K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SSC TIER II (MATHS) MOCK TEST - 27 (ANSWER KEY)

1. (C)	11. (A)	21. (D)	31. (C)	41. (C)	51. (B)	61. (A)	71. (D)	81. (B)	91. (B)
2. (A)	12. (D)	22. (B)	32. (A)	42. (A)	52. (C)	62. (C)	72. (B)	82. (D)	92. (A)
3. (B)	13. (A)	23. (B)	33. (A)	43. (A)	53. (C)	63. (A)	73. (A)	83. (B)	93. (C)
4. (D)	14. (B)	24. (D)	34. (D)	44. (D)	54. (A)	64. (B)	74. (D)	84. (D)	94. (C)
5. (A)	15. (A)	25. (B)	35. (C)	45. (A)	55. (D)	65. (C)	75. (C)	85. (C)	95. (D)
6. (B)	16. (C)	26. (D)	36. (B)	46. (B)	56. (C)	66. (B)	76. (A)	86. (D)	96. (B)
7. (B)	17. (B)	27. (A)	37. (B)	47. (B)	57. (D)	67. (D)	77. (B)	87. (B)	97. (C)
8. (A)	18. (D)	28. (C)	38. (B)	48. (C)	58. (B)	68. (A)	78. (B)	88. (C)	98. (A)
9. (C)	19. (B)	29. (B)	39. (A)	49. (B)	59. (D)	69. (B)	79. (C)	89. (B)	99. (A)
10. (B)	20. (B)	30. (B)	40. (B)	50. (D)	60. (B)	70. (C)	80. (B)	90. (A)	100. (D)

SSC TIER II (MATHS) MOCK TEST - 27 (SOLUTION)

1. (C) Let the number be x.

Then,
A.T.Q,
$x^{2}=45 x-350$
Using options, we get $x=35$
2. (A)

	889
8	789654
8	64
168	1496
8	1344
1769	-15254
9	15921
	667

So, 667 must be added to obtain a perfect square.
3. (B) HCF of 36 and $40=4$

Then,
Pieces of pipe of length $36 \mathrm{~m}=\frac{36}{4}=9$
and, pieces of pipe of length $40 \mathrm{~m}=\frac{40}{4}=10$
Now, total pieces $=9+10=19$
4. (D) Percentage error
$=\frac{\frac{4}{3}-\frac{3}{4}}{\frac{4}{3}} \times 100=\frac{700}{16}=43 \frac{3}{4} \%$
5. (A) A.T.Q,

5 times the quotient $=8$ times the remainder
So, quotient $=\frac{8 \times 35}{5}=56$
We know that,
Dividend $=$ divisor \times quotient + Remainder
$=5 \times 56 \times 56+35=15715$
6. (B) LCM of 36,54 and $81=324$

So, timing of next beep $=324 \mathrm{sec}$.
i e, 5 min 24 sec .
\therefore Required time $=7: 5: 24$
7. (B) Area of the square field $=15750.25 \mathrm{~m}^{2}$

So, side of the field $=\sqrt{15750.25}=125.5 \mathrm{~m}$
Total Distance travelled $=4 \times 125.5=502 \mathrm{~m}$
Then, total time taken $=\frac{502}{\frac{251}{80}}=160 \mathrm{sec}$.

$$
=2 \min 40 \mathrm{sec} .
$$

8. (A) Let first person has ₹ x

Then, second person will have $₹(1080-x)$ A.T.Q,
$x-270=1080-x+270$
$\Rightarrow 2 x=1080+540$
$\Rightarrow 2 x=1620$
$\Rightarrow x=810$
9. (C) Remainder when 1351 is divided by $15=1$ Remainder when 1352 is divided by $15=2$ Remainder when 1353 is divided by $15=3$ Then, required remainder $=1 \times 2 \times 3=6$
10. (B) HCF of the two numbers $=84$

$$
\text { and, LCM = } 1260
$$

Let the numbers be $84 x \& 84 y$ Then,
Product of the numbers $=\mathrm{HCF} \times \mathrm{LCM}$

$$
\begin{gathered}
84 x \times 84 y=84 \times 1260 \\
x y=15
\end{gathered}
$$

Here, we get $x=3, y=5$
Now, sum of the numbers $=84(3+5)$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
11. (A)

Work done by A, B and C in one day
$=6+12-3=15$ units
Now, time taken by A, B and C to complete
the work $=\frac{60}{15}=4$ days
12. (D) A. T. Q,
$10 \mathrm{M} \times 16=12 \mathrm{~W} \times 20$
$\frac{\mathrm{M}}{\mathrm{W}} \underset{ }{\rightarrow}=\frac{3}{2}$
Let now work will be completed in x days.

$$
\begin{aligned}
& \frac{(10 \mathrm{M}) \times 16}{1}=\frac{(8 \mathrm{M}+15 \mathrm{~W}) x}{3} \\
& \Rightarrow 10 \times 3 \times 6=\frac{8 \times 3+15 \times 2}{3} \times x \\
& \Rightarrow x=\frac{10 \times 3 \times 16 \times 3}{24+30}=26 \frac{2}{3} \text { days }
\end{aligned}
$$

13. (A) Efficiency

A $\quad 4$
B $\quad 1$
Now, time taken by A to complete the
work $=\frac{(\text { efficiency of A and B) } \times 40}{\text { efficiency of A }}$
$=\frac{(4+1) \times 40}{4}=50$ days
14. (B)

