

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SSC TIER II (MATHS) MOCK TEST - 30 (ANSWER KEY)

1.	(A)	11. (B)	21. (A)	31. (C)	41. (B)	51. (C)	61. (B)	71. (A)	81. (C)	91. (C)
2.	(B)	12. (A)	22. (B)	32. (B)	42. (C)	52. (B)	62. (D)	72. (B)	82. (D)	92. (D)
3.	(C)	13. (D)	23. (B)	33. (A)	43. (A)	53. (A)	63. (A)	73. (C)	83. (C)	93. (B)
4.	(C)	14. (A)	24. (C)	34. (C)	44. (D)	54. (A)	64. (C)	74. (C)	84. (B)	94. (D)
5.	(B)	15. (B)	25. (A)	35. (C)	45. (B)	55. (A)	65. (A)	75. (A)	85. (D)	95. (A)
6.	(D)	16. (C)	26. (B)	36. (C)	46. (B)	56. (A)	66. (A)	76. (B)	86. (A)	96. (C)
 7.	(B)	17. (D)	27. (C)	37. (B)	47. (A)	57. (B)	67. (B)	77. (B)	87. (B)	97. (B)
8.	(A)	18. (C)	28. (C)	38. (A)	48. (C)	58. (C)	68. (C)	78. (C)	88. (A)	98. (D)
9.	(A)	19. (B)	29. (B)	39. (D)	49. (C)	59. (B)	69. (B)	79. (B)	89. (C)	99. (C)
10.	(D)	20. (C)	30. (C)	40. (B)	50. (A)	60. (B)	70. (B)	80. (A)	90. (B)	100. (B)

SSC TIER II (MATHS) MOCK TEST - 30 (SOLUTION)

6.

- 1. (A) A.T.Q Nearest number to 107252, which is divisible by 17 = 107253
- The number should be added is 1.
- 2. (B) Let the number is x. A.T.Q $x^3 - 25x = 1056$ Taking option (b) $(11)^3 - 25(11) = 1056$ ⇒ 1331 – 275 = 1056 $\Rightarrow 1056 = 1056$
- Hence, Required number is 11.

3. (C) A.T.Q
$$\frac{5}{6} = 0.8\overline{3}$$

$$\frac{8}{11} = 0.\overline{72}$$

$$\frac{7}{9} = 0.\overline{7}$$

$$\frac{15}{17} = 0.88$$

- :. Required order = $\frac{15}{17} > \frac{5}{6} > \frac{7}{9} > \frac{8}{11}$
- (C) Let the first natural number = xand, the second natural number = yA.T.Q, 85x + 34yand, 17(5x + 2y)It is multiple of 17. .. The number should be multiple of 17. Hence, required number = 2754
- 5. (B) A.T.Q r = 32 (given) $d = 32 \times 7 = 224$ and, $q = \frac{224}{16} = 14$

- dividend = (divisor × quotient) + remainder \Rightarrow Dividend = (224 × 14) + 32 ⇒ Dividend = 3168
- (D) A.T.Q $x = 5 + \frac{1}{\sqrt{5}} + \frac{1}{5 + \sqrt{5}} + \frac{3}{\sqrt{5} - 5}$ $\Rightarrow x = 5 + \frac{\sqrt{5}}{5} + \frac{5 - \sqrt{5}}{20} - \frac{3(5 + \sqrt{5})}{20}$ $\Rightarrow x = \frac{100 + 4\sqrt{5} + 5 - \sqrt{5} - 3\sqrt{5} - 15}{20}$

$$\Rightarrow x = \frac{90}{20} = \frac{9}{2}$$
. (B) Let $P = (x + y)^3 - (x^3 + y^3)$
we know that,
$$(a + b)^3 = a^3 + b^3 + 3ab(a + b)$$

$$\therefore P = x^3 + y^3 + 3xy(x + y) - x^3 - y^3$$

$$\Rightarrow P = 3xy(x + y)$$

- $\Rightarrow P = 3xy (x + y)$ ∴ Required factor = 3xy (A) A.T.Q
 - $x = 2 \sqrt{5}$ $\therefore \frac{1}{r} = -2 - \sqrt{5}$ $x - \frac{1}{x} = 2 - \sqrt{5} + (2 + \sqrt{5})$ $\Rightarrow x - \frac{1}{x} = 4$
 - Cubing on both sides, we get,

$$\left(x - \frac{1}{x}\right)^3 = (4)^3$$

$$\Rightarrow x^3 - \frac{1}{x^3} = 64 + 12$$

$$\Rightarrow x^3 - \frac{1}{x^3} = 76$$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

9. (A) A.T.Q

> Time taken by Mennu in doing whole work = $4 \times 3 = 12$ hours

> Time taken by Komal in doing whole work = $4 \times 4 = 16$ hours

> Time taken by Nisha in doing whole work = $2 \times 3 = 6$ hours

Work done by them together in 1 hour = 15 units

Time taken by them together doing the

double work =
$$\frac{48 \times 2}{15} = \frac{96}{15} = 6\frac{2}{5}$$
 hours

10. (D) A.T.Q

Rohan : Ankit

Time 3×2 2 Efficiency

.. Time taken by Ankit

$$= \frac{24(2+3)}{3} = 40 \text{ days}$$

11. (B) A.T.Q

$$M + D - 23$$
 14
 $M + D + S - 7$ 46 322
 $M - 46$ 7

∴ Efficiency of Sachin = 46 – 14 = 32 units and, efficiency of Devesh = 14 - 7 = 7 units

⇒ Share of Devesh =
$$\frac{192}{32} \times 7 = ₹42$$

12. (A)

A.T.Q

We know that

$$PT \times TQ = TS \times RT$$

$$\Rightarrow$$
 6 × 4 = 3 × RT

 \Rightarrow RT = 8 cm

In ΔROM .

$$OR^2 = OM^2 + MR^2$$

$$\Rightarrow$$
 OR² = (1)² + (5.5)²

$$\Rightarrow OR^2 = 1 + 30.25$$

$$\Rightarrow$$
 OR = $\sqrt{31.25}$ cm

$$\therefore$$
 Area of circle = πr^2

$$= \pi \times \left(\sqrt{31.25}\right)^2$$

$$=\frac{125}{4} \pi \text{ cm}^2$$

(D) A.T.Q 13.

