## Campus

K D Campus Pvt. Ltd

SSC TIER II (MATHS) MOCK TEST - 21 (SOLUTION)

1. (C) Let, total no. of students $=x$

Total present students
$=\left(\frac{4 x}{7} \times \frac{8}{9}\right)+\left(\frac{3 x}{7} \times \frac{3}{5}\right)$
$\Rightarrow \frac{241}{315} x$
Required fraction $=\frac{241 x}{315} \times \frac{1}{x}$

$$
=\frac{241}{315}
$$

2. (B $10 \times 20 \times 30 \times 40 \times 50 \times 60 \times 70 \times 80 \times 90 \times$ $100 \times 110$
12 zero, and one more zero when the ' 5 ' in 50 will be multiplied by any ' 2 '
3. (B) Let, number of friends who attended picnic $=x$
According to the question,
$\frac{10800}{x}-\frac{10800}{x+20}=18$
$\Rightarrow x=100$
4. (D) According to the question
$\frac{2}{5}\left(\frac{13}{4}\right)-\frac{3}{5}\left(\frac{7}{3}-\frac{7}{4}\right)$
$=\frac{13}{10}-\frac{7}{20}$
$=\frac{19}{20}$
5. 

(D) $\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{11}}$
$+\frac{1}{\sqrt{11}+\sqrt{13}}$
$=\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{7}-\sqrt{5}}{2}+\frac{\sqrt{9}-\sqrt{7}}{2}+$
$\frac{\sqrt{11}-\sqrt{9}}{2}+\frac{\sqrt{13}-\sqrt{11}}{2}$
$=(\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+\sqrt{11}-$
$\sqrt{9}+\sqrt{13}-\sqrt{11})$
$(\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+\sqrt{11}-\sqrt{9}+\sqrt{13}-\sqrt{11})$
$=\frac{\sqrt{13}-\sqrt{3}}{2}$
$\Rightarrow \frac{1}{1-a}-1+\frac{1}{1-b}-1+\frac{1}{1-c}-1=1-3$
$\Rightarrow \frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=(-2)$
11. (D) $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1$
subtract "3" from both sides,
6. (D) LCM of $45,60,90$ and 105 is 1260 So they all ring together after 1260 minutes i.e. 21 hours, at 9 A.M.
7. (C) $125^{\sin \theta} \times 625^{\cos \theta}$
$=5^{3 \sin \theta} \times 5^{4 \cos \theta}$
$=5{ }^{3 \sin \theta+4 \cos \theta}$
Minimum value of $3 \sin \theta+4 \cos \theta$
$=-\sqrt{3^{2}+4^{2}}=-5$
Minimum value of $5^{3 \sin \theta+4} 4 \cos \theta$
$=5^{-5}$
$=\frac{1}{3125}$
8. (B) If $\tan (x+2 y) \cdot \tan (x-2 y)=1$,
then, $(x+2 y)+(x-2 y)=90^{\circ}$
$\Rightarrow x=45^{\circ}$
Now, $(\sin x+\sec x)=\frac{1}{\sqrt{2}}+\sqrt{2}=\frac{3}{\sqrt{2}}$
(C) $(x+3)^{2}+\frac{1}{(x+3)^{2}}=\left[(x+3)+\frac{1}{(x+3)}\right]^{2}-2$
$=\left(\frac{x^{2}+9+6 x+1}{x+3}\right)^{2}-2$
$=\left(\frac{\left(x^{2}+x\right)+5 x+10}{(x+3)}\right)^{2}-2$
$=\left(\frac{5(x+3)}{x+3}\right)^{2}-2$
$=23$
10. (C) $x+\frac{1}{y}=1 \Rightarrow x y+1=y-$ (i)
$y+\frac{1}{Z}=1 \Rightarrow y z+1=z-$ (ii)
Putting the value of $y$ from equation (i), in equation (ii)
$(x y+1) z+1=z$
$x y z=-1$

# Campus <br> K D Campus Pvt. Ltd 

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
12. (B)