Work done by A in 2 days
$=15 \times 2=30$ units
Work can be done by B in 4 days
$=12 \times 4=48$ units
Now, remaining work $=180-30+48$

$$
=198 \text { units }
$$

Now, time taken by B and C to complete the remaining work $=\frac{198}{10+12}=\frac{198}{22}$

$$
=9 \text { days }
$$

\therefore Total time taken $=9+2=11$ days.
15. (A) Let pipe B takes x hours to fill the tank then, pipe A will take $(x+5)$ hours Now, A.T.Q,
$\frac{1}{x}+\frac{1}{x+5}=\frac{1}{6}$
On solving, we get $x=10$ hours.
16. (C) Let Balram takes x days to complete the work Then,
Ram will take $(x+4)$ days and Shyam will take $(x+9)$ days
Now, A.T.Q, $\quad \frac{1}{x+4}+\frac{1}{x+9}=\frac{1}{x}$
On solving, we get $x=6$
\therefore Time taken by C to complete the work $=6+9=15$ days
17. (B) 20% profit $\rightarrow \frac{6}{5} \rightarrow \mathrm{SP} \times 2$
20% loss $\rightarrow \frac{4}{5} \rightarrow \mathrm{SP} \times 3$
Here, we get,
$\mathrm{CP}_{1}=10, \mathrm{CP}_{2}=15$ and $\mathrm{SP}=12$
Total $\mathrm{CP}=15+10=25$
Total SP $=12 \times 2=24$
Loss $=25-24=1$ unit
A.T.Q

12 units $=360 \Rightarrow 1$ unit $=₹ 30$ loss
\therefore Total loss $=₹ 30$
18. (D)
S.P. C.P
$\begin{array}{lll}\text { I } & 11 & 10\end{array}$
$\begin{array}{lll}\text { II } & 7 & 8\end{array}$
III $12 \quad 10$
A.T.Q,

Then, total S.P. $=\operatorname{LCM}$ of $(11,7,12) \times 3$
$=924 \times 3=2772$
Then, total C.P $=840+1056+770=2666$
Hence, profit $=\left(\frac{2772-2666}{2666}\right) \times 100$
$=\frac{106}{2666} \times 100=3.97 \%$
19. (B) A.T.Q,
S.P. after two successive discounts
$=120 \times \frac{19}{20} \times \frac{19}{20}=108.3$
Profit $\Rightarrow 12 \frac{13}{16} \%=\frac{41}{320} \rightarrow$ Profit
$\mathrm{SP}=320+41=361$
$C P=320$
Now,
361 units $=108.3$
$\Rightarrow 1$ unit $=\frac{108.3}{361}$
Now, CP $=320$ units $=\frac{108.3 \times 320}{361}=96$
\therefore CP of the article $=₹ 96$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
20. (B) 25% loss $\Rightarrow \frac{3}{4} \rightarrow \mathrm{SP}, \mathrm{CP}$)
loss $=4 x-3 x=x$
$33 \frac{1}{3} \%$ profit $\left.\Rightarrow \frac{4}{3} \rightarrow \mathrm{SP}, \mathrm{CP}\right)$
Profit $=4 y-3 y=y$
A.T.Q,
$y-x=12.5-(1)$
and, $4 x+3 y=720-(2)$
On solving we get,
$3 y=330$ and $4 x=390$
\therefore cost of price of lower priced article
$=3 y=₹ 330$
21. (D) difference in profit $=15-6=9 \%$
$9 \%=180$
$\Rightarrow 1 \%=20$
$\Rightarrow \mathrm{CP}=100 \%=20 \times 100=₹ 2000$
22. (B) Net discount $=\frac{1}{5} \times 100=20 \%$
23. (B) A.T.Q,
$3 x+5 x+7 x+48+54+69=3546$
$\Rightarrow 15 x=3546-171$
$\Rightarrow 15 x=3375 \Rightarrow x=225$
Then, share of second person
$=5 x+54=225 \times 5 \times 54=₹ 1179$
24. (D) Using options,

We get $x=1, y=4$
$\therefore x+y=5$
25. (B)

	Milk	Water
I	5	$3 \rightarrow 8 \times 3 \times \mathbf{4}$
II	2	$1 \rightarrow 3 \times 8 \times \mathbf{5}$
III	7	$5 \rightarrow 12 \times 2 \times \mathbf{6}$

[Multiplied according to their capacity]
Now, ratio of milk and water in the new mixture
$5 \times 12+2 \times 40+7 \times 12: 3 \times 12+1 \times 40+5 \times 12$
$\Rightarrow 60+80+84: 36+40+60 \Rightarrow 28: 17$
\therefore Ratio of water and milk $=17: 28$
26. (D) Wine : Water
$1 \begin{array}{ll}3 & 1 \\ 2 & 2\end{array}$
Mixture that is drawn off $=\frac{1}{3}$ part $=\frac{1}{3} \times 24$ $=8$ Litres
27. (A) Difference in the temperature of Monday and Thursday $=(30-27) \times 3=9^{\circ} \mathrm{C}$
Let the temperature of Thursday be $\mathrm{T}^{\circ} \mathrm{C}$
Then, Difference of temperature of
Monday and Thursday $=T-\frac{2 T}{3}=9$
$\Rightarrow \mathrm{T}=27^{\circ} \mathrm{C}$
Temperature of Thursday $=27^{\circ} \mathrm{C}$
28. (C) Distance covered at the speed of $40 \mathrm{~km} / \mathrm{h}$ and $10 \mathrm{~km} / \mathrm{h}$ are equal.
So, average speed
$=\frac{2 \times 40 \times 10}{40+10}=16 \mathrm{~km} / \mathrm{h}$
Now, the distance covered at the speed of $80 \mathrm{~km} / \mathrm{h}$ and $16 \mathrm{~km} / \mathrm{h}$ equal.
So, average speed $=\frac{2 \times 80 \times 16}{80+16}$

$$
=26.66 \mathrm{~km} / \mathrm{h}
$$

29. (B) Age of the two women $=(33+37)+3 \times 12$

$$
=70+36=106
$$

So, average age of two women
$=\frac{106}{2}=53$ years
30. (B) The weight of the teacher
$=40+40 \times(500 \mathrm{gm})$
$=40+20=60 \mathrm{Kg}$.
31. (C) The multiples of 3 are