 $\Delta ADN \cong \Delta ABM$ Now,

$$\frac{\text{Area of } \Delta \text{ABM}}{\text{Area of } \Delta \text{MNC}} = \frac{\frac{1}{2} \times a \times x}{\frac{1}{2} \times (a - x)(a - x)}$$

$$\Rightarrow \frac{\text{Area of } \Delta \text{ABM}}{\text{Area of } \Delta \text{MNC}} = \frac{a \times x}{(a - x)^2}$$
 (i)

 Δ AMN is equilateral triangle

$$\therefore$$
 AM = MN = y

In ∆ABM

$$AM^2 = AB^2 + BM^2$$

$$AM^2 = AB^2 + BM^2$$

 $y^2 = a^2 + x^2$ (ii)

In ∆MNC

$$MN^2 = NC^2 + MC^2$$

$$y^2 = (a - x)^2 + (a - x)^2$$

$$\Rightarrow y^2 = 2(a - x)^2$$
 (iii)

 \Rightarrow $y^2 = 2(a - x)^2$ (iii) From equation (ii) and (iii), we get

$$a^2 + x^2 = 2 (a - x)^2$$

$$\Rightarrow a^2 + y^2 = 2(a - y)^2$$

$$\Rightarrow a^2 + x^2 = 2 (a - x)^2$$

\Rightarrow 2ax = a^2 + x^2 - 2ax

$$\Rightarrow 2ax = (a - x)^2$$

$$\Rightarrow 2ax = (a - x)^{2}$$

$$\frac{\text{Area of } \Delta \text{ABM}}{\text{Area of } \Delta \text{MNC}} = \frac{ax}{2ax} = \frac{1}{2}$$

Area of
$$\Delta MINC = 2ax$$

- \therefore Required ratio = 1 : 2
- 14. (A) Let the tomatoes produce this year = x^2 and, the tomatoes produce last year = y^2

$$x^2 - y^2 = 143$$

$$\Rightarrow$$
 $(x-y)(x+y) = 143$

$$\Rightarrow$$
 $(x + y)(x - y) = 143 \times 1$

$$\Rightarrow x + y = 143$$

$$\underline{x-y}=1$$

$$\Rightarrow 2x = 144$$

$$\Rightarrow x = 72$$

and
$$y = 71$$

· Tomatoes produce this year

$$= (72)^2 = 5184$$

15. (B) A.T.Q,

$$\frac{180^{\circ} - \frac{360^{\circ}}{4x}}{180^{\circ} - \frac{360^{\circ}}{5x}} = \frac{15}{16}$$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$\Rightarrow \frac{\frac{4x-2}{4x}}{\frac{5x-2}{5x}} = \frac{15}{16}$$

$$\Rightarrow 16x - 8 = 15x - 6$$
$$\Rightarrow x = 2$$

 \therefore Number of sides = 8 and 10.

16. (C) Let total amount = x A.T.Q

$$\frac{x \times 68 \times 75}{100 \times 100} = 5049$$

$$100 \times 100$$

$$\Rightarrow x = 9900$$

Amount spend on clothes

17. (D) A.T.Q

Radius of semi-circle on PQ = $\frac{1}{2}$ PQ

and Radius semi-circle on QR = $\frac{1}{2}$ QR

Area of semi-circle on PQ = $\frac{\pi}{2} \left(\frac{PQ}{2} \right)^2$

$$\Rightarrow 77 = \frac{22}{7 \times 2} \times \frac{PQ^2}{4}$$

$$\Rightarrow$$
 PQ = 14 cm

Area of semi-circle on QR = $\frac{\pi}{2} \left(\frac{QR}{2} \right)^2$

$$\Rightarrow \frac{6336}{7} = \frac{22}{7 \times 2} \times \frac{QR^2}{4}$$

$$QR = 48 \text{ cm}$$

Now, Δ PQR is right angled triangle

$$\therefore PQ^2 + QR^2 = PR^2$$

$$\Rightarrow$$
 PR² = (14)² + (48)²

$$\Rightarrow$$
 PR² = 256 + 2304

$$\Rightarrow$$
 PR² = 2560

$$\therefore \text{Required area} = \frac{\pi}{2} \times \frac{2560}{4} = 320 \,\pi \,\text{cm}^2$$

