+\tan ^{2} \mathrm{~A}=2$
This equation is satified at $\mathrm{A}=45^{\circ}$
Then, $\sec ^{4} \mathrm{~A}-\sec ^{2} \mathrm{~A}$
$=\sec ^{4} 45^{\circ}-\sec ^{2} 45^{\circ}$
$=(\sqrt{2})^{4}-(\sqrt{2})^{2}=2$
II method:-
$\sec ^{4} \mathrm{~A}-\sec ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}\left(\sec ^{2} \mathrm{~A}-1\right)$
$=\left(1+\tan ^{2} \mathrm{~A}\right)\left(\tan ^{2} \mathrm{~A}\right)$
$=\tan ^{2} \mathrm{~A}+\tan ^{4} \mathrm{~A}=2$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
30. (C)

Here, OB is the radius of the circle Let OP be x

Now, $\mathrm{PB}=\frac{48}{2}=24 \mathrm{~cm}$
and, $\mathrm{QD}=\frac{40}{2}=20 \mathrm{~cm}$
Using pythagoras, we get
$x^{2}+24^{2}=r^{2}$ \qquad (i)
and, $(x+8)^{2}+20^{2}=r^{2}$ \qquad
Subtract equation (i) from equation (ii), we get,
$(x+8)^{2}+20^{2}-x^{2}-24^{2}=0$
$\Rightarrow 16 x=112$
$\Rightarrow x=7$
On putting the value of x in equation
(i) we get
$7^{2}+24^{2}=r^{2}$
$\Rightarrow 625=r^{2}$
$\Rightarrow \mathrm{r}=25 \mathrm{~cm}$
\therefore Diameter of the circle $=25 \times 2=50 \mathrm{~cm}$
31. (B) We know that,
$\tan \theta \cdot \tan \left(60^{\circ}-\theta\right) \cdot \tan \left(60^{\circ}+\theta\right)=\tan 3 \theta$
$\Rightarrow \tan 6^{\circ} \cdot \tan \left(60^{\circ}-6^{\circ}\right) \cdot \tan \left(60^{\circ}+6^{\circ}\right)$
$=\tan \left(3 \times 6^{\circ}\right)$
$\Rightarrow \tan 6^{\circ} \cdot \tan 54^{\circ} \cdot \tan 66^{\circ}=\tan 18^{\circ}$
$\Rightarrow \tan 6^{\circ} \cdot \tan 66^{\circ}=\frac{\tan 18^{\circ}}{\tan 54^{\circ}}$
Now,
$\tan 18^{\circ} \cdot \tan \left(60^{\circ}-18^{\circ}\right) \cdot \tan \left(60^{\circ}+18^{\circ}\right)$
$=\tan \left(3 \times 18^{\circ}\right)$
$\Rightarrow \tan 18^{\circ} \cdot \tan 42^{\circ} \cdot \tan 78^{\circ}=\tan 54^{\circ}$
$\Rightarrow \tan 42^{\circ} \cdot \tan 78^{\circ}=\frac{\tan 54^{\circ}}{\tan 18^{\circ}}$
Multiply equation (i) and (ii), we get $\tan 6^{\circ} \cdot \tan 42^{\circ} \cdot \tan 66^{\circ} \cdot \tan 78^{\circ}=1$
32. (A) Consider $\left(24^{3}+25^{3}+26^{3}+27^{3}\right)$
$=\left(24^{3}+27^{3}\right)+\left(25^{3}+26^{3}\right)$
$x^{n}+y^{\mathrm{n}}$ is always divided by $(\mathrm{x}+\mathrm{y})$ if n is an odd number.
So, whole fraction is divided by 51.
That's why, it will be divisible by 17 .
\therefore Remainder $=0$
33. (B) Discount $\rightarrow 10 \% \rightarrow \frac{1}{10}$

Profit $\rightarrow 18 \frac{3}{4} \% \rightarrow \frac{3}{16}$
CP MP SP
$10 \quad 9 \times 19$
$16 \quad 19 \times 9$
We get MP $=190$ and $C P=144$
A.T.Q,

CP = 144 units $=₹ 1800$
Now, MP = 190 units
$=\frac{1800}{144} \times 190=₹ 2375$
\therefore List price of the cycle $=$ ₹ 2375
34. (C) Make the group of the number as
(0, 99)
$(1,98)(2,97)$

