SSC TIER II (MATHS) MOCK TEST - 28 (SOLUTION)

1. (C) The numbers exactly divisible by the greatest number are 821-5 and 1030-6 $=816$ and 1024
H.C.F of 816 and $1024=16$.

Hence, the greatest number $=16$.
2. (C) As 258 is a multiple of 43 , then

2
$4 3 \longdiv { 9 5 }$
$\frac{86}{09}$
\therefore Required remainder $=9$.
3. (D) Let the numbers $=x$ and y
and the divisor $=z$
then,
$x=a z+5$
and
$y=b z+7$
A.T.Q
$x+y=a z+5+b z+7$
$=(\mathrm{a}+\mathrm{b}) z+2=12$
but
$x+y=c z+2$
On comparing equation (iii) and (iv) $z=10$
Hence, required divisor $=10$
4. (A) Let the total distance $=x \mathrm{~km}$ According to question,
$\frac{x}{25}-\frac{x}{45}=\frac{15}{4}$
$\Rightarrow \frac{20 x}{25 \times 45}=\frac{15}{4}$
$\Rightarrow x=\frac{75 \times 45}{4 \times 4}=210.94 \mathrm{~km}$
Hence, Total distance $=210.94 \mathrm{~km}$
5. (B) Yesterday Speed of Neha $=80$ word $/$ minute

Today speed of Neha $=\frac{80 \times 75}{100}$
$=60 \mathrm{word} /$ minute
Difference in time $=\frac{7000}{60}-\frac{7000}{80}$
$=\frac{7000(4-3)}{240}=29.17 \mathrm{~min}$.
Hence, required difference $=30 \mathrm{~min}$
(Approximate)
6. (A) A.T.Q
$\sin \mathrm{A}+\cos \mathrm{A}=\frac{7}{25}$
$\Rightarrow \cos \mathrm{A}=\frac{7}{5}-\sin \mathrm{A}$
$\Rightarrow \sin \mathrm{A} \cos \mathrm{A}=\frac{12}{25}$
$\Rightarrow \sin \mathrm{A}\left(\frac{7}{5}-\sin \mathrm{A}\right)=\frac{12}{5}$
$\Rightarrow 7 \sin \mathrm{~A}-5 \sin ^{2} \mathrm{~A}-12=0$
$\Rightarrow 5 \sin ^{2} \mathrm{~A}-35 \sin \mathrm{~A}+12=0$
$\Rightarrow \sin \mathrm{A}=\frac{3}{5}$ or $\frac{4}{5}$
$\Rightarrow \cos A=\frac{4}{5}$ or $\frac{3}{5}$
7. (A)

$\frac{15 \times 8 \times 32}{\frac{2}{5}}=\frac{20 \times 3 \times D_{2}}{\frac{3}{5}}$
$\Rightarrow D_{2}=96$ days
Hence, work will be complete in 96 days
8. (A) $6 \mathrm{M}=12 \mathrm{~F}$ and $8 \mathrm{~F}=10 \mathrm{~B}$
$\frac{\mathrm{M}}{\mathrm{F}}=\frac{2}{1} \quad \frac{\mathrm{~F}}{\mathrm{~B}}=\frac{5}{4}$
Ratio of efficiency of male, female and boy $=10$: 5: 4
$(13 \times 10+6 \times 4) \times 9 \times 18$
$=(16 \times 5+16 \times 4) \times 6 \times D$
$\Rightarrow 154 \times 27=144 \mathrm{D}$
$\Rightarrow \mathrm{D}=28 \frac{7}{8}$ days
Hence, required days
$=28 \frac{7}{8}$ days
9. (B) Let the amount taxable purchases be $=₹ x$
A.T.Q,
5% of $x=\frac{25}{100}$
$\Rightarrow x=\frac{25}{100} \times \frac{100}{5}=5$
\therefore Cost of tax free items $=[45-(5+.25)]$ = ₹ 39.75
10. (B) A.T.Q
$\cos \theta-\sin \theta=\sqrt{2} \sin \theta$
Squaring on both sides, we get
$(\cos \theta-\sin \theta)^{2}=(\sqrt{2} \sin \theta)^{2}$
$\Rightarrow \cos ^{2} \theta+\sin ^{2} \theta-2 \sin \theta \cos \theta=2 \sin ^{2} \theta$
$\Rightarrow 2 \sin \theta \cos \theta=\cos ^{2} \theta+\sin ^{2} \theta-2 \sin ^{2} \theta$
$\Rightarrow 2 \sin \theta \cos \theta=(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)$
$\Rightarrow 2 \sin \theta \cos \theta=(\cos \theta+\sin \theta) \sqrt{2} \sin \theta$
$\Rightarrow \sqrt{2} \cos \theta=\cos \theta+\sin \theta$
$\therefore \cos \theta+\sin \theta=\sqrt{2} \cos \theta$
11. (C) Let the number of workers $=x$

According to question,
80% of $x=64+\frac{3}{4} \times 64$
$\Rightarrow x=\frac{112 \times 100}{80}$
$\Rightarrow x=140$
Total numbers of workers $=140$ workers
12. (C) According to question
\Rightarrow Sum of unit digits of numbers from 1 to 99
$=10(1+2+3+4 \ldots \ldots \ldots \ldots \ldots+9)$
$=10\left(\frac{9 \times 10}{2}\right)=450$
\Rightarrow Sum of ten's digits of numbers from 1 to 99
$=10(1+2+3$. +9)
$=10\left(\frac{9 \times 10}{2}\right)=450$
\Rightarrow Sum of digits of $100=1$
\therefore Required sum $=450+450+1=901$
13. (C) According to question

Amount of alcohol and water taken out from Ist bottle $=6$ litre and 10 litre
Amount of Alcohol and water taken out
from 2 nd bottle $=12 l$ and $10 l$
Total amount of alcohol and water from Ist and 3rd bottle $=18 l$ and $20 l$
Now, from options
Let amount of total mixture taken from
2 nd bottle $=24 l$
Amount of alcohol $=24 \times \frac{7}{12}=14 l$
Amount of water $=24 \times \frac{5}{12}=10 l$
Now, total amount of alcohol and water
from three bottles $=(18+14) l$ and $(20+$ 10) $l=32 l$ and $30 l$