18. (C) A.T.Q

· · AB is the diameter of circle

So, \angle ACB = 90° (angle made in semi-circle) and AB \parallel CD

$$\therefore$$
 \angle ACD + \angle BAC = 180°

and
$$\angle$$
 BAC = \angle BPC = 52°

$$\therefore \angle BCD = 180^{\circ} - 90^{\circ} - 52^{\circ} = 38^{\circ}$$

19. (B) A.T.Q

Slope of the straight line $m = \tan 120^{\circ}$

$$\Rightarrow m = -\frac{1}{\sqrt{3}}$$

The equation of straight line passing through (x, y) and slope m is

$$y - y_1 = m(x - x_1)$$

$$\Rightarrow y + 2 = -\frac{1}{\sqrt{3}}(x - 0)$$

 \therefore Required equation = $\sqrt{3} y + 2\sqrt{3} + x = 0$

20. (C) A.T.Q

We know that,

$$d = \frac{\left| Am + Bn + C \right|}{\sqrt{A^2 + B^2}}$$

:. Lengh of perpendicular

$$= \frac{\left|15 \times 4 + 8 \times 3 + 18\right|}{\sqrt{15^2 + 8^2}}$$

$$= \frac{60 + 24 + 18}{\sqrt{225 + 64}}$$

$$=\frac{102}{17}$$
 = 6 units

21. (A) A.T.Q

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

In $\triangle ABM$,

 $BM^2 = AM^2 - AB^2$

 $BM^2 = (85)^2 - (77)^2$

 \Rightarrow BM² = 7225 – 5929

 \Rightarrow BM²= 1296

 \Rightarrow BM = 36m

In Δ DMC,

 $MC^2 = DM^2 - DC^2$

 \Rightarrow MC² = 7225 - 7056

 \Rightarrow MC = 13 m

 \therefore Width of the street = 36 + 13 = 39 m

22. (B) Let the initial length of reactangle = x m and, the initial breath of reactangle = y m A.T.Q

 $2 \times 4x + 2 \times y = 480$

 \Rightarrow 4x + y = 240(i)

and, $4x \times y = 12800$

 \Rightarrow xy = 3200(ii) Putting the value of x = 40 in equation,

(i) and (ii), we get,

4(40) + y = 240

 $\Rightarrow y = 80$

and, $40 \times y = 3200$

 $\Rightarrow y = 80$

Hence, the initial length of reactangle

23. (B) Let length and breath are x and yrespectively.

A.T.Q

 $xy = 240 \dots (i)$

and 2(x + y) = 52

 $\Rightarrow x + y = 26$ (ii)

Squaring both sides of equation (ii), we get,

 $(x + y)^2 = (26)^2$

 $\Rightarrow x^2 + y^2 + 2xy = 676$

 $\Rightarrow x^2 + y^2 + 2(240) = 676$

 $\Rightarrow x^2 + y^2 = 676 - 480$

 $\Rightarrow x^2 + y^2 = 676 - 480$

 $\Rightarrow x^2 + y^2 = 196$

 $\Rightarrow \sqrt{x^2 + y^2} = 14$ m

Hence, length of diagonal = 14 meter

24. (C) A.T.Q

Largest number = 420

Smallest number = 204

Average =
$$\frac{420 + 204}{2}$$
 = 312

25. (A) A.T.Q,

Height of the cone

$$= \sqrt{l^2 - r^2}$$

$$=\sqrt{(17)^2-(8)^2}$$

$$= \sqrt{289 - 64} = \sqrt{225}$$

h = 15 cm

Volume of the cone = Volume of sphere

$$\frac{1}{3} \pi r^2 h = \frac{4}{3} \pi R^3$$

 \Rightarrow 16 × 15 = R^3

 \Rightarrow R = $2\sqrt[3]{30}$ cm

 \therefore Radius of the sphere = $2\sqrt[3]{30}$ cm

26. (B) A.T.Q

> Distance travel by first man in 1 hour = 6 km .. Time taken by second man to meet

first man =
$$\frac{6}{8-6}$$
 = 3 hours

Total distance travel by first man in (3 + 1) hours = $4 \times 6 = 24$ km

At 2 p.m first man will be 24 km away from the starting point.

and, At 2 pm third man will be 12 km away from the starting point.

.. Distance between first man and third man = 24 - 12 = 12 km

.. They meet after =
$$\frac{12}{12+6} = \frac{12}{18}$$

Required time = 2:40 pm

So, first man meets to third man at 2:40p.m.

27.

Circum-radius of \triangle ABC (AD) = $\frac{6}{\sqrt{3}}$ cm

 $= 2\sqrt{3} \text{ cm}$

and, In radius of \triangle ABC (DE) = $\frac{6}{2\sqrt{3}} = \sqrt{3}$ cm

Hence, required difference

=
$$\pi (r_1)^2 - \pi (r_2)^2$$

$$= \pi \left[\left(2\sqrt{3} \right)^2 - \left(\sqrt{3} \right)^2 \right]$$

=
$$\pi [12 - 3]$$

= $9 \pi \text{ cm}^2$

28. (C) A.T.Q

$$\frac{1}{3} \times \pi \times r_1^2 \times 3h = \frac{1}{3} \times \pi \times r_2^2 \times 2h$$

$$\Rightarrow \frac{r_1}{r_2} = \frac{\sqrt{2}}{\sqrt{3}}$$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$\Rightarrow r_2 = \frac{\sqrt{3}}{\sqrt{2}}r_1$$

Required difference = $\sqrt{\frac{3}{2}}$ times

29. (B)

$$\angle$$
 BAE = \angle DAE = 30°

(\cdot : AE is the angle bisctor of BAD)

and,
$$\angle$$
 BAD = \angle BAE + \angle DAE

$$=30^{\circ} + 30^{\circ} = 60^{\circ}$$

$$\angle$$
 DAC = \angle BAD = 60°

$$\angle EAC = \angle EAD + \angle DAC$$

$$\Rightarrow$$
 \angle EAC = 30° + 60° = 90°

So, It ∠EAC is right angle triangle

$$\therefore AC^2 = EC^2 - AE^2$$

$$\Rightarrow$$
 AC² = (39)² - (15)²

$$\Rightarrow AC^2 = 1521 - 225$$

$$\Rightarrow$$
 AC² = 1296

$$\Rightarrow$$
 AC = 36 cm

 $\therefore \text{Area of } \Delta \text{AEC} = \frac{1}{2} \times 15 \times 36 = 270 \text{ cm}^2$