3, 6, 9, 12 . \qquad
It forms an AP whose first term is 3 and common difference is also 3.
Then,
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$=\frac{15}{2}[2 \times 3+(15-1) 3]$
$=15 \times 24=360$
Then, required average $=\frac{360}{15}=24$
32. (A) Abhi Bablu Surbhi
$75 \quad 100 \quad 60$
Abhi's goods are 25% costlier than Surbhi's Then,
The selling price of the goods of Surbhi
$=75 \times \frac{100}{125}=60$
Then,
Required percentage $=\frac{100-60}{100} \times 100=40 \%$
33. (A) 30% hike $\Rightarrow \frac{3}{10}$
quantity should be reduced
$=\frac{3}{10+3}\left(\frac{\text { Numerator }}{\text { Numerator }+ \text { Denominator }}\right)$
$\left(\frac{3}{13}\right)$ units $=4.5 \mathrm{~kg}$
So, original quantity $=\frac{4.5 \times 13}{3}=\frac{39}{2} \mathrm{~kg}$.
Then, original Price $=\frac{390}{39} \times 2=₹ 20 / \mathrm{kg}$.

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

34. (D) Let the quantity sold be x and new price per article be y.
Then,
A.T.Q,
$\frac{3 x}{2} \times y=250 x \times\left(\frac{100-17.5}{100}\right)$
On solving we get, $y=137.5$
\therefore Reduction in price $=250-137.5=₹ 112.5$
35. (C)

Remaining money $=100-(25+15+30)$
= 30 units
A.T.Q,

30 units $=12000$
\therefore Salary of Vivek $=₹ 40,000$
$\Rightarrow 100$ units $=\frac{12000}{30} \times 100=₹ 40,000$
36. (B) Maths \Rightarrow Passed -70%

Failed - 30\%
English \Rightarrow Passed - 60\%
Failed - 40\%
Now, failed in both the subjects $=20 \%$
Then, passed in both the Subjects
$=100-(30+40-20)=50$
A.T.Q,
$50 \%=500$
Then, $100 \%=\frac{500}{50} \times 100=1000$
\therefore Number of total students $=1000$
37. (B) Let the quantity of ore required be x.
A.T.Q,
$x \times \frac{30}{100} \times \frac{80}{100}=120$
$\Rightarrow x=\frac{120 \times 100 \times 100}{30 \times 80}=500 \mathrm{~kg}$.
38. (B) Let the percentage increment in the salary be $\mathrm{r} \%$.
Then, using the concept of compound interest

10,000 $\left(1+\frac{r}{100}\right)^{2}=11025$
On solving, we get $\mathrm{r}=5$
39. (A) Required discount $=\frac{(112.5-108)}{112.5} \times 100$

$$
=4 \%
$$

40. (B) A.T.Q,
$(40-25)$ units $=1.5$
100 units $=\frac{1.5}{15} \times 100=10$
\therefore CP of each apple $=₹ 10$
41. (C)

Now, percentage profit
$=\frac{(150-80)}{80} \times 100$
$=\frac{70}{80} \times 100=87.5 \%$
Then, percentage change in percentage
profit $=\frac{87.5-25}{25} \times 100=250 \%$
42. (A)
$\begin{array}{lll} & \text { A } & \text { B } \\ \text { Income } & 3 & 4 \\ \text { expenditure } & 5 & 9\end{array}$
$\left.\begin{array}{ccc}\text { New ratio } \Rightarrow & \mathrm{A} & \mathrm{B} \\ \text { Income } & \\ \text { Expenditure } & 7 \mathrm{C}_{5}^{12} & 16\end{array}\right) 7$
A.T.Q,

7 units $=6300$
\Rightarrow 1unit $=900$
Then,
Difference between their salary
$=4 \times 900=₹ 3600$
43. (A) Speed 43

Time

$(4-3)=1$ unit $=16$ minute.
Then, usual time $=16 \times 3=48 \mathrm{Min}$.
44. (D) Rachit $\rightarrow 1000 \mathrm{~m}$.

Suchit $\rightarrow 960 \mathrm{~m}$.
A.T.Q,

40 m travelled by Suchit in 20 seconds.
Then, time taken by Suchit to travel 1000
metre $=\frac{20}{40} \times 1000=500 \mathrm{sec}$.
Now, Time taken by Rachit $=500-20$
$=480 \mathrm{Sec} .=8 \mathrm{Min}$.