Ratio of alcohol and water in final mixture
= $32: 30=16: 15$
Hence, option (c) is correct.
14. (D) According to question,

Total run scored when his last inning is of 93 runs $=87 \times 9=783$ runs
\therefore Total runs he scored in 9 innings
$=783-(93-82)=772$ runs
15. (C) In right angle $\triangle \mathrm{ABD}$
$\mathrm{AB}^{2}=\mathrm{BD}^{2}-\mathrm{AD}^{2}$
$\Rightarrow \mathrm{AB}^{2}=(26)^{2}-(24)^{2}=676-576$
$\Rightarrow \mathrm{AB}=\sqrt{100}$
$\Rightarrow A B=10 \mathrm{~cm}$
Area of trapezium ABCD
$=\frac{1}{2}($ sum of parallel sides $) \times h$
$=\frac{1}{2} \times(24+17) \times 10=205 \mathrm{~cm}^{2}$
16. (D) According to question,
$\left(x+\frac{1}{x}\right)^{2}=3 \Rightarrow x+\frac{1}{x}=\sqrt{3}$
$\therefore x^{6}=-1$
then,
$x^{108}+x^{96}+x^{84}+x^{102}+x^{90}+x^{78}+x^{6}+1$
$=x^{108}+x^{102}+x^{96}+x^{90}+x^{84}+x^{78}+x^{6}-1$
$=x^{102}\left(x^{6}+1\right)+x^{90}\left(x^{6}+1\right)+x^{78}\left(x^{6}+1\right)-1-1$
$=x^{102}(0)+x^{90}(0)+x^{78}(0)-2=-2$
17. (A) $x^{2}+y^{2}+2 x+2 y-2=0$
$\Rightarrow x^{2}+y^{2}+2 x+2 y-1-1=0$
$\Rightarrow(x-1)^{2}+(y-1)^{2}=0 \Rightarrow x=1$ and $y=1$
$\therefore x^{89}+y^{107}=(1)^{89}+(1)^{107}=2$
18. (A) $\frac{-17}{13} \times-6 \times \frac{26}{34}=6$
19. (C) According to question,
$2 p-q=\sqrt{p^{2}+q^{2}}$
squaring on both sides, we get
$(2 p-q)^{2}=\left(\sqrt{p^{2}+q^{2}}\right)^{2}$
$\Rightarrow 4 p^{2}+q^{2}-4 p q=p^{2}+q^{2}$
$\Rightarrow 3 p^{2}=4 p q$
$\Rightarrow 3 p=4 q$
\therefore Required ratio $=4: 3$

Campus
 K D Campus Pvt. Ltd

20. (C) According to question
$x=\frac{\sqrt{15}+\sqrt{12}}{\sqrt{15}-\sqrt{12}} \times \frac{\sqrt{15}+\sqrt{12}}{\sqrt{15}+\sqrt{12}}=\frac{1}{y}$
$\Rightarrow x=\frac{15+12+2 \sqrt{180}}{15-12}$
$\Rightarrow x=\frac{27+12 \sqrt{5}}{3}$
$\Rightarrow x=9+4 \sqrt{5}$ and $y=9-4 \sqrt{5}$
$\Rightarrow x^{2}+y^{2}+5 x y=(81+80)+5=327$
21. (A) According to question,

Ratio of their periods of investment $=7: 3: 5$
Ratio of their profits $=2: 1: 2$
\therefore Ratio of their investment $=\frac{2}{7}: \frac{1}{3}: \frac{2}{5}$
$=105 \times \frac{2}{7}: \frac{105}{3}: \frac{2}{5} \times 105=30: 35: 42$
22. (A) According to question,
($9 \%-6 \%$) = ₹ 630
$\Rightarrow 3 \%=₹ 630$
$\Rightarrow 100 \%=₹ 21000$
\therefore Q's share $\left(\frac{3}{8}\right.$ th of the total profit $)$
$=21000$
Remaining profit $=\frac{21000}{3} \times 5=₹ 35000$
Hence, P's profit = ₹ 17500
23. (D) According to question,
α and β are roots of equation $=x^{2}+\mathrm{p} x+\mathrm{q}=0$
$\alpha+\beta=-p$ \qquad
$\alpha \beta=\mathrm{q}$
then, Sum of roots of required equation
$\Rightarrow \alpha^{2}+\alpha \beta+\beta^{2}+\alpha \beta=(\alpha+\beta)^{2}=p^{2}$
Products of roots of required equation
$\Rightarrow\left(\alpha^{2}+\alpha \beta\right)\left(\beta^{2}+\alpha \beta\right)=q p^{2}$
Hence, required equation
$=x^{2}-($ sum of roots $) x+($ product of roots)
$=0$
$\Rightarrow x^{2}-p^{2} x+q \mathrm{p}^{2}=0$
24. (B) According to question,

$$
\begin{aligned}
& \sqrt{9 \sqrt{9 \sqrt{9 \ldots \ldots .}}}=(6561)^{x-1} \\
& \Rightarrow \alpha=\sqrt{9 \sqrt{9 \sqrt{9 \sqrt{9 \ldots .}}}}
\end{aligned}
$$

Squaring on both sides we get,
$\alpha^{2}=9 x$
$\Rightarrow \alpha^{2}-9 x=0$
$\alpha(\alpha-9)=0$
$\Rightarrow \alpha=9=\left(9^{4}\right)^{x-1}$
$\therefore 9=(9)^{4 x-4}$
$\Rightarrow 4 \alpha-4=1$
$\alpha=\frac{5}{4}$
25. (B) Let length, breath and height $=7 x, 5 x$ and $4 x$
According to question,
Area of floor $=\frac{980}{7}=140$
$\therefore 7 x \times 5 x=140$
$\Rightarrow x^{2}=\frac{140}{35}=4$
$\Rightarrow x=2$
\therefore length, breath and height are 14 m ,
10 m and 8 m respectively
\therefore Total area of walls $=2(l h+b h)$
$=2(14 \times 8+80)=2 \times 192$
Total cost of covering walls $=384 \times 3.50$
= ₹ 1344
26. (C) According to question,