30. (C) A.T.Q,

:. Length of SP = 9 - x + 0.7 + x = 9.7 cm

$$1 \times 2 + 2 \times 3 + 3 \times 4 \dots + 16 \times 17$$

we know that,

$$1 \times 2 + 2 \times 3 + 3 \times 4 \dots + x(x+1)$$

$$=\frac{x(x+1)(x+2)}{3}$$

$$1 \times 2 + 2 \times 3 \times 3 \times 4 \dots + 16(17)$$

$$= \frac{16 \times 17 \times 18}{3}$$

Hence, required sum = 1632

Total sum of page numbers =
$$\frac{40(41)}{2}$$
 = 820

Sum of the page numbers sheet

$$\cot \theta + \cos \theta = p$$

$$\cot \theta - \cos \theta = q$$

Now

$$p^2 - q^2 = \cot^2 \theta + \cos^2 \theta + 2\cot \theta \cos \theta -$$

$$\cot^2\theta - \cos^2\theta + 2\cos\theta\cot\theta$$

$$\Rightarrow p^2 - q^2 = 4 \left(\frac{\cos^2 \theta}{\sin \theta} \right)$$

$$=4\left(\frac{1-\sin^2\theta}{\sin\theta}\right)$$

=
$$4(\csc\theta - \sin\theta)$$

$$\frac{2\cos\theta}{1+\cos\theta+\sin\theta}=x$$

$$\Rightarrow \frac{2\cos\theta(1+\cos\theta-\sin\theta)}{(1+\cos\theta+\sin\theta)(1+\cos\theta-\sin\theta)} = x$$

$$\Rightarrow \frac{2\cos\theta(1+\cos\theta-\sin\theta)}{(1+\cos\theta)^2-\sin^2\theta} = x$$

$$\Rightarrow \frac{2\cos\theta(1+\cos\theta-\sin\theta)}{\left(1+\cos^2\theta+2\cos\theta-\sin^2\theta\right)} = x$$

$$\Rightarrow \frac{2\cos\theta \left(1+\cos\theta-\sin\theta\right)}{\left(2\cos^2\theta+2\cos\theta\right)} = x$$

$$\Rightarrow \frac{2\cos\theta(1+\cos\theta-\sin\theta)}{2\cos\theta(\cos\theta+1)} = x$$

$$\Rightarrow \frac{1 - \sin \theta + \cos \theta}{1 + \cos \theta} = x$$

In \triangle ABC,

$$\frac{AB}{BC} = \tan 30^{\circ}$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

$$\Rightarrow \frac{AB}{BC} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow$$
 BC = $\sqrt{3}$ AB(i)

Now, In \triangle ABD

$$\frac{AB}{BD} = \tan 60^{\circ}$$

$$\Rightarrow \frac{AB}{BD} = \sqrt{3}$$

$$\Rightarrow$$
 BD = $\frac{AB}{\sqrt{3}}$ (ii)

and,
$$DC = BC - BD$$

$$\Rightarrow$$
 DC = $\sqrt{3}$ AB - $\frac{AB}{\sqrt{3}}$

$$\Rightarrow$$
 DC = $\frac{3AB - AB}{\sqrt{3}} = \frac{2AB}{\sqrt{3}}$

Time taken by the car to travel distance

of
$$\frac{2AB}{\sqrt{3}}$$
 = 40 minutes

.. Time taken by the car to travel

distance of
$$\frac{AB}{\sqrt{3}} = \frac{40}{2AB} \times \frac{\sqrt{3} \times AB}{\sqrt{3}} = 20$$

minutes

Hence, required time = 20 + 40 = 60 minutes

36. (C) A.T.Q,

Let the length of sides of regular Hexagon = a cm

∴ Diagonal (AD) of Hexagon = 2a cm In $\triangle ABO$

$$\frac{h_1}{a} = \tan 30^{\circ}$$

$$\Rightarrow \frac{h_1}{a} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow h_1 = \frac{a}{\sqrt{3}} \text{ cm}$$

Now, In ∆ADO'

$$\frac{h_2}{AD} = \tan 60^\circ$$

$$\Rightarrow \frac{h_2}{2a} = \sqrt{3}$$

$$\Rightarrow h_2 = 2\sqrt{3}a \text{ cm}$$

$$\therefore$$
 Required ratio = $h_1: h_2$

$$=\frac{a}{\sqrt{3}}:2\sqrt{3} \text{ a}=1:6$$

37. (B) A.T.Q

$$\frac{h}{20-x} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \sqrt{3} h = 20 - x$$

$$\Rightarrow x = 20 - \sqrt{3} h \dots (i)$$

and,

$$\frac{h}{x} = \sqrt{3}$$

$$\Rightarrow x = \frac{h}{\sqrt{3}}$$
 (ii)

Solving equation (i) and (ii), we get,

$$20 - \sqrt{3} h = \frac{h}{\sqrt{3}}$$

$$\Rightarrow 20\sqrt{3} - 3h = h$$

$$\Rightarrow$$
 h = $5\sqrt{3}$

$$\therefore$$
 Height of kite = $5\sqrt{3}$ km

38. (A) A.T.Q

$$\frac{\sqrt{3}}{\sqrt{19 + 8\sqrt{3}} - \sqrt{19 - 8\sqrt{3}}}$$

$$= \frac{\sqrt{3}}{\sqrt{16 + 3 + 2 \times 4 \times \sqrt{3}} - \sqrt{16 + 3 - 2 \times 4\sqrt{3}}}$$

$$= \frac{\sqrt{3}}{(4 + \sqrt{3}) - (4 - \sqrt{3})}$$

$$= \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}$$

Camp

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

39. (D) A.T.O

$$\cos x = \sin 60^{\circ} \cos 30^{\circ} - \sin^2 30^{\circ}$$

$$\Rightarrow \cos x = \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{2}\right)^2$$

$$\Rightarrow$$
 cos $x = \frac{3}{4} - \frac{1}{4}$

$$\Rightarrow \cos x = \frac{2}{4} = \frac{1}{2}$$

- $\Rightarrow x = 60^{\circ}$
- 40. (B) A.T.Q

$$\frac{1}{\csc^2\theta} + \frac{\sin^2\theta (2\cos^4 - \cos^2\theta)}{\sin^2\theta - 2\sin^4\theta}$$

$$= \sin^2 \theta + \frac{\sin^2 \theta \cos^2 \theta (2\cos^2 \theta - 1)}{\sin^2 \theta (1 - 2\sin^2 \theta)}$$