There will be a total of 50 pairs and, One pair gives sum $9+9=18$ \therefore Sum of 50 pairs $=18 \times 50=900$
Here, we missed the number 100
So, total sum $=900+1=901$
35. (D) Reduction in the price of tea $=30 \%$

$$
=\frac{3}{10}
$$

Then, Increased Quantity $=\frac{3}{10-3}=\frac{3}{7}$

A.T.Q,
$\left(\frac{3}{7}\right)$ units $=21 \mathrm{~kg}$
$\Rightarrow 1$ unit $=49 \mathrm{~kg}$ (original tea)
Now, after increased quantity, quantity of tea $=49+21=70 \mathrm{~kg}$

Then, reduced price $=\frac{2450}{70}=₹ 35$ per kg
36. (B) Use the formula
$x+y+\frac{x y}{100}$
Then,
Change in area $=10-15+\frac{10 \times(-15)}{100}$
$=-5-1.5=-6.5$
\therefore Decrease in area $=6.5 \%$

Campus
 K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
37. (C) We know that,

Diagonal of a cube $=a \sqrt{3}$
A.T.Q,
$a \sqrt{3}=9 \mathrm{~cm}$
$\Rightarrow \mathrm{a}=\frac{9}{\sqrt{3}}=3 \sqrt{3} \mathrm{~cm}$
Then, volume of cube $=a^{3}=(3 \sqrt{3})^{3}$

$$
=81 \sqrt{3} \mathrm{~cm}^{3}
$$

38. (A) Difference between compound interest and simple interest for 2 years
$=p\left[\frac{r}{100}\right]^{2}=6000\left[\frac{20}{300}\right]^{2}$
$=6000 \times \frac{1}{15} \times \frac{1}{15}=₹ 26.66$
39. (C) Area of the field that can be grazed
$=\pi r^{2} \frac{\theta}{360}$
[sum of the angle of a triangle $=180^{\circ}$]
$=\frac{22}{7} \times 7 \times 7 \times \frac{180}{360}=77 \mathrm{~m}^{2}$
40. (C) Efficiency time taken
A
B
5
7 7 $\xrightarrow{{ }^{\times 3}}{ }^{\times 3} 15$
$\therefore \quad$ B will take 15 days to finish the work.
41. (B) Consider $x^{2}+y^{2}-6 x+10 y-34=0$
$\Rightarrow(x-3)^{2}+(y+5)^{2}=0$
$\Rightarrow x-3=0$ and $y+5=0$
$\Rightarrow x=3$ and $y=-5$
Then, $x-y=3-(-5)=8$
42. (C) A.T.Q,

Now, efficiency of $C=4-(5+3)=-4$
Then,
Pipe C can empty the tank in
$\frac{180}{4}=45$ minutes
\therefore Capacity of tank $=45 \times 20=900$ gallon
43. (C) Let average score of 15 innings be x.

Then, A.T.Q,
$15 x+95=16(x+3)$
$\Rightarrow 15 x+95=16 x+48$
$\Rightarrow x=47$
\therefore Average after 16th inning $=47+3=50$
Alternative Method:
Average after 16 th inning $=95-3 \times 15$
44.

Let $\sqrt{5 \sqrt{5 \sqrt{5}}} \ldots \ldots \ldots=y$
On squaring both sides, we get
$5 \sqrt{5 \sqrt{5 \sqrt{5}}}$ \qquad $=y^{2}$
$\Rightarrow 5 y=y^{2} \Rightarrow y=5$
A.T.Q,
$5=\left(5^{3}\right)^{x-1}$
$\Rightarrow 3 x-3=1 \Rightarrow x=\frac{4}{3}$
45. (C) Let the number of the coins be x. Then, volume of n coins must be equal to the volume of right circular cylinder.
i.e., $n \times \pi r^{2} h=\pi r^{2} h$
$\Rightarrow n \times 0.8 \times 0.8 \times 0.2=4 \times 4 \times 12$
$\Rightarrow n=\frac{4 \times 4 \times 12}{0.8 \times 0.8 \times 0.2}=1500$
46. (B) Let the radius of the sphere be $r \mathrm{~cm}$. Then, A.T.Q,
$4 \pi\left[(r+3]^{2}-r^{2}\right]=5016$
$\Rightarrow 4 \pi[(\mathrm{r}+3-\mathrm{r})(\mathrm{r}+3+\mathrm{r})]=5016$
$\Rightarrow 4 \times \frac{22}{7} \times 3(2 r+3)=5016$
$\Rightarrow 2 \mathrm{r}+3=133$
$\Rightarrow \mathrm{r}=65$
\therefore Radius of the original sphere $=65 \mathrm{~cm}$
47. (D)