Area of base
$=\frac{1}{2}($ sum of parallel sides $) \times$ height
$=\frac{1}{2}(25) \times 12=150 \mathrm{~cm}^{2}$
Area of prism $=$ Area of base \times height $1200=150 \times h$
$h=8 \mathrm{~cm}$
27. (B) $a^{2}+a+1=0$ \qquad
We know that,
$\Rightarrow a^{3}-1=(a-1)\left(a^{2}+a+1\right)$
$\Rightarrow a^{3}-1=0$
$\Rightarrow a^{3}=1$
$\Rightarrow a^{5}+a^{4}+1$
$\Rightarrow a^{3} a^{2}+a^{3} \cdot a+1$
$\Rightarrow a^{2}+a+1=0$
$\therefore a^{5}+a^{4}+1=0$
28. (A) Orthocentre of $\triangle \mathrm{ABC}=\mathrm{B}$

Circumcentre of $\triangle \mathrm{ABC}=\mathrm{D}$
In $\triangle \mathrm{BDN}$,
$\mathrm{BD}^{2}=\mathrm{BN}^{2}+\mathrm{ND}^{2}$
$\Rightarrow 24^{2}+10^{2}=26^{2}$
$\Rightarrow \mathrm{BD}=26$
29. (A)

According to question,
In triangle PQR, C is the circumcenter
$\therefore \angle \mathrm{QPR}=\frac{1}{2} \angle \mathrm{QCR}$
$\Rightarrow \angle \mathrm{QPR}=60^{\circ}$
and $\angle \mathrm{QPR}+\angle \mathrm{PQR}+\mathrm{PRQ}=180^{\circ}$
$60^{\circ}+50^{\circ}+\angle \mathrm{PRQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{PRQ}=70^{\circ}$
Now, In triangle PSR
$90^{\circ}+70^{\circ}+\angle \mathrm{RPS}=180^{\circ}$
$\Rightarrow \angle \mathrm{RPS}=180^{\circ}-160^{\circ}$
$\Rightarrow \angle \mathrm{RPS}=20^{\circ}$
30. (A) According to question,

Taking option (A) as this number
Let $\mathrm{D}=64$
A.T.Q
$\Rightarrow P=(6+4)=(10)^{2}=100$
Now, $\mathrm{P}-\mathrm{D}=100-64=36$
\therefore Required number $=64$
31. (D) According to question,

Let cost of Ist radio $=19 x$
cost of 2 nd ratio $=27 x$
$\frac{19 x+\frac{120}{100}}{27 x+657}=\frac{13}{25}$
$570 x=351 x+13 \times 657$
$219 x=13 \times 657$
$x=39$
\therefore The cost of 2 nd radio in beginning
$=27 \times 39=₹ 1053$
32. (C) According to question,

Sum of remaining three numbers
$=37 \times 21-18 \times 34=165$
\therefore Greatest number between remaining
three numbers $=\frac{165}{15} \times 7=77$
33. (D) A.T.Q
$\frac{x+1}{x-1}=\frac{a}{b}$ and $\frac{1-y}{1+y}=\frac{b}{a}$
Using componendo and dividendo, we get
$\frac{2 x}{2}=\frac{a+b}{a-b}$ and $\frac{-1}{y}=\frac{a+b}{b-a}$
$\Rightarrow y=\frac{a-b}{a+b}$
$\Rightarrow \frac{x-y}{1+x y}=\frac{\frac{(a+b)}{(a-b)}-\frac{(a-b)}{(a+b)}}{1+\frac{(a+b)}{(a-b)} \frac{(a-b)}{(a+b)}}$
$=\frac{(a+b)^{2}-(a-b)^{2}}{\left(a^{2}-b^{2}\right)-(1+1)}$
$=\frac{a^{2}+b^{2}+2 a b-a^{2}-b^{2}+2 a b}{2\left(a^{2}-b^{2}\right)}$
$=\frac{2 a b}{a^{2}-b^{2}}$
34. (D) According to question,
\therefore Required number $=\frac{3 \times 5-4 \times 2}{(3+5)-(4+2)}$
$=\frac{15-8}{8-6}=\frac{7}{2}$
35. (B) According to question Change in volume
$=\left[\left(\frac{100-20}{100}\right)\left(\frac{100+10}{100}\right)\left(\frac{100-25}{100}\right)-1\right] \times 100$
$=\left[\left(\frac{80}{100} \times \frac{110}{100} \times \frac{75}{100}\right)-1\right] \times 100$
$=\left[\frac{33}{50}-1\right] \times 100=\frac{-17}{50} \times 100$
\therefore Its volume decreased by 34%.
36. (A) Let $y=\sin x+\sqrt{3} \cos x$
$\left(\frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x\right)$
$\left[\cos 60^{\circ} \sin x+\sin 60^{\circ} \cos x\right)$
$2 \sin \left(x+60^{\circ}\right)$
when $\sin \left(x+60^{\circ}\right)$ is maximum, then y will be maximum
$\therefore \sin \left(x+60^{\circ}\right)=1=\sin 90^{\circ}$
then
$x+60^{\circ}=90^{\circ}$
then $x+60^{\circ}=90^{\circ}$
$\Rightarrow x=30^{\circ}$
37. (A) Let speed of Anuj $=x \mathrm{~km} / \mathrm{hr}$
and speed of Amit $=y \mathrm{~km} / \mathrm{hr}$
A.T.Q
$\frac{42}{x}-\frac{42}{y}=3$
$\Rightarrow 42 y-42 x=3 x y$
Now, $\frac{42}{y}-\frac{42}{3 x}=\frac{3}{2}$
$252 x-84 y=9 x y$.
Solving equation (i) and (ii) we get,
$84 y-84 x=6 x y$
$\frac{-84 y+252 x=9 x y}{168 x=15 x y}$
$\Rightarrow y=\frac{168}{15}$
$\Rightarrow y=11.2 \mathrm{~km} / \mathrm{hr}$
Hence, speed of Amit $=11.2 \mathrm{~km} / \mathrm{hr}$
38. (B) According to question,