$\triangle \mathrm{AOF}$ is an equilateral triangle
$\mathrm{FM}=\frac{F B}{2}=\frac{\sqrt{3} a}{2}$
$F B=\sqrt{3} a$
Area of $\square \mathrm{FBCE}=\mathrm{FB} \times \mathrm{BC}$

$$
=\sqrt{3} a \times a=\sqrt{3} a^{2} \mathrm{~m}^{2}
$$

13. (D) Let Front wheel complete ' $x$ ' revolutions
According to the question,
$(2 \pi \times 72) \times x=(2 \pi \times 60)(x+10)$
$\Rightarrow 72 x-60 x=600$
$\Rightarrow \quad x=50$
$\therefore$ Distance covered $=2 \times \pi \times 72 \times 50$

$$
=7.2 \pi \mathrm{~km} .
$$

14. (A) In 3 hours, angle formed by hour hand $=90^{\circ}$
$\therefore$ Area of sector $=\pi \times \mathrm{r}^{2} \times \frac{90^{\circ}}{360^{\circ}}$

$$
\begin{align*}
& =\frac{22}{7} \times 7 \times 7 \times \frac{1}{4} \\
& =38.5 \mathrm{~m}^{2} \tag{i}
\end{align*}
$$

15. (D) Let he sell ' $x$ ' pens

Total C.P. $=30 x$
To gain $50 \%$, Total S.P.
$=30 x \times \frac{150}{100}=45 x$
$3+6+9+\ldots .3 x=45 x$
$\Rightarrow 3(1+2+3+\ldots . x)=45 x$
$\Rightarrow \frac{3 x(x+1)}{2}=45 x$
$\Rightarrow x+1=30$
$\Rightarrow x=29$
Hence, Required number of pens $=29$
16. (c) $\frac{\cos \alpha}{\sin \beta}=n$, and $\frac{\cos \alpha}{\cos \beta}=\mathrm{m}$
$\Rightarrow \cos ^{2} \alpha=n^{2} \sin ^{2} \beta, \cos ^{2} \alpha=m^{2} \cos ^{2} \beta$
Now, $n^{2} \sin ^{2} \beta=m^{2} \cos ^{2} \beta$
$n^{2}\left(1-\cos ^{2} \beta\right)=m^{2} \cos ^{2} \beta$
$\frac{n^{2}}{m^{2}+n^{2}}=\cos ^{2} \beta$
$-\sqrt{6^{2}+8^{2}}=-10$
So, P Must be $\geq 10$
18. (B) $\sin (75)^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
$=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}$
$=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
19. (D) If $\sin \theta+\operatorname{cosec} \theta=2$
then, $\sin \theta=1, \operatorname{cosec} \theta=1$
$\therefore \sin ^{14} \theta+\operatorname{cosec}^{34} \theta=2$
20. (B)

A.T.Q,

Time taken by car to cover 2 units distance $=20 \mathrm{~min}$.
Time taken by car to cover 3 units dis-
tance $=\frac{20}{2} \times 3=30 \mathrm{~min}$.
$\therefore$ Required time $=\frac{30}{60}=\frac{1}{2}$ hours
21. (A) We know that,
$\Rightarrow \sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)=1$
$\Rightarrow \sec \theta+\tan \theta=\frac{1}{2}$
$\sec \theta-\tan \theta=2$
On solving equation (i) and (i), we get
$\sec \theta=\frac{5}{4}$


Now, $\sin \theta+\cos \theta=\frac{7}{5}$
22. (D) $x=(1+\cos \mathrm{A})(1+\cos \mathrm{B})(1+\cos \mathrm{C})=(1-\cos \mathrm{A})$ $(1-\cos \mathrm{B})(1-\cos \mathrm{C})$ $\qquad$ (given)
Now, $x^{2}=(1+\cos A)(1+\cos B)(1+\cos C)$
$(1-\cos \mathrm{A})(1-\cos \mathrm{B})(1-\cos \mathrm{C})$
$\Rightarrow x^{2}=\left(1-\cos ^{2} \mathrm{~A}\right)\left(1-\cos ^{2} \mathrm{~B}\right)\left(1-\cos ^{2} \mathrm{C}\right)$
$\Rightarrow x^{2}=\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B} \sin ^{2} \mathrm{C}$
$\Rightarrow x=\sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}$