A.T.Q,
$l \mathrm{~b}=420$
and, $\sqrt{l^{2}+b^{2}}=37$
$\Rightarrow l^{2}+b^{2}=1369$.
Using equation (i) and (ii), we get
$l+b=\sqrt{1369+2 \times 420}=\sqrt{2209}=47$
and, $l-b=\sqrt{1369-2 \times 420}$
$=\sqrt{529}=23$
Now, using equation (iii) and (iv), we get
$l=\frac{47+23}{2}=35 \mathrm{~cm}$
48. (C) Interest on ₹ 2646 for one year

$$
=2778.3-2646=₹ 132.3
$$

Rate of interest $=\frac{132.3}{2646} \times 100=5 \%$
Now,
$\mathrm{P}\left[1+\frac{r}{100}\right]^{2}=2646$
$\mathrm{P}\left[\frac{21}{20} \times \frac{21}{20}\right]=2646$
$P=\frac{2646 \times 20 \times 20}{21 \times 21}=₹ 2400$
49. (D) A.T.Q,

Now, efficiency of $\mathrm{A}=3 \times$ efficiency of C
Then, on comparing, we get
Efficiency of $\mathrm{A}=3$
$B=2$
$\mathrm{C}=1$
Then, time taken by B to complete the work $=\frac{120}{2}=60$ days
50. (A) If the difference is same then number with smaller digits will be the greatest.

Here, $\sqrt{5}-\sqrt{3}$ is the largest number.
51. (C)

Using Appollonius theorem,
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$
On putting the values, we get
$16^{2}+24^{2}=2\left(\mathrm{AD}^{2}+10^{2}\right)$
$\Rightarrow 256+576=2\left(100+\mathrm{AD}^{2}\right)$
$\Rightarrow \mathrm{AD}^{2}=316$
$\Rightarrow \mathrm{AD}=2 \sqrt{79}$
\therefore Length of median $\mathrm{AD}=2 \sqrt{79} \mathrm{~cm}$
52. (B)

Here,
Radius of cylinder $=$ Height of cylinder $=r$
Then, ratio of their volumes
$=\frac{\text { volume of cylinder }}{\text { volume of hemisphere }}$
$=\frac{\pi r^{2} \times r}{\frac{2}{3} \pi r^{3}}=3: 2$
53. (A) A B
$5 \times 128 \times 8$ $+4 \times 4$
$\Downarrow \quad \Downarrow$
$60 \quad 80$
3 : 4
A.T.Q,

3 units $=₹ 4500$
$\Rightarrow 1$ unit $=₹ 1500$
Then, profit of $B=4 \times 1500=₹ 6000$
54. (D) Let the two numbers be x and y.

Then, $x y=1440$ \qquad (i)
and, $\frac{x}{y}=\frac{8}{5}$
Put $x=8 a$ and $y=5 a$ in equation (i)
$8 a \times 5 a=1440$
$\Rightarrow 40 a^{2}=1440$
$\Rightarrow a^{2}=36$
$\Rightarrow a=6$
Then,
$x=8 \times 6=48$ and $y=5 \times 6=30$
\therefore Sum of the numbers $=48+30=78$
55. (C) $4017 \times 4018=4017(4017+1)$

$$
=4017^{2}+4017
$$

To make the number a perfect square 4017 has to be subtracted.
56. (A)

Now,
Work done by A in 2 hours $=3 \times 2=6$ units and, Work done by B in 1 hour $=$ 2 units
Now, water in cistern $=6+2=8$ units At 7 pm . effective efficiency $=3+2-6=1$ i.e.,
cistern will be emptied in $\frac{8}{1}=8$ hours
\therefore Required time $=7 \mathrm{pm}+8$ hours $=3$ a.m.
57. (D) Let S.P. of one apple be ₹ 1