- $\Rightarrow \sin^2 \theta + \cos^2 \theta = 1$
- 41. (B) A.T.Q

$$a + b + c = 5$$
 (i)
 $a^2 + b^2 + c^2 = 29$ (ii)

and, $a^3 + b^3 + c^3 = 83$ (iii)

Putting the values of a, b and c

$$a + b + c = 4 + 3 - 2 = 5$$

 $a^2 + b^2 + c^2 = 16 + 9 + 4 = 29$

 $a^2 + b^2 + c^2 = 16 + 9 + 4 = 29$ and, $a^3 + b^3 + c^3 = 264 + 27 - 8 = 83$

All three equations are satisfied

- \therefore Value of abc = $4 \times 3 \times (-2) = -24$
- 42. (C) A.T.Q

$$\frac{1}{a} = \frac{x+y}{xy}$$
, $\frac{1}{b} = \frac{x+z}{xz}$ and $\frac{1}{c} = \frac{y+z}{yz}$

Now,
$$\frac{1}{a} + \frac{1}{b} - \frac{1}{c} = \frac{x+y}{xy} + \frac{x+z}{xz} - \frac{y+z}{yz}$$

$$\Rightarrow \frac{bc + ac - ab}{abc} = \frac{zx + zy + xy + yz - xy - xz}{xyz}$$

$$\Rightarrow \frac{bc + ac - ab}{abc} = \frac{2yz}{xyz}$$

$$\Rightarrow x = \frac{2(abc)}{bc + ac - ab}$$

43. (A) A.T.Q

$$x(x-4) = -2$$
(i)

$$\Rightarrow x - 4 = \frac{-2}{x}$$
(ii)

Cubing on both sides of equation, we get

$$x^3 (x-4)^3 = (-2)^3$$

$$\Rightarrow x^3 [x^3 - 64 - 12x(x - 4)] = -8$$

$$\Rightarrow x^3 [x^3 - 64 - 12x \times (-2/x)] = -8$$

- $\Rightarrow x^3(x^3 40) = -8$
- 44. (D) $(x^n + 1)$ is divisible by (x + 1), when n is
 - \Rightarrow (67⁶⁷ + 1) is divisible by (67 + 1)

- $\Rightarrow [(67^{67} + 1) + 66] \div 68$
- Gives remainder 66.
- :. When $(67^{67} + 67)$ is divided by 68, then remainder is 66.
- 45. (B) We know that,

$$a^3 + b^3 + c^3 - 3abc$$

$$= (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$$

$$= \frac{1}{2} (a + b + c)(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2bc - 2ab - 2bc - 2bc - 2ab - 2bc - 2ab - 2bc - 2bc - 2ab - 2bc - 2bc - 2bc - 2bc - 2bc - 2bc$$

2cal

$$= \frac{1}{2} (a+b+c)[(a-b)^2 + (b-c)^2 + (c-a^2)]$$

now.

$$\frac{a^3 + b^3 + c^3 - 3abc}{(a-b)^2 + (b-c)^2 + (c-a)^2}$$

$$\Rightarrow \frac{\frac{(a+b+c)}{2} \left[(a-b)^2 + (b-c)^2 + (c-a) \right]^2}{(a-b)^2 + (b-c)^2 + (c-a)^2}$$

$$\Rightarrow \frac{35+20-15}{2} = 20$$

46. (B) A.T.Q

$$2^{64} - (2+1)(2^2+1)(2^4+1)(2^8+1)$$

$$(2^{16} + 1)(2^{32} + 1)$$

= $2^{64} - (2 - 1)(2 + 1)(2^{2} + 1)(2^{4} + 1)$

$$(2^8+1)(2^{16}+1)(2^{32}+1)$$

$$= 2^{64} - (2^{64} - 1)$$

$$= 2^{64} - 2^{64} + 1 = 1$$

47. (A) A.T.Q

$$2p = \sqrt{x} + \frac{1}{\sqrt{x}}$$

Squaring both sides, we get

$$4p^2 - 4 = x + \frac{1}{x} + 2 - 4$$

$$\Rightarrow$$
 4($p^2 - 1$) = $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$

$$\sqrt{p^2 - 1} = \frac{1}{2} \left(\sqrt{x} - \frac{1}{\sqrt{x}} \right)$$

Now

$$\Rightarrow \frac{\frac{1}{2}\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)}{\frac{1}{2}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) - \frac{1}{2}\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)} = \frac{\frac{x - 1}{\sqrt{x}}}{\frac{2}{\sqrt{x}}}$$

$$=\frac{x-1}{2}$$

48. (C) A.T.Q

$$\frac{a^2 + bc}{a^2 - bc} + \frac{b^2 + ca}{b^2 - ca} + \frac{c^2 + ab}{c^2 - ab} = 1$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Adding 3 on both sides, we get,

$$\frac{a^{2} + bc}{a^{2} - bc} + 1 + \frac{b^{2} + ca}{b^{2} - ca} + 1 + \frac{c^{2} + ab}{c^{2} - ab} + 1$$

$$= 1 + 3$$

$$\Rightarrow \frac{2a^{2}}{a^{2} - bc} + \frac{2b^{2}}{b^{2} - ca} + \frac{2c^{2}}{c^{2} - ab} = 4$$

$$\Rightarrow \frac{a^2}{a^2 - bc} + \frac{b^2}{b^2 - ca} + \frac{c^2}{c^2 - ab} = 2$$