## Campus

## K D Campus Pvt. Ltd

23. (C) We know that $\cos 90^{\circ}=0$

So, $\cos 10^{\circ} \cos 20^{\circ} \cos 30^{\circ} \cos 40^{\circ} \ldots$.
$\cos 110^{\circ} \sin 120^{\circ}=0^{\circ}$
24. (D) $x=31-8 \sqrt{15}=(4-\sqrt{15})^{2}$
$\Rightarrow \sqrt{x}=4-\sqrt{15}$ and $\frac{1}{\sqrt{x}}=4+\sqrt{15}$
Now, $\sqrt{x}+\frac{1}{\sqrt{x}}=8$
25. (C) $x^{2}+y^{2}+4 y+4=0$
$\Rightarrow x^{2}+(y+2)^{2}=0$
$\Rightarrow x=0$, and $y=-2$
Now, $x^{3}+y^{3}=0^{3}+(-2)^{3}=-8$
26. (C) Let the total no. of sides $=n$

According to the question,
$\frac{(n-2) 180^{\circ}}{n}-\frac{360^{\circ}}{n}=120^{\circ}$
$\Rightarrow 180 n-360-360=120 h$
$\Rightarrow 60 n=720, h=12$
$\Rightarrow n=12$
Hence, Required number of sides $=12$.
27. (B) ATQ,
$\Rightarrow$ In $\triangle \mathrm{BOC}=12$
$\mathrm{BC}=\sqrt{\mathrm{oc}^{2}-\mathrm{OB}^{2}}$
$\Rightarrow \mathrm{BC}=25^{2}-7^{2}$
$=24 \mathrm{~cm}$

and, $\mathrm{AC}=2 \mathrm{BC}=48 \mathrm{~cm}$
28. (C) Required percentage $\begin{aligned} & =\frac{36}{40 \times 60} \times 100 \\ & =1.5 \%\end{aligned}$
29. (C) If selling price increase by ₹4, 2 less chair will be sold
If selling price is $x, \frac{x-200}{2}$ less chair will be sold.
Total chair sold $=100-\frac{x}{2}-100$

$$
=200-\frac{x}{2}=\frac{400-x}{2}
$$

30. (B) $\mathrm{AM} \times \mathrm{MB}=\mathrm{CM} \times \mathrm{MD}$
$\Rightarrow 6 \times 4=12 \times \mathrm{MD}$
$\Rightarrow \mathrm{MD}=2 \mathrm{~m}$
Now,
$\mathrm{QD}=\frac{12+2}{2}=7 \mathrm{~m}$,
$\mathrm{QM}=5 \mathrm{~m}=\mathrm{OP}$
and, $\mathrm{AP}=\frac{A B}{2}=5 \mathrm{~m}$


In $\triangle \mathrm{AOP}$,
$\mathrm{OA}^{2}=\mathrm{AP}^{2}+\mathrm{OP}^{2}$
$\Rightarrow \mathrm{OA}=\sqrt{5^{2}+5^{2}}=5 \sqrt{2} \mathrm{~m}$
Hence, Area of circle $=\pi(5 \sqrt{2})^{2}=50 \pi \mathrm{~m}^{2}$
31. (A) Man - 4
$\begin{array}{lll}\begin{array}{ll}\text { Woman }-6 \\ \text { Boy } & -24\end{array} & \stackrel{4}{<} & 6\end{array}$
To complete the work in $\frac{1}{5}$ days, they have to do 120 unit work in a day.
Now, $4+6+x=120$
$\Rightarrow x=110$ boys
32. (B) $\frac{M_{1} D_{1}}{W_{1}}=\frac{M_{2} D_{2}}{W_{2}}$

$$
\begin{aligned}
\frac{42 \times 56}{2} & =\frac{x \times 28}{3} \\
x & =126
\end{aligned}
$$

Required number of men $=126-56=70$
33. (C) Akash complete $\frac{11}{18}$ the work $=22$ days $\begin{aligned} \text { Akash complete total work } & =\begin{array}{c}22 \times \frac{18}{11} \\ \\ =\end{array} \\ & 36 \text { days }\end{aligned}$
34. (C) Pipe $_{1} \rightarrow 9>2$

Pipe $_{2 \rightarrow 6} \xrightarrow[3]{ } 18$
Required time $=\frac{18}{(3-2)} \times \frac{5}{6}$

$$
=15 \text { hours }
$$

Man
$3 \quad 1 \rightarrow$ efficiency
The wages will be in the ratio same as efficiency
Required wages of $\operatorname{man}=\frac{1600}{4} \times \frac{1}{4}$

$$
=₹ 100
$$

36. (C) According to the question
$3 \mathrm{~A}=7 \mathrm{~B}$
and, $5 \mathrm{~B}=9 \mathrm{C}$
$15 \mathrm{~A}=35 \mathrm{~B}=63 \mathrm{C}$
Required time $=\frac{63}{15} \times 25=105$ days
37. (A) For maximum profit, S.P. must be maximum and C.P. must be minimum
$\therefore$ Maximum profit $=424 \times 10-212 \times 10$

$$
\text { = ₹ } 2120
$$

38. (B) Loss required $=\frac{x^{2}}{100} \%=\frac{(20)^{2}}{100}=4 \%$
39. (D) Let cost price per watch $=x$