Let

Hence, the cost price is half of marked price
39. (C) According to question,

$$
\begin{aligned}
& 12 \%=\frac{12}{100}=\frac{3}{25}-\mathrm{Profit} \\
& 4 \%=\frac{4}{100}=\frac{1}{25}-\mathrm{Profit} \\
& \mathrm{CP} \\
& \text { SP } \\
& \text { Ist cow } 25 \\
& \text { 2nd cow } 25 \\
& 150 \\
& \begin{array}{ll}
\times 6 & 24 \times 7 \\
\frac{175}{325} & \frac{168}{336}
\end{array}
\end{aligned}
$$

Hence, Profit $\%=\frac{(336-325)}{325} \times 100$
$=3 \frac{5}{13} \%$
40. (C) According to question, Two successive discounts of 40% and 10%
$=40+10-\frac{40 \times 10}{100}=46 \%$
Two successive discounts of 30% and 20%
$=30+20-\frac{30 \times 20}{100}=44 \%$
Hence, required difference
$=\frac{4500}{100} \times(46-44)=₹ 90$
41. (B) A.T.Q,
$\sin 2 \mathrm{~A}=\frac{2 \tan A}{1+\tan ^{2} A}=\frac{\frac{2}{2}}{1+\frac{1}{4}}=\frac{4}{5}$
and, $\cos 2 \mathrm{~B}=\frac{1-\tan ^{2} \mathrm{~B}}{1+\tan ^{2} \mathrm{~B}}=\frac{1-\frac{1}{9}}{1+\frac{1}{9}}=\frac{\frac{8}{9}}{\frac{10}{9}}=\frac{4}{5}$
$\therefore \sin 2 \mathrm{~A}=\cos 2 \mathrm{~B}$
42. (B) According to question,

In $\triangle \mathrm{RPM}$
$\angle \mathrm{RPM}=180^{\circ}-\angle \mathrm{PRM}-\angle \mathrm{PMR}$
$=180^{\circ}-52^{\circ}-44=84^{\circ}$
and, $\angle \mathrm{ORP}=90^{\circ}-\angle \mathrm{PRM}=90^{\circ}-52^{\circ}=38^{\circ}$
$\angle \mathrm{ORP}=\angle \mathrm{OPR}$ (opp. sides are equal OP and OR are radius)
$\angle \mathrm{OPQ}=180^{\circ}-\angle \mathrm{RPM}-\angle \mathrm{OPR}$
$\Rightarrow \angle \mathrm{OPQ}=180^{\circ}-84^{\circ}-38^{\circ}=58^{\circ}$
$\angle \mathrm{POQ}=180^{\circ}-\angle \mathrm{PQO}-\angle \mathrm{QPO}=180^{\circ}-116^{\circ}$
$=64^{\circ}$
43. (C) A.T.Q,
$(55)^{725}=(55)^{724} \times(55)^{1}$
$(73)^{5310}=(73)^{5308} \times(73)^{2}$
$(22)^{853}=(22)^{852} \times(22)^{1}$
Sum of unit place digit $=5+9+2=16$
\therefore Unit's place of expression $=6$

Campus
 K D Campus Pvt. Ltd

44. (B) Let amount $=₹ 700$
S.I = ₹ 300

Principle = ₹ 400
Rate of interest $=\frac{300 \times 100}{15 \times 400}$
= 5% per annum
45. (D) Let amount $=144$ unit

According to question,
S.I $=\left(\frac{144 \times 5 \times 10}{12 \times 100}\right)+\left(144 \times \frac{1}{3} \times \frac{8}{100}\right)+$
$\left(144 \times \frac{1}{4} \times \frac{6}{100}\right)=\left(\frac{600+384+216}{100}\right)$
$=\frac{1200}{100}=12$ unit
when interest is 12 unit, then capital $=144$ unit
when interest is interest ₹ 666, then
capital $=\frac{144}{12} \times 666=₹ 7992$
46. (C)

Income of $z ' s=10 \times 70=₹ 700$
47 (D) According to question,
Price $\alpha(w t)^{2}$
Price $=k(w t)^{2}$
Ratio of gold after breaking $=4: 3: 2$
$=4 x, 3 x, 2 x$
Initial price $=k(4 x+3 x+2 x)^{2}$
$=k(9 x)^{2}$
$=k\left(81 x^{2}\right)$
Price after breaking $=k\left[16 x^{2}+9 x^{2}+4 x^{2}\right]$
$=k\left[29 x^{2}\right]$
losses $=k\left(81 x^{2}-29 x^{2}\right]$
$\Rightarrow 4732=k\left(52 x^{2}\right)$
$\Rightarrow k x^{2}=91$
Initial price $=k\left(81 x^{2}\right)$

$$
=91 \times 81
$$

$$
\text { = ₹ } 7371
$$

48. (A) A.T.Q,

tank filled by P in 7 hours $=7 \times 5=35$ unit tank filled by both P and $\mathrm{Q}=75-35=40$ unit time taken by $\mathrm{Q}=\frac{40}{8}=5$ hours
49. (C) Relative speed of two cars $=\frac{120}{18} \times \frac{18}{5}$
$=24 \mathrm{~km} / \mathrm{hr}$
\therefore Speed of car $=60-24=36 \mathrm{~km} / \mathrm{hr}$
50. (C)

According to question,
$\mathrm{QF}=\mathrm{DF}$ and $\mathrm{FR}=\mathrm{EF}$
$\angle \mathrm{QPR}=60^{\circ}$
In $\triangle \mathrm{PQR}$
Let $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ are α and β
$\therefore \alpha+\beta+60^{\circ}=180^{\circ}$
$\Rightarrow \alpha+\beta=120^{\circ}$
$\angle \mathrm{DFE}=180^{\circ}-\left[180^{\circ}-2 \alpha+180^{\circ}-2 \beta\right]$
$\Rightarrow \angle \mathrm{DFE}=180^{\circ}-\left[360^{\circ}-240^{\circ}\right]$
$\Rightarrow \angle \mathrm{DFE}=180^{\circ}-120^{\circ}=60^{\circ}$
51. (B) A.T.Q