49. (C) Let the principle = 1000 unit A.T.Q

$$25\% = \frac{25}{100} = \frac{1}{4}$$

Principle $\rightarrow 1000$

Ist year $\rightarrow 250$

2nd year \rightarrow 250 + 62.5

3rd year \rightarrow 250 + 62.5 + 62.5 + 15.625

Difference between C.I. and SI

= 203.125 units

When P = 1000, then difference

=203.125

∴ Required difference =
$$\frac{1000}{203.125} \times 182$$

= ₹896 50. (A) A.T.Q

Sachin's income after end of third year

$$=\frac{36000\times90\times95\times115}{100\times100\times100}=₹35397$$

51. (C) A.T.Q

 \therefore Ratio of cost price of T.V. and A.C = 4:7 So, cost price of A.C.

$$=\frac{22000}{11} \times 7 = ₹14000$$

52. (B) Let income of Sachin = ₹x A.T.Q

$$\frac{(100-80)}{80} \times 100 = 16368$$

$$\Rightarrow x = \frac{16368 \times 100 \times 100}{93 \times 88}$$

$$\Rightarrow x = 20000$$

53. (A) A.T.Q

Hence, profit% =
$$\frac{26}{65} \times 100 = 40\%$$

54. (A) Let two numbers are x and y A.T.Q

$$x - y = 3z$$
(i)

$$x + y = 11z$$
(ii)

and,
$$xy = 56z$$
(iii)

By solving equation (i) and (ii)

$$x = 7z$$
 and $y = 4z$

From equation (iii)

$$7z \times 4z = 28z^2$$

$$z = 2$$

$$x - y = 6$$

∴ Required difference = 6

55. (A) A.T.Q

Ratio of their savings = 4:1

.. Savings of Ram and Syam

$$=\frac{5000}{5} \times 4$$
 and $\frac{5000}{5} \times 1$

= ₹4000 and ₹1000

Now,

$$2x - 5y = 4000 \dots (i)$$

$$x - 3y = 1000$$
 (ii)

Solving equation (i) and (ii), we get x = 7000

Hence, monthly income of Mohan = ₹7000

56. (A) From option (A)

$$23 + 13 - \frac{299}{100} = 36 - 2.99 = 33.01\%$$

57. (B) Let total number of article = $\forall x$ A.T.Q.,

$$\frac{36}{12} \times x + \frac{24}{12} \times x - \frac{27}{12} \times 2x = 90$$

$$\Rightarrow \frac{60x - 54x}{12} = 90$$

$$\Rightarrow 6x = 90 \times 12$$

$$\Rightarrow 2x = 360$$

:. Total number of articles = 360

58. (C) Let the numbers

$$= n, n + 1, n + 2, n + 3 \dots n + 6$$

$$=\frac{n+n+1+n+2+n+3+n+4+n+5+n+6}{7} = \mathbf{m}$$

$$\Rightarrow \frac{7n+21}{7} = \mathbf{m}$$

$$\Rightarrow$$
 m = $n + 3$

.: Required average

$$=\frac{m+m+1+m+2+m+3.....m+7}{8}$$

$$=\frac{8m+28}{8}=\frac{2m+7}{2}$$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

59. (B) A.T.Q

28 units = ₹56

∴ Selling price =
$$\frac{133 \times 56}{28}$$
 = ₹266

60. (B) Let profit = x

A.T.Q

$$2(100 + x) = 100 + 3x$$

$$\Rightarrow$$
 $x = 100$

Profit = 100%

61. (B) A.T.Q

$$A - 21 \times 8$$
 $B - 24 \times 7 \times 168$
 $C - 28 \times 6$

 \therefore Work done by (A + B + C) in 6 days

= (8 + 15 + 14 + 15 + 8 + 21)

 \therefore Work done in 12 days = 81 × 2 = 162 Now, remaining work = 168 - 162 = 6

Now, remaining work = 168 - 162 = 6

Hence, work must be done = $12 + \frac{6}{8}$ =

$$12\frac{3}{4}$$
 days

62. (D) Let the number of days = x A.T.O

$$\frac{672}{x} - \frac{672}{(x+4)} = 4$$

$$\Rightarrow \frac{672x + 4 \times 672 - 672x}{x^2 + 4x} = 4$$

$$\Rightarrow x^2 + 4x - 672 = 0$$

$$\Rightarrow x^2 + 28x - 24x - 672 = 0$$

$$\Rightarrow x(x + 28) - 24(x + 28) = 0$$

 $\Rightarrow x = -28$ and x = 24

Required number of days = 24 days

63. (A) Let pipe A alone can fill the tank = x hr and pipe B alone can empty the tank = y hr

$$2\left(\frac{1}{x} - \frac{1}{y}\right) = \left(\frac{1}{x} + \frac{1}{y}\right)$$

$$\Rightarrow 2(y-x) = x + y$$

$$\Rightarrow y = 3x$$

$$\Rightarrow \frac{x}{y} = \frac{1}{3}$$

∴ Required ratio = 3 : 1

64. (C) Let SP Item 100 100 80 150

When there is no profit means

Hence, profit =
$$\frac{(100-80)}{80} \times 100 = 25\%$$

65. (A) A.T.Q

Total sum of three numbers

$$= 1200 \times 3 = 3600$$

$$\therefore$$
 2x + 3x + 4x = 3600

$$\Rightarrow$$
 $x = 400$

:. First number = $400 \times 2 = 800$ Second number = $400 \times 3 = 1200$

Third number = $400 \times 4 = 1600$

Now

 $\frac{800 \times 110}{100} + \frac{1200 \times 80}{100} + \frac{1600 \times (100 + x)}{100}$