According to the question
$x \times \frac{160}{100} \times \frac{80}{100}=\frac{6912}{108}$
$\Rightarrow \quad x=₹ 50$

## Campus <br> K D Campus Pvt. Ltd

40. (D)


Area of a triangle $=\frac{1}{2} \times 8 \times 12 \times$
$\sin \angle \mathrm{BAC}$
Max. value of $\sin \angle B A C=1$
$\therefore \angle \mathrm{BAC}=90^{\circ}$,
So, $x=\sqrt{8^{2}+12^{2}}=\sqrt{208}$
41. (C)

$A B C$ is an equilateral triangle
AF : $\frac{\sqrt{3} a}{2}$
In-radius $\left(R_{1}\right)=\frac{a}{2 \sqrt{3}}$
$A P=A F-2 R_{1}$
$=\frac{\sqrt{3} a}{2}-\frac{a}{\sqrt{3}}=\frac{a}{2 \sqrt{3}}$
$\triangle \mathrm{ADE}$ is also an equilateral triangle
$\frac{\sqrt{3} \mathrm{DE}}{2}=\mathrm{AP}=\frac{a}{2 \sqrt{3}}$
$\mathrm{DE}=\frac{a}{3}$
Inradius of triangle ADE
$=\frac{\mathrm{DE}}{2 \sqrt{3}}=\frac{a}{6 \sqrt{3}}$
42. (C) Circumradius ( R ) $=\frac{\text { hypstenuse }}{2}$
hypotenuse (h) $=11 \times 2=22 \mathrm{~cm}$
Inradius (r) $=\frac{a+b-h}{2},(a \& b$ are sides of triangle)
$4=\frac{a+b-22}{2}$
$\Rightarrow a+b=30 \mathrm{~cm}$ and,
Perimeter $=\mathrm{a}+\mathrm{b}+\mathrm{h}=30+22=52 \mathrm{~cm}$
43. (B) $x^{2}-14 x+34 \Rightarrow(x-7)^{2}+34-49$
$\Rightarrow(x-7)^{2}-15$
minimum value of $(x-7)^{2}=0$
So, minimum value $=-15$
44. (B) $\frac{1434}{0.1434}=\frac{14.34}{x}$
$\Rightarrow x=\frac{1434}{1000000}=0.001434$
45. (C) $x^{x \sqrt{x}}=(x \sqrt{x})^{x}$
$\Rightarrow x^{x \sqrt{x}}=\left(x^{\frac{3}{2}}\right)^{x}$
$\Rightarrow x \sqrt{x}=\frac{3}{2} x$
$\Rightarrow \sqrt{x}=\frac{3}{2}$
$\Rightarrow x=\frac{9}{4}$
46.
(C) $x=\sqrt{11}+\sqrt{10}, \frac{1}{x}=\sqrt{11}-\sqrt{10}$
and, $x+\frac{1}{x}=2 \sqrt{11}$
Now, $x^{3}+\frac{1}{x^{3}}=(2 \sqrt{11})^{3}-3 \times(2 \sqrt{11})$
$=88 \sqrt{11}-6 \sqrt{11}$
$=82 \sqrt{11}$
47. (C) $x+\frac{1}{x}=3$

$$
\begin{aligned}
x^{5}+\frac{1}{x^{5}} & =\left(3^{3}-3 \times 3\right)\left(3^{2}-2\right)-3 \\
& =18 \times 7-3=123
\end{aligned}
$$