K D Campus Pvt. Ltd

 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-11000945. (A) Let their speed be V_{A} and V_{B}
A.T.Q,
$\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}=\frac{30}{\frac{1}{2}}$
$\Rightarrow V_{A}+V_{B}=60$ \qquad
and $V_{A}-V_{B}=\frac{30}{6}$
$\Rightarrow V_{A}-V_{B}=5$. \qquad
On solving equation (i) and (ii), we get, $\mathrm{V}_{\mathrm{A}}=\frac{60+5}{2}=32.5 \mathrm{~km} / \mathrm{h}$
46. (B) Compound interest $=\mathrm{P}\left(\left(1+\frac{r}{100}\right)^{2}-1\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(\frac{r}{100}\right)\left(2+\frac{r}{100}\right) \\
& \Rightarrow \mathrm{P}\left(\frac{1}{8}\right) \times\left(2+\frac{1}{8}\right)=3185.5 \\
& \Rightarrow \mathrm{P}=\left(\frac{3187.5 \times 8 \times 8}{17}\right)=₹ 12000
\end{aligned}
$$

47. (B) Let the amount of money he had borrowed be x.
Then, A.T.Q,
$\left(x \times \frac{16}{15}-3200\right) \times\left(\frac{16}{15}\right)=5120$
On solving we get, $x=7500$
\therefore amount of money he had borrowed
= ₹ 7500
48. (C) Let the principal amount be 1
A.T.Q

Simple interest $=4-1=3$
Then,
$\frac{1 \times r \times 10}{100}=3$
$\Rightarrow r=30 \%$
$\Rightarrow r=30 \%$
49. (B) Difference between simple interest and compound interest for 3 years.
$=P\left(\frac{r}{100}\right)^{2}\left(3+\frac{r}{100}\right)$
$\Rightarrow P\left(\frac{1}{8}\right)^{2}\left(3+\frac{1}{8}\right)=125$
$\Rightarrow \mathrm{P}=\frac{125 \times 8 \times 8 \times 8}{25}=2560$
\therefore Principal amount $=₹ 2560$
50. (D) Let CP of 15 article be ₹ 15

Then, discount $=15 \times 6 \frac{2}{3} \%=₹ 1$
article which is free of cost $=1$
Total discount on 16 articles $=₹ 2$
A.T.Q,
$\frac{14}{16} \rightarrow \mathrm{SP}$
$\begin{aligned} 7 & \rightarrow \text { SP } \\ 8 & \rightarrow \mathrm{MP}\end{aligned}$
Now, 40% profit $\Rightarrow \frac{7}{5} \rightarrow \mathrm{SP}$
Here, CP = 5 and MP = 8
Then, Required percentage $=\frac{8-5}{5} \times 100$
$=\frac{3}{5} \times 100=60 \%$
51. (B) ATQ,
$1+b+h=25$
and $\sqrt{l^{2}+b^{2}+h^{2}}=15$
Applying the formula,
$(l+b+h)^{2}=1^{2}+b^{2}+h^{2}+2(l b+b h+h l)$
$\Rightarrow 25^{2}=(15)^{2}+2(l b+b h+h)$
$\Rightarrow 625-225=2(l b+b h+h l)$
\therefore Surface area of cuboid $=400 \mathrm{~cm}^{2}$
52. (C) When $x^{2}=7+4 \sqrt{3}$
$\Rightarrow x=\sqrt{7+4 \sqrt{3}}=2+\sqrt{3}$
Then, $\frac{1}{x}=2-\sqrt{3}$
Adding equation (i) and (ii), we get
$x+\frac{1}{x}=2+\sqrt{3}+2-\sqrt{3}=4$
53. (C) Given,
$x=3+2 \sqrt{2}$ \qquad
Then $\frac{1}{x}=3-2 \sqrt{2}$ \qquad
Adding equation (i) and (ii), we get
$x+\frac{1}{x}=6$
$\Rightarrow x^{2}+1=6 x$ \qquad
Multiply ' x ' both sides,
$x^{3}+x=6 x^{2}$ (iv)

On subtracting the twice of equation (iii)
from equation (iv), we get

$$
x^{3}+x-2 x^{2}-2=6 x^{2}-12 x
$$

$\Rightarrow x^{3}-8 x^{2}+13 x-2=0$
Then, $x^{3}-8 x^{2}+13 x+5=7$

Campus

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

54. (A) $\alpha+\beta=2$ and $\alpha \beta=-1$

Roots of the new equation are $\frac{1-\alpha}{1+\beta}$ and $\frac{1-\beta}{1+\alpha}$
Now, sum of the roots $=-2$
and, Product of the roots $=\frac{1-\alpha}{1+\beta} \times \frac{1-\beta}{1+\alpha}=$ -1
Then, Required equation $=x^{2}-(-2 x)+(-1)$

$$
=x^{2}+2 x-1
$$

55. (D) A.T.Q,

$$
\begin{aligned}
& \frac{a^{3}+b^{3}+c^{3}-3 a b c}{a+b+c} \\
& =\frac{\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]}{a+b+c} \\
& =\frac{1}{2}\left((a-b)^{2}+(b-c)^{2}-(c-a)^{2}\right) \\
& =\frac{1}{2} \times\left[4^{2}+5^{2} \times 6^{2}\right]=\frac{77}{2}=38.5
\end{aligned}
$$