Quantity of oil A in 1200 litre of mix-
ture $=\frac{1200 \times 5}{8}=750 l$
Quantity of oil B in 1200 litre of mix-
ture $=\frac{1200 \times 3}{8}=450 l$
from given ratio
$\frac{3 x}{4}+y=750$
$\Rightarrow y=750-675$
$\Rightarrow y=75$
Hence, required amount $=75 l$
52. (C) Ratio between the light of stick and its shadow $=20: 16=5: 4$
As at the same time the ratio between the tower and its shadow will also be the
same $=5: 4$
\therefore Height of the tower $=\frac{5}{4} \times 60=75 \mathrm{~cm}$
53. (A) According to question,

Total age of husband, wife and son $=44$ $\times 3=132$ years
Increase in their age, when child is 6 years old $=7 \times 3=21$ years
Increases in age of daughter-in-law
$=7$ years
Child's age now $=6$ years
Total age of all five members $=38 \times 5$
= 190 years
Daughters-in-low age at the time of marriage $=190-(132+21+7+6)=24$ years
54. (B) According to question,

The houses meet first
$=$ L.C.M of $2,3,4,5,6=60$
\therefore The numbers of time they meet together
on the same days $=\frac{180}{60}=3$ times
55. (A) According to question,
length of the rectangular sheet
= circumference of base of cylinder
$=44=2 \pi \mathrm{r}$
$\mathrm{r}=7$
and, breath at rectangular sheet $=$ height of cylinder
volume of cylinder $=\pi \mathrm{r}^{2} \mathrm{~h}$
$=\frac{22}{7} \times 7 \times 7 \times 20=3080 \mathrm{~cm}^{2}$
56. (C) According to question,
$\tan 2 \alpha=\frac{h}{60}$
and, $\tan \alpha=\frac{h}{160}$
$\therefore \tan 2 \alpha=\frac{\tan \alpha}{1-\tan ^{2} \alpha}$
$\frac{h}{60}=\frac{\frac{2 h}{160}}{1-\left(\frac{h}{160}\right)^{2}}$
$\frac{h}{60}=\frac{h}{160} \times \frac{(160)^{2}}{(160-h)(160+h)}$
$\frac{h}{60}=\frac{h}{160} \times \frac{(160)^{2}}{(160+h)(160-h)}$
$(160+h)(160-h)=9600 \times 2$
$\Rightarrow 25600=h^{2}=19200$
$\Rightarrow h^{2}=6400$
$\Rightarrow h=80$
\therefore Height of the tower is 40 cm .
57. (A) Ratio of capital of A and $B=25000: 40000$

A's share $=\frac{5}{13}$
B's share $=\frac{8}{13}$
New share of A and B are $\frac{1}{3}$ and $\frac{1}{3}$ respectively.
Ratio of premium is divided between A and B
$\left(\frac{5}{13}-\frac{1}{3}\right)\left(\frac{8}{13}-\frac{1}{3}\right)=\frac{2}{39}: \frac{11}{39}=2: 11$
58. (A) A's gain
$=\left(300000 \times \frac{110}{100}\right)-\left(330000 \times \frac{95}{100}\right)$
= ₹ 16500
59. (B) According to question

His total income from 01.01.2003 to $30.09 .2003=420 \times 9=₹ 3780$
His total income from 01.10.2003 to $01.10 .2004=480 \times 12=₹ 5760$
His income from 01.10.2004 to $01.10 .2005=₹ 540 \times 12=₹ 6480$
His income from 01.10 .2005 to $31.12 .2005=₹ 600 \times 3=₹ 1800$
Average income of his last 3 years
$=₹ \frac{(3780+5760+6480+1800)}{36}$
$=₹ \frac{17860}{36}=₹ 496$
Hence, his pension $=\frac{496}{2}=₹ 248$
60. (A) $24^{4} \times 5^{12}=\left(2^{3} \times 3\right)^{4} \times 5^{12}$
$=\left(2^{3}\right)^{4} \times 3^{4} \times 5^{12}=2^{12} \times 5^{12} \times 3^{4}$
$=81 \times(10)^{12}$
$=81 \times 1000000000000$
\therefore Number of digits $=14$
61. (A) According to question,

In 15 years it will become 32 times of itself.
62. (C)

Area of the play ground $=120 \times 80=9600 \mathrm{~m}^{2}$
Area of the both paths $=\left(2 \times 80+2 \times 120-2^{2}\right)$
$=160+240-4=396 \mathrm{~m}^{2}$
Area of remaining ground $=9600-396$
$=9204 \mathrm{~m}^{2}$
63. (A)

$\mathrm{DE}=\mathrm{EA}+\mathrm{AD}=(9+6)=15 \mathrm{~cm}$
DE radius of the circle
$\therefore \mathrm{DB}=15 \mathrm{~cm}$ (radius of circle) and $\mathrm{AC}=\mathrm{DB}$
(Diagonals of rectangle are equal in length)

$$
\mathrm{AC}=15 \mathrm{~cm}
$$

In $\triangle \mathrm{ADC}$
$\mathrm{DC}^{2}=\mathrm{AC}^{2}-\mathrm{AD}^{2}=15^{2}-9^{2}=225-81$
$\Rightarrow \mathrm{DC}^{2}=144$
$\Rightarrow \mathrm{DC}=12 \mathrm{~cm}$
\therefore Perimeter of rectangle ABCD
$=2(12+9)=42 \mathrm{~cm}$
64. (B) According to question,
$40 \%=\frac{40}{100}=\frac{2}{5}$
Initial Now
$5 \quad 7$
$\underline{28}$
140
$\Rightarrow \frac{140 \times 110}{100}=154$
\therefore Required consumption $=\frac{154}{7}=22 \mathrm{~kg}$
65. (B) Let, $x=1+\frac{4}{7}+\frac{9}{7^{2}}+\frac{16}{7^{3}}$

Divided by 7
$\frac{x}{7}=\frac{1}{7}+\frac{4}{7^{2}}+\frac{9}{7^{3}}+\frac{16}{7^{4}}$