Then, S.P. of 60 apple $=₹ 60$
Now, Profit $=$ S.P of 20 apple $=₹ 20$
Then, C.P. $=$ S.P. - profit $=60-20=$ ₹40
Then, profit percentage
$=\frac{\text { profit }}{\mathrm{CP}} \times 100 \%=50 \%$
58. (B) Consider the equations
$a_{1} x+\mathrm{b}_{1} y+\mathrm{c}_{1}=0$
$a_{2} x+\mathrm{b}_{2} y+\mathrm{c}_{2}=0$
For lines to be parallel
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
A.T.Q,
$\frac{\mathrm{k}+1}{3+\mathrm{k}}=\frac{-3}{1}$
$\Rightarrow \mathrm{k}+1=-9-3 \mathrm{k}$
$\Rightarrow 4 \mathrm{k}=-10$
$\Rightarrow \mathrm{k}=-\frac{5}{2}$
59. (C) Consider $x=7+4 \sqrt{3}$
$x=(\sqrt{3})^{2}+2^{2}+2 \times 2 \times \sqrt{3}=(2+\sqrt{3})^{2}$
$\Rightarrow \sqrt{x}=2+\sqrt{3}$
and, $\frac{1}{\sqrt{x}}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}$
Now, Adding equation (i) and (ii), we get
$\sqrt{x}+\frac{1}{\sqrt{x}}=2+\sqrt{3}+2-\sqrt{3}=4$
Then, square root of $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)=\sqrt{4}=2$
60. (B) Let the speed of the boat be $x \mathrm{~km} / \mathrm{h}$ and the speed of the stream be $y \mathrm{~km} /$ h
A.T.Q,
$\frac{30}{x-y}+\frac{36}{x+y}=8$
and, $\frac{40}{x-y}+\frac{20}{x+y}=\frac{25}{3}$
On solving the equations, we get
$x+y=12$
and, $x-y=6$
Then, speed of the boat $=\frac{12+6}{2}=9 \mathrm{~km} / \mathrm{h}$
61. (A) A.T.Q,
$2 x-\frac{9}{x}=3$
$\Rightarrow 2 x^{2}-3 x-9=0$
$\Rightarrow 2 x^{2}-6 x+3 x-9=0$
$\Rightarrow 2 x(x-3)+3(x-3)=0$
$\Rightarrow x=\frac{-3}{2}$ and $x=3$
Then, $x^{2}+\frac{1}{x^{2}}=\left(-\frac{3}{2}\right)^{2}+\left(-\frac{2}{3}\right)^{2}$
$=\frac{9}{4}+\frac{4}{9}=\frac{97}{36}$
Now, Put $x=3$
Then, $x^{2}+\frac{1}{x^{2}}=3^{2}+\frac{1}{3^{2}}=9+\frac{1}{9}=\frac{82}{9}$
62. (C)

In a parallelogram,
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=2\left[\mathrm{AB}^{2}+\mathrm{BC}^{2}\right]$
$\Rightarrow 12^{2}+\mathrm{BD}^{2}=2\left[6^{2}+9^{2}\right]$
$\Rightarrow 144+\mathrm{BD}^{2}=2[36+81]$
$\Rightarrow \mathrm{BD}^{2}=234-144$
$\Rightarrow \mathrm{BD}=\sqrt{90}=3 \sqrt{10} \mathrm{~cm}$
63. (B) MP of the article $=₹ 5400$

First discount $=5400 \times \frac{10}{100}=₹ 540$
Now, Price $=5400-540=₹ 4860$
Then,
$x \%=\frac{4860-4131}{4860} \times 100$
$=\frac{729}{4860} \times 100$
$\Rightarrow x=15$
64. (A) Required ratio \Rightarrow

$\Rightarrow 3+\frac{r}{100}=\frac{19}{6}$
$\Rightarrow \frac{r}{100}=\frac{19}{6}-3$
$\Rightarrow r=\frac{100}{6}$
$\Rightarrow \mathrm{r}=16 \frac{2}{3} \%$
\therefore Rate of interest $=16 \frac{2}{3} \%$
65. (D) $\sec 2 A-\tan 2 A=\frac{1}{\cos 2 A}-\frac{\sin 2 A}{\cos 2 A}$
$=\frac{1-\sin 2 \mathrm{~A}}{\cos 2 \mathrm{~A}}=\frac{(\cos \mathrm{A}-\sin \mathrm{A})^{2}}{\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}}$
$=\frac{(\cos A-\sin A)^{2}}{(\cos A-\sin A)(\cos A+\sin A)}$
$=\frac{\cos \mathrm{A}-\sin \mathrm{A}}{\cos \mathrm{A}+\sin \mathrm{A}}$
Divide numerator and Denominator by $\cos \mathrm{A}$
$\sec 2 A-\tan 2 A=\frac{1-\tan A}{1+\tan A}$
$=\frac{\tan \frac{\pi}{4}-\tan \mathrm{A}}{1+\tan \frac{\pi}{4} \cdot \tan A}=\tan \left[\frac{\pi}{4}-A\right]$
$=\tan \left[45^{\circ}-\mathrm{A}\right]$
66. (B) $6 \frac{2}{3} \%$ profit $\rightarrow \frac{1}{15}$

Using alligation method

\therefore Required ratio $=15: 10=3: 2$
67. (A) Let $x+6=a$

Then, $x=\mathrm{a}-6$
A.T.Q,
$x+\frac{1}{x+6}=0$
$\Rightarrow \mathrm{a}-6+\frac{1}{a}=0$
$\Rightarrow \mathrm{a}+\frac{1}{a}=6$