56. (C) $x^{2}+y^{2}+z^{2}-x y-y z-z x$
$=\frac{1}{2}\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
$=\frac{1}{2}\left[(-1)^{2}+(-1)^{2}+2^{2}\right]=3$
57. (D) $2\left(\sin ^{6} \alpha+\cos ^{6} \alpha\right)$
$=2\left[\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{3}-3 \sin ^{2} \alpha \cos ^{2} \alpha\right.$ $\left.\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)\right]$
$=2\left[1-3 \sin ^{2} \alpha \cos ^{2} \alpha\right]=2-6 \sin ^{2} \alpha \cos ^{2} \alpha$ and, $3\left[\sin ^{4} \alpha+\cos ^{4} \alpha\right]$
$=3\left[\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{2}-2 \sin ^{2} \alpha \cos ^{2} \alpha\right]$
$=3-6 \sin ^{2} \alpha \cos ^{2} \alpha$
and, $4\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=4$
Then, required value
$=2-6 \sin ^{2} \alpha \cos ^{2} \alpha-3+6 \sin ^{2} \alpha \cos ^{2} \alpha+4$ $=2-3+4=3$
58. (B) $\left(1+\tan 1^{\circ}\right)\left(1+\tan 44^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 43^{\circ}\right)$
........ $\left(1+\tan 45^{\circ}\right)$
Now, $\tan 45^{\circ}=\frac{\tan 1^{\circ}+\tan 44^{\circ}}{1-\tan 1^{\circ} \cdot \tan 44^{\circ}}$
$\Rightarrow 1=\frac{\tan 1^{\circ}+\tan 44^{\circ}}{1-\tan 1^{\circ} \cdot \tan 44^{\circ}}$
$\Rightarrow 1-\tan 1^{\circ} \cdot \tan 44^{\circ}=\tan 1^{\circ}+\tan 44^{\circ}$
$\Rightarrow 1=\tan 1^{\circ}+\tan 44^{\circ}+\tan 1^{\circ} \cdot \tan 44^{\circ}$
$\Rightarrow 1+\tan 1^{\circ}+\tan 44^{\circ}+\tan 1^{\circ} \cdot \tan 44^{\circ}=2$
$\Rightarrow\left(1+\tan 1^{\circ}\right)\left(1+\tan 44^{\circ}\right)=2$
and this value is 23 times
i.e., the value of the expression $=2^{23}$
$\therefore \mathrm{n}=23$
59. (D) $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}$
$=\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2 \sin \theta \operatorname{cosec} \theta+\cos ^{2} \theta+$
$\sec ^{2} \theta+2 \cos \theta \cdot \sec \theta$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+2+\left(1+\cot ^{2} \theta\right)+\left(1+\tan ^{2} \theta\right)+2$
$=7+\tan ^{2} \theta+\cot ^{2} \theta$
$=7+2=9$
60. (B) $2 \cos \theta+\sin \theta=1$

$$
\Rightarrow 2 \cos \theta=1-\sin \theta
$$

Squaring both sides, we get
$\Rightarrow 4 \cos ^{2} \theta=1+\sin ^{2} \theta-2 \sin \theta$
$\Rightarrow 4-4 \sin ^{2} \theta=1+\sin ^{2} \theta-2 \sin \theta$
On solving quadratic equation, we get
$\sin \theta=\frac{-3}{5}$
and, $\cos \theta=\frac{4}{5}$
Then,
$9 \cos \theta+2 \sin \theta=\frac{9 \times 4}{5}+2 \times \frac{-3}{5}=\frac{30}{5}=6$
61. (A) $\sin \theta=\frac{a-b}{a+b}$

Then, $\cos \theta=\frac{2 \sqrt{a b}}{a+b}$
$\Rightarrow \frac{1}{\cos \theta}=\frac{a+b}{2 \sqrt{a b}}$
Using Componendo and Dividendo, we get

$$
\begin{aligned}
& \frac{1+\cos \theta}{1-\cos \theta}=\frac{(\sqrt{a}+\sqrt{b})^{2}}{(\sqrt{a}-\sqrt{b})^{2}} \\
& \Rightarrow \frac{2 \cos ^{2} \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=\left(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right)^{2} \\
& \Rightarrow \cot \frac{\theta}{2}=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}} \\
& \Rightarrow \frac{1}{\tan \frac{\theta}{2}}=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}
\end{aligned}
$$

$$
\Rightarrow \frac{1+\tan \frac{\theta}{2}}{1-\tan \frac{\theta}{2}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

$$
\Rightarrow \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)=\sqrt{\frac{a}{b}}
$$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

62. (C) Considering the equation,
$x^{3}-5 x^{2}+7 x-48=0$
Product of the roots
pqr $=48$
To get the minimum value $\frac{1}{p}, \frac{2}{q}, \frac{3}{r}$ must be equal
i.e, p, q and r must be in the ratio $1: 2: 3$

We get $p=2, q=4$, and $r=6$
Then, $\frac{1}{p}+\frac{2}{q}+\frac{3}{r}=\frac{1}{2}+\frac{2}{4}+\frac{3}{6}=\frac{3}{2}$
63. (A) A.T.Q,

Length of DC
$\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)$ units $=40$
$\left(\frac{2}{\sqrt{3}}\right)$ units $=40$
Then, width of the river
$\mathrm{BC}=\left(\frac{1}{\sqrt{3}}\right)$ units $=\frac{40}{2}=20 \mathrm{~m}$
64. (B)

Since ABC is equilateral triangle.
Then, $\angle \mathrm{OBE}=30^{\circ}$
In $\triangle \mathrm{OBE}$,
$\mathrm{BE}=\mathrm{OE} \cot 30^{\circ}=1 \times \sqrt{3}=\sqrt{3}$
Then, length of $A B=E M+B E+A M$
$=2+\sqrt{3}+\sqrt{3}=2+2 \sqrt{3}$
Now, Area of triangle $=\frac{\sqrt{3}}{4}(2+2 \sqrt{3})^{2}$
$=\frac{\sqrt{3}}{4} \times 4(4+2 \sqrt{3})$
$=(6+4 \sqrt{3})$ square units
65. (C) A.T.Q,
$2 \mathrm{R}=\mathrm{b}[\because$ circumradius is half of hypotenuse of right angled triangle]
and, $2 \mathrm{r}=\mathrm{a}+\mathrm{c}-\mathrm{b}$
Then,
$2 R+2 r=b+a+c-b=a+c$
66. (B)