$$=\frac{3600\times104}{100}$$

$$\Rightarrow$$
 880 + 960 + 16 × (100 + x)= 3744

$$100 + x = \frac{1904}{16}$$

$$\Rightarrow 100 + x = 119$$

$$\Rightarrow x = 19$$

:. Required increment = 19%

66. (A) A.T.Q

Total surfare area of copper cube = Total surface area of zinc coubid

$$\Rightarrow$$
 6 a^2 = 2[2 l^2 + 8 l^2 + 4 l^2]

$$\Rightarrow 6a^2 = 28l^2$$

$$\Rightarrow \frac{a^2}{1^2} = \frac{14}{3}$$

$$\Rightarrow \frac{a}{1} = \left(\frac{14}{3}\right)^{1/2}$$

$$\frac{a^3}{l^3} = \left(\frac{14}{3}\right)^{3/2}$$

:. Volume ratio of cube and cuboid

$$= \left(\frac{14}{3}\right)^{3/2} : 8$$

67. (B) Let the total number = 100

Markes obtain by Arjun = $\frac{40 \times 90}{100}$ = 36

Markes obtain by Bheem = $\frac{36 \times 800}{900}$ = 32

Markes obtain by Karan = $\frac{68 \times 1000}{1700}$ = 40

∴ Required percentage = 0

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

68. (C) Let total profit = x

A.T.Q

Ratio of their investment = 3:4:5

$$\frac{x \times 12}{100} + \frac{x \times 73}{100} \times \frac{4}{12} = 2180$$

 $\Rightarrow x = 6000$

Profit of C = $\frac{6000 \times 73}{100} \times \frac{5}{12} = ₹1825$

69. (B) A.T.Q

X 1350 1296 1500 1800 1875

In race of 1500 m X beat Z = 204 m

: Required difference

$$= \frac{204}{1500} \times 2000 = 272m$$

(B) Let the speed of the trains be 3x m/s70. and $4x \, \text{m/s}$

Then, length of each train

$$=\frac{(3x+4x)\times20}{2}=70x$$

Distance travelled by faster train in 35 seconds = $35 \times 4x = 140x$

$$70x + 700 = 140x$$

 \Rightarrow 70x = 700

Length of each train = 700m

71. (A) A.T.Q

Net price of 100 kg tea = $\frac{32 \times 99}{100}$

= ₹31.68 per kg

Now, using Alligation

∴ Required ratio = 18:7

72. (B) A.T.Q

> Total weight of 7 different experiments $= 7 \times 53.735 = 376.145 \ kg$

Weight of first three experiments

 $= 54.005 \times 3 = 162.015 \text{ kg}$

and, the weight of sixth and seventh experiment

 $= (54.005 - 0.010) \times 2 = 107.990 \text{ kg}$

Now, the weight of fourth and fifth experiment

- = 376.145 162.015 107.990
- = 106.14 kg

and the difference of their weight = 0.004 kg

Weight of fourth experiment

$$= \frac{106.14 + 0.004}{2} = 53.072 \text{ kg}$$

(C) A.T.Q 73.

> The efficiency of A, B and C be 1, 2 and 2 respectively.

Then, total work = $1 \times 18 = 18$ units Now, workdone by A and B in 3 days

 $= 3 \times 3 = 9$ units Remaining work = 18 - 9 = 9 units Then, time taken by A and C to complete

remaining work = $\frac{9}{3}$ = 3 days

74. (C) A.T.Q

$$\frac{(N+J)\times 12}{1} = \frac{3.5N + 7.5J}{\frac{1}{3}}$$

$$\Rightarrow$$
 4N + 4J = 3.5 N + 7.5 J

$$\Rightarrow$$
 0.5 N = 3.5 J

$$\Rightarrow$$
 N = 7J

$$\Rightarrow \frac{N}{J} = \frac{7}{1} \xrightarrow{} \text{Efficiency of Neetu}$$
 \times Efficiency of Jyoti

Now, total work = $(N + J) \times 12$

$$= (1 + 7) \times 12 = 96$$
 units

Time taken by Jyoti to complete the

work =
$$\frac{96}{1}$$
 = 96 hours

75. (A) $A \rightarrow 32$ $B \rightarrow 48$ $C \rightarrow 56$ 12 12

Work done by A in 4 days = $21 \times 4 = 84$

and, work could be done by C in 12 days $= 12 \times 12 = 144 \text{ units}$

Now, time taken to complete the work

$$= \frac{672 - 84 + 144}{14 + 12} = \frac{366}{13} = 28 \frac{2}{13} \text{ days}$$

76.

 $(4M + 3B) \times 5 = (2W + 3B) \times 5 = (4M + 3W) \times 5$ On comparing, we get,

Ratio of efficiency of man, woman and

boys = 1:2:2

Now, total work =
$$(4M + 3B) \times 5$$

$$= (4 \times 1 + 3 \times 2) \times 5 = 50 \text{ units}$$

Then, time taken by one man, one woman and one boy to complete the work with double efficiency

 $\frac{50}{(1+2+2)\times 2} = \frac{50}{10} = 5 \text{ days}$

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

(B) Let the price of the third variety of tea | 83. per kg be ξx A.T.Q

 $136 \times 1 + 147 \times 1 + x \times 3 = 161 \times 5$ \Rightarrow 136 + 147 + 3x = 805