48. (C) Let he has " $x$ " rupees

According to the question,
$x=50 \mathrm{~A}=40 \mathrm{M}(\mathrm{A}=$ apple, $\mathrm{M}=$ Mango $)$
$x=\frac{10 x}{100}+\frac{20 \times x}{40}+P \times \frac{x}{50}$
[ $\mathrm{P}=$ total apple purchase)
$\Rightarrow \quad P=20$.
49. (B) Let the number $=100$
after decreasing by $\mathrm{M} \%=100-\mathrm{M}$
Required percentage $=\frac{M}{100-M} \times 100$

$$
=\frac{100 M}{100-M}
$$

## Campus <br> K D Campus Pvt. Ltd

50. (B) Boy : Girl

5 : 7
Required percentage
$=\left(\frac{\frac{5 x \times 40}{100}+\frac{7 x \times 60}{100}}{12 x}\right) \times 100$
$=51.56$
51. (A) Let the numbers are $x$ and $y$ According to the question,
$x-y=\frac{30}{100}(x+y)$
$\Rightarrow 10 x-10 y=3 x+3 y$
$\Rightarrow 7 x=13 y$
$\Rightarrow x: y=13: 7$
52. (C) On Earth, water $=80$, Land $=20$

In Asia (40) |n Rest of the world (60)
Water -28 Water $=80-28=52$
Land -12 $\mid$ Land $=20-12=8$
Required Ratio $=8: 52$ = $2: 13$
53. (D) Let, normal speed $=x \mathrm{~km} / \mathrm{h}$ and normal time $=\mathrm{T}$ hours
According to question,
$\frac{120}{\mathrm{~T}-2}-\frac{120}{\mathrm{~T}}=10$
$\Rightarrow \mathrm{T}=6$ hours
$\therefore x=\frac{120}{6}=20 \mathrm{~km} / \mathrm{hr}$
54. (B) Let, they meet after time ' T ' minute
$\mathrm{T}=\sqrt{63} \times \sqrt{28}$
$=2 \times 3 \times 7=42$ minutes
Required time $=42+28=70$ minutes
C) Speed of car $=\frac{\mathrm{M}}{\mathrm{N}} \mathrm{km} / \mathrm{hr}$

Required time $=\frac{700 \times \mathrm{N}}{1000 \times \mathrm{M}}=\frac{7 \mathrm{~N}}{10 \mathrm{M}} \mathrm{hrs}$.
56. (C) Let speed of stream $=x \mathrm{~km} / \mathrm{hr}$

$$
\begin{aligned}
\text { Required time } & =\frac{192}{(15+x)+(17-9 x)} \\
& =\frac{192}{32} \\
& =6 \text { hours }
\end{aligned}
$$

59. (D)
60. (D) Let, speed $=x \mathrm{~km} / \mathrm{hr}$ and
time $=y \mathrm{hrs}$
According to the question,
$x y=(x+3)\left(y-\frac{2}{3}\right)$
$\Rightarrow x y=x y+3 y-\frac{2}{3} x-2$
$\Rightarrow 9 y-2 x=6$ - (i) and
$x y=(x-2)\left(y+\frac{2}{3}\right)$
$\Rightarrow x y=x y-2 y+\frac{2}{3} x-\frac{4}{3}$
$\Rightarrow-6 y+2 x=4$ - (ii)
From (i) and (ii), we have
$y=\frac{10}{3}, x=12$
$\therefore$ Distance $=x y=\frac{10}{3} \times 12=40 \mathrm{~km}$.
61. (B)


Diagonal of innermost
square $=\sqrt{50} \times \sqrt{2}=10 \mathrm{~cm}$
Diagonal of outermost square
$=10+(2.25) \times 8$
$=28 \mathrm{~cm}$.


Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times 32 \times 24=384 \mathrm{~m}^{2}$
$\mathrm{BD}=\sqrt{24^{2}+32^{2}}=40$.
Area of $\triangle B C D=\sqrt{45 \times 5 \times 20 \times 20}$

$$
\begin{aligned}
& =3 \times 5 \times 20 \\
& =300 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, Area of $\triangle B C D=300+384$

## Campus <br> K D Campus Pvt. Ltd

60. (A) Let the side of cube $=a$

According to the question,
$\Rightarrow 4 \times 6 \times 9=a^{3}$
$\Rightarrow a=2 \times 3=6$
$\therefore$ Required ratio $=\frac{2(4 \times 6+6 \times 9+4 \times 9)}{6 \times(6)^{2}}$

$$
\begin{aligned}
& =228: 216 \\
& =19: 18
\end{aligned}
$$

61. (B) Let height of cone $=h$

According to the question
$\pi \mathrm{R}^{2} \times 17=\frac{1}{3} \times \pi \mathrm{R}^{2} \times h$
$\Rightarrow \mathrm{h}=51 \mathrm{~cm}$.
62. (D) Total surface area of prism
$=(6 \times 3) \times 5+\left(\frac{\sqrt{3} \times(6)^{2}}{4}\right) \times 2$
$=90+18 \sqrt{3}$
$=18(5+\sqrt{3}) \mathrm{cm}^{2}$
63. (B) $\mathrm{AD}=\sqrt{(2)^{2}+(2)^{2}}$