We know that
$\left(a+\frac{1}{a}\right)^{2}-\left(a-\frac{1}{a}\right)^{2}=4$
$\Rightarrow 6^{2}-\left(a-\frac{1}{a}\right)^{2}=4$
$\Rightarrow\left(a-\frac{1}{a}\right)^{2}=32$
$\Rightarrow\left(a-\frac{1}{a}\right)=4 \sqrt{2}$
Now, Subtract 6 from both sides
$a-6-\frac{1}{a}=4 \sqrt{2}-6$
Put $a-6=x$
Then, $x-\frac{1}{x+6}=4 \sqrt{2}-6=2[2 \sqrt{2}-3]$
68. (B)

Using the property
$\mathrm{PR} \times \mathrm{SR}=\mathrm{QR}^{2}$
$\Rightarrow 27 \times \mathrm{SR}=9^{2}$
$\Rightarrow \mathrm{SR}=3 \mathrm{~cm}$
Then, $\mathrm{PS}=27-3=24 \mathrm{~cm}$
Now,
Radius of the circle $(\mathrm{OQ})=\frac{24}{2}=12 \mathrm{~cm}$
Then, area of $\triangle P Q R=$ area of $\Delta \mathrm{OQR}+$ area of Δ OPQ
$=\frac{1}{2} \times 12 \times 9+\frac{1}{2} \times 12 \times 12 \sin \left(180^{\circ}-\theta\right)$
$=54+72 \sin \theta$

$$
[\mathrm{OR}=(\mathrm{OS}+\mathrm{SR})=12+3=15]
$$

$=54+72 \times \frac{9}{12+3}=97.2 \mathrm{~cm}^{2}$
\therefore Area of $\triangle \mathrm{PQR}=97.2 \mathrm{~cm}^{2}$
69. (C) Surface area of sphere $=4 \pi r^{2}$

Now, Surface area of two hemispheres
$=2 \times 3 \pi r^{2}=6 \pi r^{2}$
Then, increased surface area
$=6 \pi r^{2}-4 \pi r^{2}=2 \pi r^{2}$
$=2 \times \frac{22}{7} \times 7 \times 7=308 \mathrm{~cm}^{2}$

Campus
 K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
70. (B)

Using the property
$\mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
$=6 \times(6+24)$
$=6 \times 30=180$
$\mathrm{AB}=\sqrt{180}=6 \sqrt{5} \mathrm{~cm}$
71. (D) Weight of teacher $=41 \mathrm{~kg}+45 \times 600 \mathrm{gm}$ $=41 \mathrm{~kg}+27 \mathrm{~kg}=68 \mathrm{~kg}$
72. (B) A.T.Q,

Fare of $25 \mathrm{~km}=1235-360=875$
Then, fare of $1 \mathrm{~km}=\frac{875}{25}=₹ 35$
Given, charge of $10 \mathrm{~km}=₹ 360$
Now, 4 km (fixed) +6 km (additional) $=₹ 360$
Then, 4 km (fixed) $+6 \times 35=₹ 360$
\therefore fixed charge $=360-210=₹ 150$
73. (C) Diagonals of a rhombus bisect each other of 90°. So, O is the mid point of AC and slope of line $\mathrm{BD} \times$ slope of line $\mathrm{AC}=-1$
Now,
Coordinates of $\mathrm{O}=\left[\frac{2-4}{2}, \frac{5+7}{2}\right]=(-1,6)$
and, slope of line $\mathrm{AC}=\frac{7-5}{-4-2}=\frac{2}{-6}=\frac{-1}{3}$
Then, Slope of line BD $=3$
Now, equation of line BD $\Rightarrow \frac{y-y_{1}}{x-x_{1}}=m$
$\Rightarrow \frac{y-6}{x+1}=3$
$\Rightarrow y-6=3 x+3$
$\Rightarrow 3 x-y+9=0$
74. (C) Let the speed of Rajdhani train be $x \mathrm{~km} / \mathrm{hr}$. and, that of express train be $y \mathrm{~km} / \mathrm{hr}$. A.T.Q,
$\frac{784}{y}-\frac{784}{x}=8$
and, $\frac{784}{x}-\frac{784}{2 y}=4$
On solving the equation, we get $x=49 \mathrm{~km} / \mathrm{h}$
\therefore Speed of Rajdhani train $=49 \mathrm{~km} / \mathrm{h}$
75. (B) A.T.Q,

$$
\begin{align*}
& \frac{P \times r \times 8}{100}=2500 \\
& \Rightarrow \frac{P r}{100}=\frac{2500}{8} \tag{i}
\end{align*}
$$

