IBPS RRB PO PHASE - I - 112 (SOLUTION)

REASONING

1. (2)
2. (3)
3. (4)
4. (3)
5. (4)
(6-10) :
6.

Day	Person	Bike
Monday	Riya	Passion
Tuesday	Soni	Yamaha
Wednesday	Vibha	Pulsar
Thursday	Tina	Bullet
Friday	Queen	Platinum
Saturday	Uma	Avenger
Sunday	Priya	Splendor

9. (4)
10. (2)
(11-12) :

$$
\begin{gathered}
\text { Jack }>\text { Ishan }>\text { Lehman }>\text { Mark }>\text { Kevin } \\
(50)
\end{gathered}
$$

11. (4)
12. (1)
(13-16) :

13. (1)
14. (1)
15. (2)
16. (3)
(17-21) :

Floor	Members	Colours	Pets
10	-	-	-
9	Irfan	Black	Cat
8	Kelvin	Red	Jaguar
7	-	-	-
6	Jack	Pink	Turtle
5	Geoge	Yellow	Hamster
4	David	Brown	Gerbil
3	Frank	White	Dog
2	Hob	Blue	Rabbit
1	Edward	Green	Monkey

17. (5)
18. (5)
19. (2)
20. (5)
21. (4)
(22-26):
22. (4) A's father's Birthday may be on $8^{\text {th }}$ or $9^{\text {th }}$ December.
23. (5) From I :-

Abhinav > Chintu > Dipesh
From II:-
\qquad
Dipesh > Bipin > Emaan
(ii)

From (i) and (ii)
Abhinav > Chintu > Dipesh > Bipin > Emaan

From both of statement, we can find that Emaan is the lightest.
24. (5) From both statement I and II

T sits opposite to R.
Both statement I and II together are necessary to answer the question
25. (5) From both statement I and II

thus we can say that A is brother - in law of B.
Both statement I and II together are necessary to answer the question
26. (1) From I :

Brown \rightarrow Red
Red \rightarrow Orange
From I, we can say that colous of eye is 'Red'.
From II : we can't decide the colour of eye.
only statement I is sufficient to Answer the question
(27-31) :

* $\rightarrow \leq, 8 \rightarrow<$
$\% \rightarrow=$, © $\rightarrow \geq$
(a) \rightarrow

27. (1) $\mathrm{M} \geq \mathrm{N}>\mathrm{O}=\mathrm{Q}$
I. $\mathrm{M}>\mathrm{Q} \rightarrow$ True
II. $\mathrm{N}=\mathrm{Q} \rightarrow$ false
III. $\mathrm{Q} \leq \mathrm{M} \rightarrow$ false

Only conclusion I is true.

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

28. (4) $\mathrm{M}>\mathrm{N} \leq \mathrm{O} \geq \mathrm{P}$
I. $\mathrm{O}>\mathrm{M} \rightarrow$ false
II. $\mathrm{P}=\mathrm{N} \rightarrow$ false
III. $\mathrm{P} \leq \mathrm{M} \rightarrow$ false

None conclusion is true.
29. (3) $\mathrm{X}<\mathrm{Y}>\mathrm{M} \geq \mathrm{N}$
I. $\mathrm{N} \leq \mathrm{Y} \rightarrow$ false
II. $\mathrm{M}<\mathrm{X} \rightarrow$ false
III. Y > X \rightarrow True

Only conclusion III is true.
30. (2) $\mathrm{A}=\mathrm{B} \leq \mathrm{C}<\mathrm{D}$
I. $\quad \mathrm{B}<\mathrm{D} \rightarrow$ True
II. $\mathrm{C} \geq \mathrm{A} \rightarrow$ True
III. $\mathrm{A} \leq \mathrm{D} \rightarrow$ False

Only conclusion I and II is true.
31. (3) $\mathrm{T}>\mathrm{Y} \geq \mathrm{G} \leq \mathrm{W}$
I. $\mathrm{G}=\mathrm{T} \rightarrow$ false
II. $\mathrm{T} \leq \mathrm{G} \rightarrow$ False
III. T $>\mathrm{G} \rightarrow$ True

Only conclusion III is true.
(32-36) :
Priyank/Raghvendra (Moradabad, Hush Puppies)

32. (2)
(2)

> 33. (4)
34. (3)
35. (1)
36. (4)
(37-40) :

37. (4)
38. (3)
39.
40. (3)

(41-45):

41. (2) $?=(10.97)^{2}+(4.13)^{3} \times 3.79$
$? \approx(11)^{2}+(4)^{3} \times 4$
$?=121+256=377 \approx 376$
42.