$$
=2 \sqrt{2} \mathrm{~cm}
$$

Area of $\square \mathrm{PQRS}=16 \mathrm{~cm}^{2}$


$$
4 \mathrm{~cm}
$$ and, Area of $\square \mathrm{ABCD}=(2 \sqrt{2})^{2}=8 \mathrm{~cm}^{2}$

$\mathrm{PM}=\sqrt{(P D)^{2}+(M D)^{2}}$
$=2 \mathrm{~cm}$
Area of $\triangle \mathrm{MNOP}=2^{2}=4 \mathrm{~cm}^{2}$
Hence, total area $=16+8+4+2+1$
$\ldots \ldots .=\frac{16}{1-\frac{1}{2}}=32 \mathrm{~cm}^{2}$
64. (B)
65. (D) Let $x=11^{3}+12^{3}+13^{3}+$ $\qquad$ $+15^{3}$
$\Rightarrow x=\left(\frac{15(15+1)}{2}\right)^{2}=(120)^{2}=14400$
and, $y=1^{3}+2^{3}+3^{3}$ $\qquad$ $+10^{3}=y$
$\Rightarrow y=\left(\frac{10(11)}{2}\right)^{2}=(55)^{2}=3025$
Now, Required sum $=x-y=14400-3025$

$$
=11375
$$

66. (C) Let the cost price $=₹ 100$
then, Selling price $=₹ 140$
Required Fraction $=\frac{100}{140}=\frac{5}{7}$
67. (C) Let required rate $=\mathrm{R} \%$

According to the question,
$16000 \times \frac{11}{200}+48000 \times \frac{6}{100}+36000 \times \frac{\mathrm{R}}{100}$
$=7360$
$\Rightarrow 880+2880+360 \mathrm{R}=7360$
$\Rightarrow 360 \mathrm{R}=3600$
$\Rightarrow R=10 \%$
68. (C) Let the money borrowed $=₹ \mathrm{P}$

$$
\begin{aligned}
& P \times \frac{9}{100} \times 2+P \times \frac{15}{100} \times 3+P \times \frac{13}{100} \times 3 \\
& =8160 \\
& \Rightarrow P=₹ 8000
\end{aligned}
$$

69. (C) Sum of money $=\frac{100 \times 100}{10 \times 10} \times 28=₹ 2800$

Compound interest (half-yearly)
$=2800\left(1+\frac{5}{100}\right)^{4}$
= ₹ 603.41
Simple interest $=2800 \times 2 \times \frac{10}{100}=₹ 560$
Required Difference $=₹$ 603.41-560

$$
\text { = ₹ } 43.41
$$

(B) Let required amount $=₹ x$

According to the question
$36900=\left(\frac{20}{21}+\left(\frac{20}{21}\right)^{2}\right) x$
$\Rightarrow 36900=x\left(\frac{20}{21}+\frac{420}{441}\right)$
$\Rightarrow x=₹ 19845$
71. (B)

Zinc: Copper:tin Zinc:Copper:tin:lead $1^{\text {st }}$ alloy $\rightarrow 3: 4: 6 \xrightarrow{\times 2} 6: 8: 12$ $2^{\text {nd }}$ alloy $\rightarrow$ $7: 9: 10$

Required weight $=\frac{10}{52}=\frac{5}{26} \mathrm{~kg}$.
72. (B) Let total mixture $=8$ units

Initially, water $=3$ units milk $=5$ units
Finally, water $=4$
milk $=4$
Let ' $x$ ' unit of mixture was taken off
$3-\frac{3 x}{8}+x=4$
$x=\frac{8}{5}$ unit
Required fraction $=\frac{8}{5} \times \frac{1}{8}=\frac{1}{5}$ part