In given figure,
$\Delta \mathrm{ABC} \sim \Delta \mathrm{AED}$
So, $\frac{A B}{B C}=\frac{A E}{E D}$
$\Rightarrow \frac{50}{60}=\frac{20}{\mathrm{DE}}$
Then, $\mathrm{DE}=\frac{60 \times 20}{50}=24 \mathrm{~m}$
\therefore Height of the building $=24 \mathrm{~m}$
67. (D) $\frac{\operatorname{ar}(\Delta \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{h_{1}}{h_{2}}\right)^{2}=\frac{256}{81}$
$\Rightarrow \frac{h_{1}}{h_{2}}=\frac{16}{9}$
$\Rightarrow h_{1}: h_{2}=16: 9$
68. (A) Given,
$\mathrm{CD}=16 \mathrm{~cm}$
$\Rightarrow \mathrm{CM}=8 \mathrm{~cm}$
$\mathrm{OC}=17 \mathrm{~cm}$ (radius)

Using Pythagoras theorem,
$\mathrm{OM}=\sqrt{17^{2}-8^{2}}$
Then, $\mathrm{ON}=23-15=8 \mathrm{~cm}$
Again, using Pythagoras
$\mathrm{AN}=\sqrt{\mathrm{OA}^{2}-\mathrm{ON}^{2}}=\sqrt{17^{2}-8^{2}}=15 \mathrm{~cm}$
Then, $\mathrm{AB}=2 \times 15=30 \mathrm{~cm}$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

69. (B) PA.PC = PB. PD
70. (C) Let $x+3=\mathrm{a} \Rightarrow x=a-3$

Given

$$
x^{2}+x=5
$$

On putting $x=\mathrm{a}-3$, we get
$(a-3)^{2}+(a-3)=5$
$\Rightarrow a^{2}+9-6 a+a-3=5$
$\Rightarrow \mathrm{a}^{2}-5 \mathrm{a}+1=0$
$\Rightarrow \mathrm{a}+\frac{1}{a}=5$
$\Rightarrow a^{3}+\frac{1}{a^{3}}=5^{3}-3 \times 5=110$
71. (D) We know that

$$
\operatorname{ar}(\Delta \mathrm{ODB})=\operatorname{ar}(\Delta \mathrm{OEC})
$$

and let $\operatorname{ar}(\triangle \mathrm{BOC})$ be t .

Then,
$1 \times \mathrm{t}=x^{2}$
$\mathrm{t}=x^{2}$
Since $\triangle \mathrm{ODE}$ is similar to $\triangle \mathrm{OBC}$
Then, $\frac{3}{4+2 x+t}=\frac{1}{t}$
$\Rightarrow 3 \mathrm{t}=4+2 \mathrm{x}+\mathrm{t}$
$\Rightarrow 2 \mathrm{t}=2 x+4$ \qquad
Using (i) and (ii), we get $x=2$ and $\mathrm{t}=4$
Then, $\operatorname{ar}(\Delta \mathrm{ABC})=3+1+2 x+\mathrm{t}$
$=4+4+4=12$
72. (B)

In $\triangle \mathrm{BPS}$,
let $\mathrm{BP}=x$
Then, $\mathrm{PS}=x \sqrt{3}$
and $\mathrm{BS}=2 x$
Given area of $\Delta \mathrm{BPS}=6$
$\Rightarrow \frac{1}{2} \times \mathrm{BP} \times \mathrm{PS}=6 \Rightarrow \frac{1}{2} x \times x \sqrt{3}=6$
$\Rightarrow x^{2}=\frac{12}{\sqrt{3}}=4 \sqrt{3}$

Now, Area of $\triangle \mathrm{ABC}=\frac{\sqrt{3}}{4} \times(3 \times 2 x)^{2}$
$=\frac{\sqrt{3}}{4} \times 36 x^{2}=\frac{\sqrt{3}}{4} \times 36 \times 4 \sqrt{3}=108$ unit 2
73. (A) Given, $3^{\frac{x}{y}+1}-3^{\frac{x}{y}-1}=24$
$\Rightarrow 3^{\frac{x}{y}}\left[3-\frac{1}{3}\right]=24$
$\Rightarrow 3^{\frac{x}{y}}=3^{2}$
$\Rightarrow \frac{x}{y}=\frac{2}{1}$
Using Componendo and Dividendo method,
$\frac{x+y}{x-y}=\frac{2+1}{2-1}=3$
74. (D) Let the roots of the equation $x^{2}+\mathrm{p} x+\mathrm{q}=0$ be α and β
Here, $\alpha+\beta=-\mathrm{p}$ and $\alpha \beta=\mathrm{q}$
Roots of the equation $x^{2}+\mathrm{q} x+\mathrm{p}=0$
are $(\alpha-1) \&(\beta-1)$
Then,
$\alpha+\beta-2=-q$
and, $(\alpha-1)(\beta-1)=p$
$\Rightarrow \alpha \beta-(\alpha+\beta)+1=p$
$\Rightarrow \mathrm{q}-(-\mathrm{p})+1=\mathrm{p}$
$\Rightarrow \mathrm{q}+\mathrm{p}+1=\mathrm{p}$
$\Rightarrow \mathrm{q}=-1$
$\alpha+\beta-2=-q$
$\Rightarrow-\mathrm{p}-2=-\mathrm{q}$
$\Rightarrow-\mathrm{p}=2-(-1)$
$\Rightarrow \mathrm{p}=-3$
Then, $\mathrm{p}+\mathrm{q}=-3-1=-4$
75. (C) ATQ,
$l^{2}+b^{2}=39^{2}$,
$b^{2}+h^{2}=40^{2}$
and, $h^{2}+l=41^{2}$
Adding all the three equations, we get
$2\left[l^{2}+b^{2}+h^{2}\right]=39^{2}+40^{2}+41^{2}=4802$
$\Rightarrow l^{2}+b^{2}+h^{2}=2401$
Then, Length of diagonal
$=\sqrt{l^{2}+b^{2}+h^{2}}=\sqrt{2401}=49$
76. (A)