Subtracting equation (ii) from (i)
$\frac{6 x}{7}=1+\frac{3}{7}+\frac{5}{7^{2}}+\frac{7}{7^{3}}$
Divide by 7
$\frac{6 x}{49}=\frac{1}{7}+\frac{3}{7^{2}}+\frac{5}{7^{3}}$
subtracting (iv) from (iii)
$\frac{36 x}{49}=1+\frac{2}{7}+\frac{2}{7^{2}}+\frac{2}{7^{3}} \ldots \ldots$.
$\Rightarrow \frac{36 x}{49}-1=\frac{2}{7}+\frac{2}{7^{2}}+\frac{2}{7^{3}} \ldots$.
$\mathrm{S}_{\infty}=\frac{a}{1-r}$
$\therefore \frac{36 x}{49}-1=\frac{\frac{2}{7}}{1-\frac{1}{7}}$
$\Rightarrow \frac{36 x}{49}=\frac{4}{3}$
$\Rightarrow x=\frac{49}{27}$
66. (A) $13^{2}+84^{2}=85^{2}$
$\Rightarrow 169+7056=7225$
$\Rightarrow 7225=7225$
\therefore Area of triangle $=\frac{1}{2} \times 13 \times 84=546 \mathrm{~cm}^{2}$
67. (D) Amount due in 4 years $=22000 \times\left(\frac{125}{100}\right)$

A = ₹ 27500
Amount of each annual installment
$=\frac{100 A}{100 \times t+\frac{t(t-1) r}{2}}$
$=\frac{100 \times 27500}{100 \times 5+\frac{5 \times 4 \times 5}{2}}$
$=\frac{100 \times 27500}{550}=₹ 5000$
68. (A) Covered surface area of cone $=\pi r l$
$l=\sqrt{r^{2}+h^{2}}$
$l=\sqrt{8^{2}+6^{2}}=10 \mathrm{~cm}$
A.T.Q
$\pi \times 8 \times 10=2 \pi \times 4 \times h \times 2$
$\mathrm{h}=5 \mathrm{~cm}$
Height of cylinder $=5 \mathrm{~cm}$
69. (A)

In Δ ROS
$\angle \mathrm{ROS}=60^{\circ}(\mathrm{OS}=\mathrm{OR}=\mathrm{RS})$
and $\angle \mathrm{RQS}=\frac{1}{2} \angle \mathrm{ROS}$
(\because The angle subtended by arc at centre is double of angle subtended by arc at any point)
$\angle \mathrm{RQS}=30^{\circ}$
and
$\angle \mathrm{PRQ}=90^{\circ}$ (angle in the semi-circle)
$\angle \mathrm{TRQ}=180^{\circ}-90^{\circ}=90^{\circ}$
In RQT
$\angle \mathrm{RTQ}=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}$
$\therefore \angle \mathrm{RTQ}=60^{\circ}$
70. (B) Rate $=\frac{80}{5}=16 \%$
$16 \%=\frac{16}{100}=\frac{4}{25}$
Principal $=20000$
Ist year interest $=3200$
IInd year interest $=3200+512$
3 rd year interest $=3200+1024+81.92$
$=11217.92$
71. (B) Due to stoppages, bus travels less km $=(80-72) \mathrm{km}=8 \mathrm{~km}$
\therefore Time taken to cover $=\frac{8}{80} \times 60=6 \mathrm{~m}$
72. (B) Speed 119
distance $\quad 9 \quad 11$
time taken to cover distance 63 km is $1 \mathrm{hr} 40 \mathrm{~min} .48 \mathrm{sec}=1+40+\frac{48}{60}$
$=\frac{126}{75} \mathrm{hr}$
Speed of the train $=\frac{63}{126} \times 75 \mathrm{~km} / \mathrm{hr}$
9 unit $=\frac{75}{2}$
1 unit $=\frac{75}{2 \times 9}$
11 unit $=\frac{75}{2 \times 9} \times 11=45.53 \mathrm{~km} / \mathrm{hr}$
73. (D) Sum of interior angle and exterior angle of a polygon is 180°
We know that,
Exterior angle of a polygon $=\frac{360^{\circ}}{n}$
\therefore Interior angle of a polygon
$=180^{\circ}-\frac{360^{\circ}}{n}$
A.T.Q
$\Rightarrow\left(180^{\circ}-\frac{360^{\circ}}{n}\right)=8\left(\frac{360^{\circ}}{n}\right)$
$180^{\circ}=\frac{9 \times 360^{\circ}}{n}$
$n=18$
\therefore Number of sides $=18$
74. (D) A.T.Q
$\frac{4}{3} \pi \mathrm{r}^{3}=\frac{1}{3} \pi \mathrm{R}^{3}$
[r : radius of smaller sphere]
[R : radius of larger sphere]
$\Rightarrow r^{3}=\frac{R^{3}}{4}$
$\Rightarrow r=\frac{R}{\sqrt[3]{4}}$
$\therefore \frac{\text { surface area of smaller sphere }}{\text { surface area of larger sphere }}$
$=\frac{4 \pi r^{2}}{4 \pi R^{2}}=\left(\frac{R}{\sqrt[3]{4}}\right)^{2}: R^{2}=1:(\sqrt[3]{4})^{2}$
$=1: 2^{4 / 3}$
75. (D) A.T.Q
$a b+b c+c a=0$ and
$c(a+b)=-a b$
then,
$a(b+c)=-b c$
and $b(c+a)=-c a$
$\Rightarrow\left(\frac{(a-b)}{c(a+b)(a-b)}\right)+\frac{(b-c)}{c(b+c)(b-c)}+\left(\frac{c-a}{b(c+a)(c-a)}\right)$
$=\frac{c+a+b}{-a b c}$
$=\frac{-a-b-c}{a b c}$
76. (A) A.T.Q
\Rightarrow Total volume of three cubes $=(4)^{3}+$
$(5)^{3}+(6)^{3}=64+125+216=405 \mathrm{~cm}^{2}$
\Rightarrow Remaining material
$=405 \times\left[\left(100-\frac{140}{3}\right) / 100\right]=216 \mathrm{~cm}^{3}$
\therefore volume of new cube $=216 \mathrm{~cm}^{3}$ radius
Hence, Sides of new cube $=\sqrt[3]{216} \mathrm{~cm}^{3}$
$=6 \mathrm{~cm}$
77. (A) A.T.Q
$x+\frac{2}{x}=3 \Rightarrow x^{2}-3 x=-2$
$\Rightarrow(x-1)(x-2)=0$
$\Rightarrow x=1,2$
Now,
$\frac{x^{4}+x^{3}+2 x+4}{x^{4}-3 x^{3}}=\frac{1+1+2+4}{1-3}=-4$
78. (D) A.T.Q
$\Rightarrow \sqrt{1+\frac{195}{289}}=1+\frac{x}{17}$
$\Rightarrow \sqrt{\frac{484}{289}}=\frac{22}{17}=1+\frac{x}{17}$
$\Rightarrow x=5$
Hence, required value of $x=5$
79. (A) A.T.Q
$\Rightarrow[5 M+3 B] \times 7=[9 M+5 B] \times 4$
$\Rightarrow 35 \mathrm{M}+21 \mathrm{~B}=36 \mathrm{M}+20 \mathrm{~B}$
$\Rightarrow M=B$
$\Rightarrow \frac{M}{B}=\frac{1}{1}$
Total wages paid $=₹ 6000$
\Rightarrow Ratio of wages of boys and men $=2: 3$
\Rightarrow Amount paid to boy $=\frac{6000}{5} \times 2=₹ 2400$
\Rightarrow Amount paid a boy in a day $=\frac{2400}{6 \times 4}$
$=₹ 100$
80. (B) A.T.Q
$a^{2}+b^{2}+c^{2}=25, x^{2}+y^{2}+z^{2}=36$ and $a x$
$+b y+c z=0$
then,
put $a=5, b=0, c=0 \quad$ and
$x=6, y=0, z=0$
Satisfy all the three equations
\therefore Hence, $\frac{a^{2}+b^{2}+c^{2}}{x^{2}+y^{2}+z^{2}}=\frac{(5)^{2}}{(6)^{2}}=\frac{25}{36}$
81. (A) A.T.Q