(1) $? \approx \frac{936 \times 12}{100}+\frac{26 \times 1500}{100}$

$$
=112.32+390=502.32 \approx 500
$$

43. (2) $?=\sqrt[3]{65} \times 23.93-31.04$
$\approx \sqrt[3]{64} \times 24-31$
$=4 \times 24-31=96-31=65$
44. (5) $?=1624.12 \times 3.891$
$\approx 1624 \times 4=6496 \approx 6500$
45. (5) $? \approx 3018 \div 3-841=1006-841=209$

$$
\approx 200
$$

(46-50) :

46. (3) Average no. of students in institute 5
$=\frac{120+112+124+139+114+127}{6}$
$=122.66$
Average no. of students in institute R
$=\frac{115+122+132+121+140+148}{6}$
$=129.66-122.66=7$
47. (2) Total no. of students in all the institute together in the year 2002
$=126+78+122+112+152+132$
$=722$
Total no. of students in all the institute together in the year 2006
$=142+120+148+127+175+150$
$=862$
$\therefore \quad$ Required $\%=\left(\frac{722}{862} \times 100\right) \%$

$$
=83.75 \% \approx 84 \%
$$

48. (4) Required ratio

$$
\begin{aligned}
& =(126+78):(122+112) \\
& =204: 234 \\
& =34: 39
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

49. (5) Total no. of students in all the institutes together in
$2001=147+86+115+120+140+136$ $=744$
$2002=126+78+122+112+152+132$ $=722$
$2003=136+96+132+124+158+140$ $=786$
$2004=183+92+121+139+166+126$
= 827
$2005=160+107+140+114+170+146$
= 837
$2006=142+120+148+127+175+150$
$=862$
50. (3) Increase in the year 2003
$=\left(\frac{12}{112} \times 100\right) \%=10.71 \%$
Increase in the year 2004
$=\left(\frac{7.5}{124} \times 100\right) \%=12.03 \%$
Decrease in the year 2005
$=\left(\frac{25}{139} \times 100\right) \%=17.98 \%$
Increase in the year 2006
$=\left(\frac{13}{114} \times 100\right) \%=11.40 \%$
Decrease in the year 2002
$=\left(\frac{8}{120} \times 100\right) \%=6.66 \%$
Required answer is 2005

(51-55) :

51. (1) The pattern of the number series is:
$21 \times 0.5=10.5$
$10.5 \times 1=10.5$
$10.5 \times 1.5=15.75$
$15.75 \times 2=31.50$
$31.50 \times 2.5=78.75$
52. (2) The pattern of the number series is:
$6+1 \times 13=6+13=19$
$19+3 \times 13=19+39=58$
$58+5 \times 13=58+65=\mathbf{1 2 3}$
$123+7 \times 13=123+91=214$
$214+9 \times 13=214+117=331$
53. (3) The pattern of the number series is:
$\mathbf{1 4}+1 \times 2=\mathbf{1 6}$
$16+3 \times 4=16+12=28$
$28+5 \times 6=28+30=58$
$58+7 \times 8=58+56=114$
$114+9 \times 10=114+90=204$
54. (4) The pattern of the number series is:
$13.76+1 \times 1.15=14.91$
$14.91+2 \times 1.15=14+2.30=17.21$
$17.21+3 \times 1.15=17.21+3.45=20.66$
$20.66+4 \times 1.15=20.66+4.60=25.26$
$25.26+5 \times 1.15=25.26+5.75=31.01$
55. (5) The pattern of the number series is :
$15+1^{2}=\mathbf{1 6}$
$16+2^{3}=16+8=24$
$24+3^{2}=24+9=33$
$33+4^{3}=33+64=97$
$97+5^{2}=97+25=122$
56. (1) Amount remaining after