Now,
we have to find $\frac{P \times r \times 4}{100}+\frac{4 P \times r \times 4}{100}$
$=\frac{4 P r}{100}[1+4]=\frac{20 P r}{100}$
$=20 \times \frac{2500}{8}=6250$
\therefore Total interest obtained after years $=₹ 6250$
76. (D)

$\begin{aligned} & \mathrm{C} \rightarrow 20\end{aligned}>240<\begin{aligned} & 10 \\ & 12\end{aligned}$
Now, time taken by A and B to do this
work $=\frac{150}{15+10}=6$ days
and, remaining work $=240-150=90$
Now, time taken by C to do this work
$=\frac{90}{12}=7.5$ days
\therefore Total time taken $=6+7.5=13.5$ days
77. (B) Rate of Interest $=\frac{106}{1550} \times 100=\frac{212}{31} \%$ Using alligation
$8 \times 31 \quad 6 \times 31$

$$
\frac{212}{31} \times 31
$$

\Downarrow

$(13+18)$ units $\Rightarrow 31$ units $=1550$
$\Rightarrow 1$ unit $=50$
Then, 13 units $=50 \times 13=₹ 650$
and, 18 units $=50 \times 18=₹ 900$
78. (B) A.T.Q.
$6 \%=\frac{6}{100}=\frac{3}{50}$

	Initial	Now
Price	50	47
Quantity	47	50

\therefore Required quantity $=\frac{47 \times 50}{47}=50 \mathrm{~kg}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
79. (C) A.T.Q

Work done by Man and Woman in one day $=5+2=7$
Then, remaining work $=10-7=3$
\therefore Required number of boys $=\frac{3}{1}=3$
80. (B) Consider $2^{x}=4^{y}=8^{z}$
$\Rightarrow 2^{x}=2^{2 y}=2^{3 z}$
On comparing, we get
$x=2 y=3 z$
$\Rightarrow x: y: z=6: 3: 2$
let $x=6 a, y=3 a$ and $z=2 a$
A.T.Q,
$\frac{1}{3 x}+\frac{1}{2 y}+\frac{1}{z}=\frac{26}{27}$
$\Rightarrow \frac{1}{18 a}+\frac{1}{6 a}+\frac{1}{2 a}=\frac{26}{27}$
$\Rightarrow \frac{13}{18 a}=\frac{26}{27}$
$\Rightarrow a=\frac{13 \times 27}{26 \times 18}=\frac{3}{4}$
Then, value of $z=2 a=2 \times \frac{3}{4}=\frac{3}{2}$
81. (B)

[1/4 less means 4 is changed into 3]
[time and speed remains in reverse ratio]
Then,
Then, increased speed $=\frac{1}{3} \times 100=33 \frac{1}{3} \%$
82. (A) $12 \frac{1}{2} \% \Rightarrow \frac{1}{8}$

Now, interest on ₹ 1600 till July
$=1600 \times \frac{1}{8}=₹ 200$
and, net amount of 1 July
$=1600+200+1600=₹ 3400$
Then, interest at the end of year
$=3400 \times \frac{1}{8}=₹ 425$
\therefore Total interest $=200+425=₹ 625$
83. (D) Time after which they will meet again $=\mathrm{LCM}$ of $(150,250,350)$
$=5250 \mathrm{sec} .=87.5 \mathrm{~min}$
84. (C) Let the price of 1 orange, 1 apple and 1 banana be x, y and z respectively. Then,
A.T.Q,
$2 x+3 y+z=26$
$3 x+2 y+2 z=35$
Now, Multiply equation (i) by 3 and equation (ii) by 2 and on solving, we get $z=5 y-8$
Now, multiply equation (i) by 2 and on solving, we get x
$=17-4 y$
Then, the price of 12 orange, 13 apple and 7 bananas $=12 x+13 y+7 z$
$=12(17-4 y)+13 y+7(5 y-8)$
$=204-48 y+13 y+35 y-56=₹ 148$
85. (B) A.T.Q,

Speed of motor bike for Ist km $=20 \mathrm{~km} / \mathrm{hr}$
Speed of motor bike for IInd $\mathrm{km}=30 \mathrm{~km} / \mathrm{hr}$ and,
Speed of motor bike for next half km $=40 \mathrm{~km} / \mathrm{hr}$
Then, average speed $=\frac{\text { Total Distance }}{\text { Total time }}$
$=\frac{2.5}{\frac{1}{20}+\frac{1}{30}+\frac{0.5}{40}}=26.08 \mathrm{~km} / \mathrm{h}$
86. (B) We know that,