Ratio of the volume of
I and II part $=(8-1): 1=7: 1$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

A.T.Q,

7 parts are emptied in 28 min Then, time taken to empty part 1 $=28 / 7=4 \mathrm{~min}$.
77. (B) Given,
$4 \sin A+5 \cos B=8$, and
$5 \sin \mathrm{~B}+4 \cos \mathrm{~A}=1$
Squaring and adding both the equations, we get
$16 \sin ^{2} \mathrm{~A}+25 \cos ^{2} \mathrm{~B}+40 \sin \mathrm{~A} \cos \mathrm{~B}+25$
$\sin ^{2} \mathrm{~B}+16 \cos ^{2} \mathrm{~A}+40 \sin \mathrm{~B} . \cos \mathrm{A}=8^{2}+1^{2}$
$\Rightarrow 41+40(\sin A \cos B+\cos A \cdot \sin B)=65$
$40(\sin (\mathrm{~A}+\mathrm{B}))=24$
$\Rightarrow \sin (A+B)=\frac{3}{5}$
$\Rightarrow \sin C=\frac{3}{5}$
78. (B) On putting $x=\mathrm{c}$, we get value of whole expression $=1$
On putting $x=\mathrm{b}$, we get value of whole expression $=1$
i.e, for any value of x. the value of whole expression will be 1 .
79. (C)

Let AC be $x \mathrm{~cm}$
Given $\operatorname{ar}(\triangle \mathrm{ADB})=15 \mathrm{~cm}^{2}$
$\Rightarrow \frac{1}{2} \times \mathrm{BD} \times \mathrm{AC}=15$
$\Rightarrow \mathrm{BD}=\frac{30}{x} \mathrm{~cm}$
Using angle bisector theorem,
$\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{CD}}{\mathrm{DB}} \quad \Rightarrow \frac{x}{10}=\frac{\mathrm{CD}}{\frac{30}{x}}$
$\Rightarrow \mathrm{CD}=3 \mathrm{~cm}$.
80. (B) Given,
$x+\frac{1}{x}=3$
Then,
$x^{2}+\frac{1}{x^{2}}=7$
and $x^{3}+\frac{1}{x^{3}}=18$
On adding equation (i) \& (ii), we get

$$
\begin{aligned}
& x^{2}+\frac{1}{x^{2}}+x^{3}+\frac{1}{x^{3}}=25 \\
& \Rightarrow\left(x^{2}+\frac{1}{x^{3}}\right)+\left(x^{3}+\frac{1}{x^{2}}\right)=25 \\
& \Rightarrow 9+x^{3}+\frac{1}{x^{2}}=25 \\
& \Rightarrow x^{3}+\frac{1}{x^{2}}=16
\end{aligned}
$$

81. (B)

In $\Delta \mathrm{AOC}$,
$\angle \frac{A}{2}+\angle \frac{C}{2}+\angle \mathrm{AOC}=180^{\circ}$
$\angle \mathrm{AOC}=\angle \mathrm{DOF}$ (vertically opposite angle)
\qquad
and, $\angle \mathrm{B}+\angle \mathrm{DOF}=180^{\circ}$ (B,D,O,F are concyclic) .(ii)
From (i), (ii) and (iii), we get,
$A+C=2 B$
We know that,

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ} \\
\Rightarrow & 2 \mathrm{~B}+\mathrm{B}=180^{\circ} \\
\Rightarrow & \angle \mathrm{B}=60^{\circ}
\end{aligned}
$$

82. (D) A.T.Q,
$\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$
$=\cot 9^{\circ}-\cot 27^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$
$=\left(\tan 9^{\circ}+\cot 9^{\circ}\right)-\left(\tan 27^{\circ}+\cot 27^{\circ}\right)$
$=\left(\frac{\sin 9^{\circ}}{\cos 9^{\circ}}+\frac{\cos 9^{\circ}}{\sin 9^{\circ}}\right)-\left(\frac{\sin 27^{\circ}}{\cos 27^{\circ}}+\frac{\cos 27^{\circ}}{\sin 27^{\circ}}\right)$
$=\frac{\sin ^{2} 9^{\circ}+\cos ^{2} 9^{\circ}}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{\sin ^{2} 27^{\circ}+\cos ^{2} 27^{\circ}}{\sin 27^{\circ} \cos 27^{\circ}}$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}=\frac{2}{\frac{\sqrt{5}-1}{4}}-\frac{2}{\frac{\sqrt{5}+1}{4}}=4$
83. (B) The distance between circumcentre and incentre $=\sqrt{R^{2}-2 R r}=\sqrt{12^{2}-2 \times 12 \times 4}$ $=\sqrt{48}=4 \sqrt{3} \mathrm{~cm}$.
84. (D) $\left(\sin ^{4} \theta-\cos ^{4} \theta+1\right) \operatorname{cosec}^{2} \theta$
$=\left[\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(\sin ^{2} \theta+\operatorname{Cos}^{2} \theta\right)+1\right] \cdot \operatorname{cosec}^{2} \theta$
$=\left(\sin ^{2} \theta-\cos ^{2} \theta+1\right) \operatorname{cosec}^{2} \theta$
$=1-\cot ^{2} \theta+\operatorname{cosec}^{2} \theta=1+1=2$