Area of the trapezium
$=\frac{1}{2}($ sum of parallel sides $) \times h$
$\Rightarrow 416=\frac{1}{2} \times 13 x \times \frac{4}{13} \times 13 x$
$\Rightarrow x=4 \mathrm{~cm}$
\therefore Height of trapezium $=4 \times 4=16 \mathrm{~cm}$ length of parallel sides $=8 \times 4$ and 5×4
$=32 \mathrm{~cm}$ and 20 cm
$\Rightarrow A s$ it is a isosceles trapezium
$\therefore \mathrm{AE}=\mathrm{BF}=6 \mathrm{~cm}$
In $\triangle \mathrm{AFC}, \angle \mathrm{F}=90^{\circ}$
$\therefore \mathrm{AC}^{2}=\mathrm{AF}^{2}+\mathrm{FC}^{2}=(26)^{2}+(16)^{2}$
$\Rightarrow \mathrm{AC}=\sqrt{676+256}=\sqrt{932}$
$\Rightarrow A C=2 \sqrt{233} \mathrm{~cm}$
82. (B) A.T.Q

Average number of factories of village
A in given years
$=\frac{75+125+175+200+275+300}{6}$
$=\frac{1150}{6}=191.67$
\therefore In 2015, 2016 and 2017 year number of factories of village A is more than the average number of factories village.
Hence, required number $=3$
83. (A) A.T.Q

Required $\%=\frac{100 \times 100}{175}=57.14 \%$

Campus
 K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
84. (B) A.T.Q

Required percentage $=\frac{25}{125} \times 100=20 \%$
85. (B) Number of factories of village A in 2013 and $2014=125+175=300$

Number of factories village B in 2016 and $2017=200+250=450$

Required $\%=\frac{300}{450} \times 100=66 \frac{2}{3} \%$
86. (A) A.T.Q

Total number of factories in village A over years
$=75+125+175+200+275+300=1150$
Total number of factories in village B over the years $=125+100+100+175+$ $200+250=950$
Hence, Required ratio $=1150: 950$

$$
=23: 19
$$

87. (A) A.T.Q
$\Rightarrow \mathrm{AM}=\frac{7 \tan \theta+8 \cot \theta}{2}$
$\mathrm{GM}=\sqrt{56}$
By the AM, GM inequality, then,
$\Rightarrow \frac{7 \tan \theta+8 \cot }{2} \geq \sqrt{56}$
$\Rightarrow 7 \tan \theta+8 \cot \geq 4 \sqrt{14}$
Hence, the minimum of $7 \tan \theta+8 \cot \theta$ is $4 \sqrt{14}$
88. (C) A.T.Q

$$
\begin{aligned}
& \operatorname{cosec} \theta\left(\frac{1+\cos }{\sin \theta}+\frac{\sin \theta}{1+\cos \theta}\right)-2 \cot ^{2} \theta \\
& =\operatorname{cosec} \theta\left(\frac{1+\cos }{\sin \theta}+\frac{\sin \theta}{1+\cos \theta}\right)-2 \cot ^{2} \theta \\
& =\operatorname{cosec} \theta\left(\frac{(1+\cos \theta)^{2}+\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}\right)-2 \cot ^{2} \theta \\
& =\operatorname{cosec} \theta\left(\frac{2+2 \cos \theta}{\sin \theta(1+\cos \theta)}\right)-2 \cot ^{2} \theta \\
& =\operatorname{cosec} \theta\left(\frac{2(1+\cos \theta)}{\sin \theta(1+\cos \theta)}\right)-2 \cot ^{2} \theta \\
& =2 \operatorname{cosec}{ }^{2} \theta-2 \cot ^{2} \theta \\
& =2\left(\operatorname{cosec}{ }^{2} \theta-\cot ^{2}\right) \\
& =2 \times 1=2
\end{aligned}
$$