1 year $=4000\left(1+\frac{7.5}{100}\right)-1500=-2800$
2 years $=2800\left(1+\frac{7.5}{100}\right)-1500=-1510$
3 years $=1510\left(1+\frac{7.5}{100}\right)-1500=-123.25$
57. (3) Let the number of students appeared in school X = 100
Number of students qualified in school $\mathrm{X}=70$
\therefore According to question,
Number of students appeared in School $\mathrm{Y}=120$
Number of students qualified in School Y
$=70+50 \%$ of $70=70+35=105$
\therefore Required percentage
$=\frac{105 \times 100}{120}=87.5 \%$
58. (1) $\frac{{ }^{5} C_{2}}{{ }^{7} C_{2}}=\frac{10}{21}$
59. (3) Four years ago,

A: B = 3: 4
After four years,
$\frac{3 x+8}{4 x+8}=\frac{5}{6}$
$\Rightarrow 20 x+40=18 x+48$
$\Rightarrow 2 x=48-40=8$
$\Rightarrow x=\frac{8}{2}=4$
$\therefore \quad$ A's present age $=3 x+4$
$=3 \times 4+4=16$ years

Campus

 KD Campus

 KD Campus}

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
60. (1) According to question,

SI for 10 years $=\frac{1000 \times 5 \times 10}{100}=-500$
Now, P = ` 1500, A = - 2000
$\therefore \quad \mathrm{SI}=-500$
Now, $T=\frac{500 \times 100}{1500 \times 5}=6 \frac{2}{3}$ years
\therefore Total time $=16 \frac{2}{3}$ years

(61-65) :

61. (1) Required total
$=\left[2.05 \times \frac{14.5}{100}+2.25 \times \frac{15.3}{100}+1.95 \times\right.$ $\frac{16.4}{100}+2 \times \frac{16.2}{100}+1.75 \times \frac{18.2}{100}+$
$\left.1.7 \times \frac{22.4}{100}\right]$
$=0.29725+0.34425+0.3198+0.324$

$$
+0.3185+0.3808
$$

$=1.9846$ lakh
$=1,98,460$
62. (3) Spent on shopping by
$A=2.05 \times \frac{14.6}{100}=₹ 0.2993$ lakh
$B=2.25 \times \frac{14.6}{100}=₹ 0.2993$ lakh
$\mathrm{C}=1.95 \times \frac{16.6}{100}=₹ 0.3237$ lakh
$\mathrm{F}=1.75 \times \frac{12.8}{100}=₹ 0.224$ lakh
\therefore Required answer is B.
63. (4) Total amount spent by A on food items and entainment together
$=\frac{2.05}{100} \times(21.8+20.4)$
$=\frac{2.05}{100} \times 42.2=0.8651$ lakh
Total amount spent by C on food items and entertainment together
$=\frac{1.95}{100} \times(14.3+18.5)$
$=\frac{1.95}{100} \times 32.8=₹ 0.6396$ lakh
Required ratio
$=0.8651: 0.6396$
= 211: 156
64. (2) Amount spent by F on helth
$=1.7 \times \frac{18.2}{100}=₹ 0.3094$ lakh
Total amount spent by all the people together on health
$=2.05 \times \frac{16.4}{100}+2.25 \times \frac{11.4}{100}+1.95 \times$

$$
\frac{21.5}{100}+2 \times \frac{21.5}{100}+1.75 \times \frac{21}{100}+1.7
$$

$\times \frac{18.2}{100}$
$=0.3362+0.2565+0.41925+0.43+$ $0.3675+0.3094$
$=$ ₹ 2.11885 lakh

$$
\begin{aligned}
\therefore \quad \text { Require } \% & =\left(\frac{0.3094}{2.11885} \times 100\right) \% \\
& =14.60 \% \approx 15 \%
\end{aligned}
$$

65. (5) Per annum income of all the pcaples together
$=2.05+2.25+1.95+2+1.75+1.2$
$=₹ 11.7$ lakh

$$
\begin{aligned}
\text { Required } \% & =\left(\frac{1.75}{11.7} \times 100\right) \% \\
& =14.95 \% \approx 15 \%
\end{aligned}
$$