## Campus <br> K D Campus Pvt. Ltd

73. (D) Let $p=\mathrm{r}=t=3$
$q=\mathrm{s}=\mathrm{u}=5$
$\frac{a p+b r+c t}{a q+b s+c u}=\frac{3(a+b+c)}{5(a+b+c)}=3: 5$
74. (D) Let, required number $=x$
$(6+\mathrm{x})(17+x)=(7+x)(15+x)$
$\Rightarrow x=3$
75. (D) Let, there are $x, y$ and $z$ students in 8 th, 9 th, and 10 th class respectively.
$\frac{53 x+46 y}{x+y}=49$
$\Rightarrow 53 x+46 y=49 x+49 x$
$\Rightarrow 4 x=3 y$
$\frac{46 y+55 z}{y+z}=51$
$\Rightarrow 46 y+55 z=51 y+51 z$
$\Rightarrow 5 y=4 z$
From equation (i) and (ii), we have
$20 x=15 y=12 z$
$x: y: z=3: 4: 5$
Required average weight

$$
\begin{aligned}
& =\frac{53 \times 3+46 \times 4+55 \times 5}{3+4+5} \\
& =\frac{159+184+275}{12} \\
& =\frac{618}{12}=51.5 \mathrm{~kg} .
\end{aligned}
$$

76. (D) Required average $=\frac{38 \times 7-8 \times 7}{6}$

$$
\begin{aligned}
& =\frac{266-56}{6} \\
& =\frac{210}{6}=35 \text { years }
\end{aligned}
$$

77. (C) Sum of all four numbers $=27+(23 \times 3)$

$$
\begin{aligned}
& =96 \\
& =96 \\
& =33
\end{aligned}
$$

$$
\text { Last number }=96-(3 \times 21)
$$

78. (A) $\frac{m+(m+1)+(m+2)+(m+3)+(m+4)}{5}=h$
$\Rightarrow 5 \mathrm{~m}+10=5 \mathrm{~h}$
$\Rightarrow \mathrm{m}+2=\mathrm{h}-$ (i)
Required average
$=\frac{(m+2)+(m+3)+(m+4)+(m+5)+(m+6)(m+7)}{6}$
$=\frac{6 m+27}{6}$
$=m+\frac{27}{6}$
$=(\mathrm{h}-2)+\frac{27}{6}$ (from equation (i))
$=\frac{2 h+5}{2}$
79. (C) Required average

$$
=\begin{aligned}
& 2+3+5+7+11+13+17+19 \\
& +23+29+31+37+41+43+47 \\
& 15
\end{aligned}
$$

$$
=\frac{328}{15}=21.86
$$

80. (C) $\left(x^{2}+7 x+12\right)=(x+4)(x+3)$

Sides of rectangle are $(x+4)$ and $(x+3)$

$$
\begin{aligned}
\therefore \text { Perimeter } & =(2(x+4)+2(x+3)) \\
& =(4 x+14) \mathrm{cm}
\end{aligned}
$$

81. (C) Required Volume $=3.5 \times 10,000 \times \frac{10}{100}$

$$
=3500 \mathrm{~m}^{3}
$$

82. $(\mathrm{A})$ Area $=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}$
$=\frac{1}{2} \times\left(\right.$ BC. $\left.\sin 15^{\circ}\right)\left(\right.$ BC. $\left.\cos 15^{\circ}\right)$
$=\frac{1}{2} \times \frac{1}{2} \times \mathrm{BC} \times \mathrm{BC} \times 2 \sin 15^{\circ} \cos 15^{\circ}$
$=\frac{1}{4} \times 10 \times 10 \times \sin 30^{\circ}$
$=25 \times \frac{1}{2}=12.5 \mathrm{~m}^{2}$
$=12.5 \times 100 \times 100=125000 \mathrm{~cm}^{2}$
83. (C) SP of racket $=\left(300 \times \frac{85}{100}-15\right)$
$=₹ 240$
C. P
$=240 \times \frac{100}{120}=₹ 200$
84. (B) Simple interest per year $=\frac{6000}{3}$
$=₹ 2000$
Let rate $=\mathrm{R} \%$
$2000 \times \frac{\mathrm{R}}{100}=100$
$\Rightarrow R=5 \%$
Let sum = ₹ P