89. (B) A.T.Q
$x^{2}=p^{2} \cos ^{2} \theta \sec ^{2} \alpha$
$y^{2}=q^{2} \cos ^{2} \theta \tan ^{2} \alpha$
$z^{2}=r^{2} \sin ^{2} \theta$
$\therefore \frac{x^{2}}{p^{2}}-\frac{y^{2}}{q^{2}}+\frac{z^{2}}{c^{2}}$
$=\cos ^{2} \theta \sec ^{2} \alpha-\cos ^{2} \theta \tan ^{2} \alpha+\sin ^{2} \theta$
$=\cos ^{2}\left(\sec ^{2} \alpha-\tan ^{2} \alpha\right)+\sin ^{2} \theta$
$=\cos ^{2} \theta+\sin ^{2} \theta$
$\Rightarrow \frac{x^{2}}{p^{2}}-\frac{y^{2}}{q^{2}}+\frac{z^{2}}{r^{2}}=1$
90. (C) A.T.Q
$=\left(\frac{\sec ^{2} \theta}{\tan ^{2} \theta}-1\right)+\left(\frac{\tan ^{2} \theta}{\sec ^{2} \theta}-1\right)+2$
$=\left(\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\tan ^{2} \theta}\right)+\left(\frac{\tan ^{2} \theta-\sec ^{2} \theta}{\sec ^{2} \theta}\right)+2$
$=\frac{1}{\tan ^{2} \theta}-\frac{1}{\sec ^{2} \theta}+2$
$=\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\tan ^{2} \theta \sec ^{2} \theta}+2$
$=\frac{1}{\left(1+\tan ^{2} \theta\right) \tan ^{2} \theta}+2$
$=\frac{1}{\tan ^{2} \theta+\tan ^{4} \theta}+2$
91. (B) Let daily average income of men $=₹ x$
\therefore daily average income of women
$=₹(x-10)$
\therefore Daily average income of boys $=(x-20)$
A.T.Q
$6(x)+9(x-10)+2(x-20)=237.5 \times 17$
$\Rightarrow 6 x+9 x-90+2 x-40=₹ 4037.5$
$\Rightarrow 17 \mathrm{x}=4037.5+130$
$\Rightarrow x=\frac{4167.5}{17}=₹ 245.14$
92. (B) Let, number of friends who attended picnic $=x$
According to the question,
$\frac{10800}{x}-\frac{10800}{x+20}=18$
$\Rightarrow x=100$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

93. (B) Let the volume of water in one litre of mixture $=a$
A.T.Q
a. $1000+(1-a) 1450=1150$
$\Rightarrow 1000 a+1450-1450 a=1150$
$\Rightarrow 450 a=300$
$\Rightarrow \mathrm{a}=\frac{2}{3}$
\therefore Required ratio $=2: 1$
94. (D) A.T.Q
$p\left[p^{2}+3 p+3\right]=p^{3}+3 p^{2}+3 p$
Subtracting and adding 1 in equation (i) we get
$\Rightarrow p^{3}+1+3 p^{2}+3 p-1=(p+1)^{3}-1$
$=(99+1)^{3}-1=1000000-1=999999$
95. (B) $3 \times 304=912$
and $3 \times 340=1020$
\therefore multiples of $3=37$
$7 \times 131=917$
and, $7 \times 145=1015$
\therefore multiples of $7=15$
and multiple of $21=5$
Hence, total number of multiples
$=37+15-5=47$
96. (A) Population of village E below poverty line $=\frac{52}{100}\left(\frac{54000}{27} \times 15\right)=15600$
97. (C) Let total population $=x$ A.T.Q

$$
\begin{aligned}
& \frac{x \times 21}{100} \times \frac{46}{100}: \frac{x \times 11}{100} \times \frac{42}{100} \\
& \Rightarrow 23: 11 \\
& \therefore \text { Required ratio }=23: 11
\end{aligned}
$$

98. (C) Population of $\mathrm{E}=15600 \times \frac{100}{52}=30,000$

Required population

$$
=\frac{30000}{15} \times 10 \times \frac{58}{100}=11600
$$

99. (B) Required ratio

$$
=\frac{x \times 21}{100} \times \frac{46}{100}: \frac{x \times 27}{100} \times 54=161: 243
$$

100. (A) Required \%

11600
(see question number 98)

SSC TIER II (MATHS) MOCK TEST - 28 (ANSWER-KEY)

| 1. | (C) | 11. | (C) | 21. | (A) | 31. | (D) | 41. | (B) | 51. | (B) | 61. | (A) | 71. | (B) | 81. | (A) | 91. | (B) |
| :--- |
| 2. | (C) | 12. | (C) | 22. | (A) | 32. | (C) | 42. | (B) | 52. | (C) | 62. | (C) | 72. | (B) | 82. | (B) | 92. | (B) |
| 3. | (D) | 13. | (C) | 23. | (D) | 33. | (D) | 43. | (C) | 53. | (A) | 63. | (A) | 73. | (D) | 83. | (A) | 93. | (B) |
| 4. | (A) | 14. | (D) | 24. | (B) | 34. | (D) | 44. | (B) | 54. | (B) | 64. | (B) | 74. | (D) | 84. | (B) | 94. | (D) |
| 5. | (B) | 15. | (C) | 25. | (B) | 35. | (B) | 45. | (D) | 55. | (A) | 65. | (B) | 75. | (D) | 85. | (B) | 95. | (B) |
| 6. | (A) | 16. | (D) | 26. | (C) | 36. | (A) | 46. | (C) | 56. | (C) | 66. | (A) | 76. | (A) | 86. | (A) | 96. | (A) |
| 7. | (A) | 17. | (A) | 27. | (B) | 37. | (A) | 47 | (D) | 57. | (A) | 67. | (D) | 77. | (A) | 87. | (A) | 97. | (C) |
| 8. | (A) | 18. | (A) | 28. | (A) | 38. | (B) | 48. | (A) | 58. | (A) | 68. | (A) | 78. | (D) | 88. | (C) | 98. | (C) |
| 9. | (B) | 19. | (C) | 29. | (A) | 39. | (C) | 49. | (C) | 59. | (B) | 69. | (A) | 79. | (A) | 89. | (B) | 99. | (B) |
| 10. | (B) | 20. | (C) | 30. | (A) | 40. | (C) | 50. | (C) | 60. | (A) | 70. | (B) | 80. | (B) | 90. | (C) | 100. | (A) |

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