(66-70):
66. (4) Time taken in crossing each other

$$
=\frac{\text { Total length of trains }}{\text { Relative speed }}
$$

The information given in both statements is not sufficient length of train L and individual speed of each train are required.
67. (4) Area of rectangle $=$ Area of triangle. From the information given in both the statements, we can find area of triangle or area of rectangle. For finding lenght breadth is required, which is not known.
68. (3) From the statement I,
$r=\frac{100 \times 100}{1000}=10 \%$
Thus we have,
$\mathrm{P}=$ Rs. $1000, r=10 \%$,
$t=3$ years
Hence, C.I. can be determined
From the statement II.
S.I $=\frac{100 \times r \times 2}{100}=20 r$
$\mathrm{CI}=1000\left[\left(1+\frac{r}{100}\right)^{2}-1\right]$
\therefore C.I. - S.I.
$=1000\left[\frac{200 r+r^{2}}{10000}\right]-20 r$
$\Rightarrow 2000 r+r^{2}-200 r=\mathrm{IOO}$
$\Rightarrow r=10 \%$
Hence, C.I. can be determined
69. (5) Let the unit's digit be x and ten's digit be y and $x<y$.
$\therefore \quad$ Number $=10 y+x$
From statement I,
$y-x=5$
From statement II,
$y+x=7$
From (i) and (ii), x, y can be calculated and two digit number can be found.
70. (4) Let the distance between J ard K be z km.
Again, let speed of boat in still water be $x \mathrm{kmph}$ and that a stream be $y \mathrm{kmph}$.
\therefore Rate downstream $=(x+y) \mathrm{kmph}$
Rate upstream $=(x-y) \mathrm{kmph}$
From statement I,
$=\frac{z}{x+y}=2$
From statement II,
$\frac{z}{x-y}=4$
(71-75) :
71. (2) Clearly,
9×360 children $=18 \times 72$ men
$=12 \times 162$ women
$\Rightarrow 45$ children $=18$ men $=27$ women
$\Rightarrow 5$ children $=2$ men $=3$ women
Now, 4 men +12 women +10 children
$=4$ men +8 men +4 men $=16$ men
$\because \quad 18$ men can complete the work in 72 days.
$\therefore \quad 16$ men can complete the same work
$=\frac{18 \times 72}{16}=81$ days
72. (3) Let the speed of boat in still water be x kmph and that of current be $y \mathrm{kmph}$.
$\therefore x+y=\frac{4.8}{\frac{8}{60}}=\frac{4.8 \times 60}{8}$
$\Rightarrow \quad x+y=36$
and, $x-y=\frac{4.8}{\frac{9}{60}}=\frac{4.8 \times 60}{9}$
$\Rightarrow \quad x-y=32$
By equation (i) - (ii),
$x+y-x+y=36-32=4$
$\Rightarrow \quad 2 y=4 \Rightarrow y=\frac{4}{2}=2 \mathrm{kmph}$
73. (3) Let the amount be ₹ x

Investment is done as given below.
Amount left $=x-\frac{40}{100} x=\frac{60 x}{100}$
$\frac{40}{100} x$ at 15% p.a
$\frac{50}{100}$ of $\frac{60 x}{100}=\frac{30 x}{100}$ at 10% p.a
Rest amount
$=x-\frac{40 x}{100}-\frac{30 x}{100}=\frac{30 x}{100}$ at 18% p.a
Interest earned by each at end of 1 year
By 1st $\Rightarrow \frac{15}{100} \times \frac{40 x}{100}=\frac{60}{1000} x$
By 2 nd $\Rightarrow \frac{10}{100} \times \frac{30 x}{100}=\frac{30}{1000} x$
By $3 \mathrm{rd} \Rightarrow \frac{18}{100} \times \frac{30 x}{100}=\frac{54}{1000} x$
Total interest $=\frac{144}{1000} x$
$\therefore \quad$ Rate $\%=\frac{\frac{144 x}{1000}}{x} \times 100=14.4 \%$
74. (1) C's present age $=85-7=78$ years

B's present age $=78-12=66$ years
$\therefore \quad$ A's present age $=\frac{3}{11} \times 66=18$ years
$\therefore \quad$ A's father's present age $=25+18=43$ years

Campus

KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
75. (3) According to question,