Distance $=\frac{\text { Product of speeds }}{\text { Difference of speeds }} \times$ time
$\Rightarrow \mathrm{D}=\frac{15 \times 20}{20-15} \times \frac{42}{60} \Rightarrow \mathrm{D}=42 \mathrm{~km}$
\therefore Distance between his house and office $=42 \mathrm{~km}$
87. (B)
$\begin{array}{llll}\mathrm{A} & & & \\ 3 & : & 2 & 5 \\ 3 & & \times 2\end{array}$
3 : 710
[Make the quantity equal in both the cases.]
New ratio:
$3\left(\begin{array}{rll}\text { A } & & B \\ 6 & : & 4 \\ 3 & : & 7\end{array}\right.$
liquid taken out $=\frac{3}{6}=\frac{1}{2}$
Then, total quantity $\Rightarrow 1 \Rightarrow 15 \times 2=30$ litre
$6+4=30$
$\Rightarrow 10$ units $=30$
$\Rightarrow 1$ units $=3$
Then,
Next time quantity of liquid $A=6$ units
$=6 \times 3=18$ litre

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
88. (A) Consider the equation
$m x^{2}+n x+x=0$
Now, sum of the roots $(\alpha+\beta)=\frac{-n}{m}$
and, product of the roots $(\alpha \beta)=\frac{n}{m}$

Given, $\frac{\alpha}{\beta}=\frac{p}{q}$

Then, $\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{n}{m}}$
$=\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\alpha} \beta$
$=\frac{\alpha+\beta+\alpha \beta}{\sqrt{\alpha \beta}}=\frac{\frac{-n}{m}+\frac{n}{m}}{\alpha \beta}=0$
89. (C)

$$
\begin{array}{lc}
\mathrm{CP} & \mathrm{SP} \\
100 & +40 \% \\
140
\end{array}
$$

Then, profit percentage
$=\frac{163.8-120}{120} \times 100=36.5 \%$
90. (D) A.T.Q,

$$
\begin{aligned}
& {\left[\frac{3 \times 5}{100}+1\right]=\mathrm{B}\left[\frac{4 \times 5}{100}+1\right]=\mathrm{C}\left[\frac{5 \times 5}{100}+1\right]} \\
& \Rightarrow \mathrm{A} \times 115=\mathrm{B} \times 120=\mathrm{C} \times 125 \\
& \Rightarrow \mathrm{~A} \times 23=\mathrm{B} \times 24=\mathrm{C} \times 25 \\
& \Rightarrow \mathrm{~A}: \mathrm{B}: \mathrm{C}=24 \times 25: 23 \times 25: 23: 24 \\
& \quad=600: 575: 552
\end{aligned}
$$

Now, $(600+575+552)$ units $=₹ 8635$
$\Rightarrow 1727=8635$
$\Rightarrow 1=5$
Loan recieved by B $=5 \times 575=₹ 2875$
91. (B) Total number of students of school C who scored between 80 and 90 percent
$=12000 \times \frac{18}{100}=2160$

And, ratio of girls to boys in school C who scored between 80 and 90 percent $=7: 5$
Then, number of girls
$=2160 \times \frac{7}{12}=1260$
Now, total number of students of school of F who scored more than 90 percent
$=8000 \times \frac{15}{100}=1200$
and, ratio of girls to boys $=5: 7$
Then, number of girls $=\frac{1200}{12} \times 5=500$
\therefore required percentage $=\frac{1260}{500} \times 100=252 \%$
92. (C) Number of boys of different school who scored 90 percent are above are-
$A \rightarrow 8000 \times \frac{10}{100} \times \frac{7}{16}=350$
$B \rightarrow 8000 \times \frac{24}{100} \times \frac{5}{8}=1200$
$C \rightarrow 8000 \times \frac{8}{100} \times \frac{7}{16}=280$
$D \rightarrow 8000 \times \frac{23}{100} \times \frac{13}{23}=1040$
$E \rightarrow 8000 \times \frac{20}{100} \times \frac{2}{5}=640$
$\mathrm{F} \rightarrow 8000 \times \frac{15}{100} \times \frac{7}{12}=700$
Total students $=350+1200+280+$ $1040+640+700=4210$
\therefore Average number of students
$=\frac{4210}{6}=701.6$
93. (B) Number of girls of school E who scored 90% and above $=8000 \times \frac{20}{100} \times \frac{3}{5}=960$ and, number of boys who scored between $80-90 \%$ from school B