K D Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
85. (C) Given,
the roots of the equation $x^{2}+a x+b=0$,
are $\tan 30^{\circ}$ and $\tan 15^{\circ}$
Then,
Sum of the roots
$\tan 30^{\circ}+\tan 15^{\circ}=-\mathrm{a}$
and, product of the roots
$\tan 30^{\circ} \tan 15^{\circ}=\mathrm{b}$
We know that,
$\tan \left(30^{\circ}+15^{\circ}\right)=\frac{\tan 30^{\circ}+\tan 15^{\circ}}{1-\tan 30^{\circ} \cdot \tan 15^{\circ}}$
$1=\frac{-a}{1-b}$
$\Rightarrow-\mathrm{a}=1-\mathrm{b}$
$\Rightarrow \mathrm{b}-\mathrm{a}=1$
$\Rightarrow(\mathrm{a}-\mathrm{b})=-1$
86. (D) Volume of the hemispherical container
$=\frac{2}{3} \pi r^{3}=\frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7=718.66 \mathrm{~cm}^{3}$
Then, volume of extra water
$=718.66-400=318.66 \mathrm{ml}$
87. (B) Substitute $x \cos \theta=y \sin \theta$ in the other equation
Then,
$y \sin \theta \cdot \cos ^{2} \theta+y \sin ^{3} \theta=\sin \theta \cdot \cos \theta$
$\Rightarrow y \sin \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\sin \theta \cdot \cos \theta$
$\Rightarrow y \sin \theta=\sin \theta \cos \theta$
$\Rightarrow y=\cos \theta$
Then, $x=\sin \theta$
$\because x^{2}+y^{2}=\sin ^{2} \theta+\cos ^{2} \theta=1$
88. (C) In a parallelogram,

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2} \\
& \Rightarrow 2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}\right)=\mathrm{AC}^{2}+\mathrm{BD}^{2} \\
& \Rightarrow 2\left(14^{2}+18^{2}\right)=16^{2}+\mathrm{BD}^{2} \\
& \Rightarrow \mathrm{BD}^{2}=784 \\
& \Rightarrow \mathrm{BD}=28 \mathrm{~cm}
\end{aligned}
$$

89. (B) A.T.Q,

Volume of the water flowing out from pipe
$=$ Volume of the conical tank
Let the time taken by pipe to fill the tank be t min.
Then,
$\pi r^{2} h=\frac{1}{3} \pi r^{2} h$
$\Rightarrow \frac{1}{2} \times \frac{1}{2} \times 2000 \times \mathrm{t}=\frac{1}{3} \times 30 \times 30 \times 30$
$\Rightarrow \mathrm{t}=18 \mathrm{~min}$.
90. (A)

Total Surface area of the solid
$=$ C.S.A of cylinder $+2 \times$ C.S.A of hemisphere
$=2 \pi r h+2 \times 2 \pi r^{2}=2 \pi r[h+2 r]$
$=2 \times \frac{22}{7} \times 7[26]=1144 \mathrm{~cm}^{2}$
91. (B)

Inside perimeter of running track
$=2 \times$ (length of straight portion) $+2 \times$ (length of semicircular part)
$\Rightarrow 396=2 \times 110+2 \pi r$
$\Rightarrow r=28 \mathrm{~m}$
$\Rightarrow \mathrm{R}=r+2=30 \mathrm{~m}$
Then, area of running track
$=2 \times(110 \times 2)+\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$
$=440+\frac{22}{7}\left(30^{2}-28^{2}\right)$
$=440+364.24=804.24 \mathrm{~cm}^{2}$
92. (A)

Let AB be $x \mathrm{~cm}$ and BC be $y \mathrm{~cm}$.
Then,
$\frac{1}{2} \times x \times y=630$
$\Rightarrow 2 x y=2520$ \qquad
and $x^{2}+y^{2}=53^{2}$
$\Rightarrow x^{2}+y^{2}=2809$
Using (i) and (ii), we get
$x+y=\sqrt{2809+2520}=73$
Hence, perimeter $=x+y+53$

$$
=73+53=126 \mathrm{~cm}
$$

93. (C) Area of the required portion
$=$ area of square $-4 \times$ area of quadrant
$=18^{2}-\frac{22}{7} \times 7 \times 7$
$=324-154=170 \mathrm{~cm}^{2}$

K D Campus Pvt. Ltd

 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-11000994. (C) The value of the given expression

$$
=3-\frac{4}{7}-\frac{3}{7}=3-1=2
$$

95. (D) Let the thickness of the bottom be $x \mathrm{~cm}$ A.T.Q,
$(310-2 \times 5) \times(260-2 \times 5) \times(100-x)$
$=6000 \times 1000$
$\Rightarrow 300 \times 250 \times(100-x)=6000 \times 1000$
$\Rightarrow(100-x)=80$
$\Rightarrow x=20 \mathrm{~cm}$.
\therefore thickness of the bottom $=20 \mathrm{~cm}$.
96. (B) Average number of people using mobile service for all the years
$=\frac{20+25+10+35+25}{5}$ thousands
$=23000$
97. (C) Required ratio
$=20: 15=4: 3$
98. (A) Required percentage

$$
=\frac{40}{50} \times 100=80 \%
$$

99. (A) Required percentage

$$
=\frac{15}{75} \times 100=20 \%
$$

100.(D) Average number of people using all the mobile service throughout all the year
$=\frac{50+60+40+75+65}{5}$ thousands
$=58000$

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