On solving, we get x = 174

∴ Price of the tea = ₹174 per kg

78. (C) A.T.Q

CP of coffee powder for 10 cups of coffee

CP of milk for 10 cups of coffee = 2×30

Total CP = ₹80

Now, SP = 80 ×
$$\frac{125}{100}$$
 = ₹100

Then, SP of each cup of coffee

$$=\frac{100}{10}$$
 = ₹10 per kg

79. (B) A.T.Q

year 2005 Sale

100

2006 30

2007 100

Required percentage incerment in sale

$$= \frac{100 - 30}{30} \times 100 = \frac{70}{30} \times 100 = 233.3\%$$

80. (A) A.T.Ç

$$\frac{x \times Q \times t}{100} + x = \frac{y \times P \times t}{100} + y$$

$$\Rightarrow \frac{(Qx - Py) \times t}{100} = y - x$$

$$\Rightarrow t = \frac{(y - x) \times 100}{Qx - Py}$$

$$\Rightarrow t = \frac{100(x - y)}{Py - Qx}$$

(C) Using Alligation method, we get

(1 + 2) = 3 units = 60 coins

Then, number of ₹5 coins = 2 units

$$= \frac{60}{3} \times 2 = 40 \text{ coins}$$

82. (D) A.T.Q

Total profit = $3 \times 30 = 90$

and, total loss = $2 \times 20 = 40$

Then, net profit = 90 - 40 = 50

Now, gain percent = $\frac{50}{3+2}$ = 10%

(C) A.T.Q

Sugar in first mixture

Sugar in second mixture

∴ Required ratio = 1:3

84. (B) A.T.Q

Discount = $\frac{20}{120} \times 100 = \frac{50}{3} \%$

$$\therefore \text{ CP} = \frac{100 \times 100 \times 3}{350} = \frac{600}{7}$$

:. Required ratio = $\frac{50}{3}$: $\frac{600}{7}$ = 7:36

85. (D) A.T.Q

$$x = \sqrt{3} + \frac{1}{\sqrt{3}}$$

Squaring both sides, we get

$$x^2 = 3 + \frac{1}{3} + 2$$

$$\Rightarrow x^2 = \frac{16}{3}$$

$$\Rightarrow x^4 = \frac{256}{9}$$

and,
$$y = \sqrt{3} - \frac{1}{\sqrt{3}}$$

$$\Rightarrow y^2 = \frac{4}{3}$$

$$\Rightarrow y^4 = \frac{16}{9}$$

Now,
$$x^4 + y^4 = \frac{256}{9} + \frac{16}{9} = \frac{272}{9}$$

86. (A) Let speed of boat = x km/hrSpeed of stream = $y \, \text{km}/hr$ A.T.Q

$$\frac{12}{x-y} + \frac{18}{x+y} = 3$$
 (i)

$$\frac{36}{x-y} + \frac{24}{x+y} = \frac{13}{2}$$
 (ii)

Solving equation (i) and (ii), we get \therefore Speed of boat = 2 km/hr

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

- (B) Required area = $\frac{4}{20}$ × (60 + 20) = 16 acres
- 88. (A) Required ratio = 72:90
- 89. (C) A.T.Q

10% of 72° =
$$\frac{72 \times 10}{100}$$
 = 7.2

Required angle = $50^{\circ} + 7.2^{\circ} \times \frac{2}{3}$ $=50^{\circ} + 4.8^{\circ} = 54.8^{\circ}$

90. (B) Let the production of barley = xA.T.Q,

Production of maize = 3xProduction of wheat = 12x

Required ratio = $\frac{12x}{50}$: $\frac{x}{48}$ = 288 : 25

91. (C) A.T.Q wheat, rice and maize

 $=\left(\frac{50}{360}\times100+\frac{72}{360}\times100+\frac{60}{360}\times100\right)$

= 51% (approximate)

92. (D) Let speed of A = x meter/min.speed of B = y meter/min. Let they meet after = t minutes

> Distance traveled by A after meeting = 72xDistance traveled by B after meeting = 18yDistance traveled by A after crossing = distance traveled by B before crossing (i) yt = 72x

xt = 18y..... (ii)

Solving equation (i) and (ii), we get. $xyt^2 = 72 \times 18 \times xy$

t = 36

 \therefore Required time = 18 + 36 = 54 minutes

93. (B) A.T.Q Total length = 160 + 140 = 300 mRelative speed = (77 + 67) km/hr

 $= 144 \times \frac{5}{18} = 40 \text{m/sec}$

 \therefore Required time = $\frac{300}{40}$ = $7\frac{1}{2}$ seconds

(D) A.T.Q

SI for one year = $\frac{880}{2}$ = 440

 $\therefore \text{ Required rate} = \frac{11}{440} \times 100 = 2.5\%$

95. (A) A.T.Q

 $3\left(\frac{D}{x+y}\right) = \frac{D}{x-y}$

 $\Rightarrow 3x - 3y = x + y$ $\Rightarrow 2x = 4y$ $\Rightarrow x = 2y$

- \therefore Speed of current = $\frac{26}{3 \times 2}$ = $4\frac{1}{3}$ km/hr
- 96. (C) Required percentage increase

 $= \frac{120 - 100}{100} \times 100 = 20\%$

97. (B) A.T.Q

Average production at given years

 $=\frac{100+120+110+140+75+130}{6}$

 $=\frac{675}{6}=112.5$

Hence, required years = 2013, 2015 and 2017

98. (D) A.T.Q

Sum of production during odd years

= 120 + 140 + 130 = 390Sum of production during even years

= 100 + 110 + 75 = 285

 \therefore Required difference = $\frac{390}{285}$ = 1.37 times

(C) Total production in 2013 and 2015 = 120 + 140 = 260

Production in 2017 = 130

100. (B) Average production during given years

 $= \frac{100 + 120 + 110 + 140 + 75 + 130}{100 + 120 + 130}$

∴ Required production = 113000 tonnes

Note: If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at $7053606571\,$ for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777