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=12000 \times \frac{5}{100} \times \frac{2}{5}=240$
Then, required difference $=960-240=720$
94. (D) Number of boys of school D who scored who scored 90% and above $=1040$ and, number of boys of school D who scored between $80-90 \%$
$=12000 \times \frac{12}{100} \times \frac{3}{5}=864$
Required ratio $=1040: 864=65: 54$
95. (B) Number of boys of school D and F who scored 90% and above $=1040+700=$ 1740
and, number of girls of school B and E who scored $80-90 \%$
$=12000 \times \frac{5}{100} \times \frac{3}{5}+12000 \times \frac{22}{100} \times \frac{6}{11}$
$=\frac{12000}{100}\left[3+22 \times \frac{6}{11}\right]$
$=120[3+12]=1800$
Required percentage $=\frac{1800-1740}{1800} \times 100$

$$
=\frac{60}{18}=\frac{10}{3} \%
$$

96. (A) LCM of the expressions
$=\left(x^{2}+7 x+12\right)(x-1)$
$=(x+3)(x+4)(x-1)$,
HCF of the expressions $=x-1$,
and, One expression $=x^{2}+3 x-4$
$=(x-1)(x+4)$
We know that,
Ist number $\times 2$ nd number $=L C M \times H C F$
$\Rightarrow(x-1)(x+4) \times 2$ nd expression
$=(x+3)(x+4)(x-1)(x-1)$
2nd expression $=(x+3)(x-1)$
$=x^{2}+2 x-3$
97. (C) A.T.Q,
$\mathrm{P}\left[1+\frac{r}{100}\right]^{3}=3 \times\left[\mathrm{P} \times \frac{r}{100}+\mathrm{P}\right]$
$\Rightarrow P\left[1+\frac{r}{100}\right]^{3}=3 p\left[1+\frac{r}{100}\right]$
$\Rightarrow\left[1+\frac{r}{100}\right]^{2}=3$
$\Rightarrow 1+\frac{r}{100}=\sqrt{3}$
$\Rightarrow \frac{r}{100}=\sqrt{3}-1$
$\Rightarrow r=100 \times 0.732=73.2 \%$
98. (B)

Here, $2 \mathrm{c}+2 \mathrm{~b}+2 \mathrm{c}=180^{\circ}$
$a+b+c=90^{\circ}$ \qquad
Now, $\angle \mathrm{RCB}=\angle \mathrm{RQB}=\mathrm{C}$
and, $\angle \mathrm{BAP}=\mathrm{BQP}=\mathrm{a}$
Then $\angle \mathrm{RQP}=\mathrm{a}+\mathrm{c}$
using equation (i) we get
$a+b=90-b$
$\Rightarrow \angle \mathrm{RQP}=90-\frac{\mathrm{B}}{2}$
99. (B)

Difference
\Rightarrow When difference becomes maximum
we get the least number.
So, $(\sqrt{11}+\sqrt{3})$ is the smallest number.
100. (C) Consider
$2^{2}+6^{2}+10^{2}+14^{2}-1^{2}-5^{2}-9^{2}-13^{2}$
$=\left(2^{2}-1^{2}\right)+\left(6^{2}-5^{2}\right)+\left(10^{2}-9^{2}\right)+\left(14^{2}-13^{2}\right)$
$=(2-1)(2+1)+(6-5)(6+5)+(10-9)$
$(10+9)+(14-13)(14+13)$
$=3+11+19+27=60$

SSC TIER II (MATHS) MOCK TEST - 31 (ANSWER KEY)

1. (C)	11. (A)	21. (D)	31. (B)	41. (B)	51. (C)	61. (A)	71. (D)	81. (B)	91. (C)
2. (C)	12. (B)	22. (C)	32. (A)	42. (C)	52. (B)	62. (C)	72. (B)	82. (A)	92. (B)
3. (D)	13. (D)	23. (D)	33. (B)	43. (C)	53. (A)	63. (B)	73. (C)	83. (D)	93. (B)
4. (C)	14. (C)	24. (B)	34. (C)	44. (B)	54. (D)	64. (A)	74. (C)	84. (C)	94. (D)
5. (A)	15. (B)	25. (C)	35. (D)	45. (C)	55. (C)	65. (D)	75. (B)	85. (B)	95. (B)
6. (D)	16. (C)	26. (A)	36. (B)	46. (B)	56. (A)	66. (B)	76. (D)	86. (B)	96. (A)
7. (C)	17. (D)	27. (B)	37. (C)	47. (D)	57. (D)	67. (A)	77. (B)	87. (B)	97. (C)
8. (D)	18. (B)	28. (D)	38. (A)	48. (C)	58. (B)	68. (B)	78. (B)	88. (A)	98. (B)
9. (C)	19. (C)	29. (D)	39. (C)	49. (D)	59. (C)	69. (C)	79. (C)	89. (C)	99. (B)
10. (D)	20. (D)	30. (C)	40. (C)	50. (A)	60. (B)	70. (B)	80. (B)	90. (D)	100.(C)

—

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