CP of 20 articles $=\mathrm{SP}$ of x articles $=1$ (let)
$\therefore \quad$ CP of 1 articles $=\frac{1}{20}$
SP of 1 articles $=\frac{1}{x}$
Profit per cent $=\frac{\frac{1}{x}-\frac{1}{20}}{\frac{1}{20}}=\frac{25}{100}$
$\Rightarrow \quad \frac{20-x}{x}=\frac{1}{4}$
$\Rightarrow \quad 80-4 x=x$
$\Rightarrow \quad 5 x=80$
$\Rightarrow \quad x=16$
(76-80) :
76. (5) I. $x^{2}+8 x+15=0$
$\Rightarrow x^{2}+5 x+3 x+15=0$
$\Rightarrow x(x+3)+3(x+3)=0$
$\Rightarrow(x+3)(x+5)=0$
$\Rightarrow x=-3,-5$
II. $y^{2}+6 y+8=0$
$\Rightarrow y^{2}+2 y+4 y+8=0$
$\Rightarrow y(y+2)+4(y+2)=0$
$\Rightarrow(y+4)(y+2)=0$
$\Rightarrow y=-4,-2$
77. (1) I. $3 x^{2}-16 x+16=0$
$\Rightarrow 3 x^{2}-12 x-4 x+16=0$
$\Rightarrow 3 x(x-4)-4(x-4)=0$
$\Rightarrow \quad(3 x-4)(x-4)=0$
$\Rightarrow x=\frac{4}{3}, 4$
II. $3 y^{2}+7 y+2=0$
$\Rightarrow 3 y^{2}+6 y+y+2=0$
$\Rightarrow 3 y(y+2)+(y+2)=0$
$\Rightarrow(3 y+1)(y+2)=0$
$\Rightarrow y=\frac{1}{3},-2$
Clearly, $x>y$
78. (3) I. $4 x^{2}-5 x+1=0$
$\Rightarrow 4 x^{2}+4 x-x+1=0$
$\Rightarrow 4 x(x-1)-1(x-1)=0$
$\Rightarrow(4 x-1)(x+1)=0$
$\Rightarrow x=\frac{1}{4}, 1$
II. $25 y^{2}-1=0$
$\Rightarrow y^{2}=\frac{1}{25}$
$\Rightarrow y=+\frac{1}{5},-\frac{1}{5}$
Clearly, $x>y$
79. (1) I. $5 x^{2}+13 x+21=0$
$\Rightarrow 5 x^{2}-15 x-3 x+9=0$
$\Rightarrow 5 x(x-3)-3(x-3)=0$
$\Rightarrow(5 x-3)(x-3)=0$
$\Rightarrow x=\frac{3}{5}, 3$
II. $20 y^{2}-13 y+2=0$
$\Rightarrow 20 y^{2}+5 y+8 y+2=0$
$\Rightarrow 5 y(4 y-1)-2(4 y-1)=0$
$\Rightarrow(5 y-2)(4 y-1)=0$
$\Rightarrow y=\frac{2}{5}, \frac{1}{4}$
Clearly, $x>y$
80. (5) I. $x^{2}+29 x=-210$
$\Rightarrow x^{2}+29 x+210=0$
$\Rightarrow x^{2}+15 x+14 x+210=0$
$\Rightarrow x(x+15)+14(x+15)=0$
$\Rightarrow \quad(x+14)(x+15)=0$
$\Rightarrow x=-14,-15$
II. $y^{2}+28 y=-195$
$\Rightarrow y^{2}+28 y+195=0$
$\Rightarrow y^{2}+15 y+13 y+195=0$
$\Rightarrow(2 y+11)(y+3)=0$
$\Rightarrow y(y+15)+13(y+15)=0$
$\Rightarrow(y+13)(y+15)=0$
$\Rightarrow y=-13,-15$

IBPS RRB PO PHASE - I - 112 (ANSWER KEY)

1. (2)
2. (4)
3. (3)
4. (4)
5. (3)
6. (4)
7. (3)
8. (5)
9. (1)
10. (4)
11. (2)
12. (4)
13. (1)
14. (1)
15. (1)
16. (2)
17. (3)
18. (5)
19. (5)
20. (2)
21. (5)
22. (3)
23. (2)
24. (1)
25. (2)
26. (5)
27. (5)
28. (3)
29. (2)
30. (4)
31. (5)
32. (3)
33. (1)
34. (2)
35. (3)
36. (4)
37. (5)
38. (1)
39. (3)
40. (1)
41. (3)
42. (1)
43. (1)
44. (3)
45. (4)
46. (2)
47. (5)
48. (4)
49. (4)
50. (3)
51. (5)
52. (4)
53. (2)
54. (3)
55. (3)
56. (1)
57. (3)
58. (5)
59. (1)
60. (3)
61. (1)
62. (5)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- Whatapp with Mock Test No. and Question No. at 7053606571 for any of te doubts. Join the group and you may also share your suggestions and experience of sunday Mock Test.

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