$$
P \times \frac{5}{100}=2000
$$

$$
\Rightarrow P=₹ 40,000
$$

85. (A) C.P. of mixed tea $=264 \times \frac{100}{120}=₹ 220$


Required ratio $=14: 6=7: 3$

## Campus <br> K D Campus Pvt. Ltd

86. (B) $\frac{P}{Q}=\frac{Q}{R}, \Rightarrow Q^{2}=P R$
$\Rightarrow Q^{4}=P^{2} R^{2}$
$\mathrm{Q}^{4} \mathrm{Q}^{4}=\mathrm{P}^{4} \mathrm{R}^{4} \Rightarrow \frac{\mathrm{P}^{4}}{\mathrm{Q}^{4}}=\frac{\mathrm{Q}^{4}}{\mathrm{R}^{4}}$
$\Rightarrow \mathrm{P}^{2}: \mathrm{R}^{2}$
87. (D) $\frac{M_{1} D_{1}}{W_{1}}=\frac{M_{2} D_{2}}{W_{2}}$
$\Rightarrow \frac{24 \times 24}{24}=\frac{8 \times x}{8}$
$\Rightarrow x=24 \mathrm{sec}$.
88. (C) Let A Contribute ₹ $x$
$\frac{x \times 4}{1560 \times 8}=\frac{1}{8} \times \frac{24}{13}$
$x=\frac{3 \times 1560 \times 8}{13 \times 4}=\frac{24 \times 120}{4}$
$x=₹ 720$
Let B Contribute ₹ $y$
$\frac{y \times 6}{720 \times 4}=\frac{1}{3} \times \frac{8}{1}$
$y=\frac{8 \times 4 \times 720}{6 \times 3}=32 \times 40$
₹ 1280
89. (A) 17 and 19 are co-prime numbers, So the number must be divisible by $17 \times 19$.
90. (D) $\pi R^{2}=770$
$\Rightarrow R^{2}=\frac{770 \times 7}{22}=35 \times 7$
$\Rightarrow \mathrm{R}=7 \sqrt{5}$
$\pi \mathrm{RL}=814$
$\Rightarrow \mathrm{L}=\frac{814 \times 7}{22 \times 7 \sqrt{5}}=\frac{37}{\sqrt{5}}$
and, $\mathrm{L}^{2}-\mathrm{R}^{2}=\mathrm{H}^{2}$
$H=\frac{12}{\sqrt{5}}$
Volume $=\frac{1}{3} \times \frac{22}{7} \times 7 \sqrt{5} \times 7 \sqrt{5} \times \frac{12}{\sqrt{5}}$
$=616 \sqrt{5} \mathrm{~cm}^{3}$
91. (C) Required percentage

$$
\begin{aligned}
& \quad \begin{array}{l}
\left(3276000 \times \frac{15}{100} \times \frac{3}{5}\right)+\left(3276000 \times \frac{20}{100} \times \frac{3}{4}\right) \\
= \\
100 \times \frac{+\left(3276000 \times \frac{12}{100} \times \frac{3}{8}\right)}{3276000} \\
= \\
\frac{933660}{3276000} \times 100=28.5 \%
\end{array}
\end{aligned}
$$

92. (D) Required number
$=\left(3276000 \times \frac{25}{100} \times \frac{7}{9}\right)+\left(3276000 \times \frac{20}{100} \times \frac{4}{5}\right)$
$=637000+524160$
$=1161160$
93. (D) Required ratio

$$
\begin{aligned}
& =\frac{3276000 \times \frac{9}{100} \times \frac{4}{7}}{3276000 \times \frac{8}{100} \times \frac{3}{5}} \\
& =\frac{9 \times 4 \times 5}{7 \times 8 \times 3}=\frac{15}{14}
\end{aligned}
$$

94. (B) Required number $=3276000 \times \frac{15}{100} \times \frac{3}{5}$

$$
=294840
$$

(A) $\frac{3276000 \times \frac{15}{100} \times \frac{100}{110}}{327600 \times \frac{20}{100}}$
95. (A) Required Ratio $=\frac{30}{3276000 \times \frac{20}{100} \times \frac{100}{112}}$

$$
=\frac{15 \times 112}{20 \times 110}=42: 55
$$

96. (B) Required ratio $=\frac{12699}{92} \approx 138$
97. (A) Countries B, C and F exhibited a trade surplus.
98. (B) Total export $=28819$ Lakhs Total import deficit $=$ 43431-28819

$$
=14612 \text { Lakhs }
$$

99. (A) The Highest trade deficit shown by country A
$=12699-6045=6654$ lakh
100. (B) In country ' $c$ ' the ratio of export to import is the highest

## Campus <br> K D Campus Pvt. Ltd

## SSC TIER II (MATHS) MOCK TEST - 21 (ANSWER KEY)

|  | C) | ) | 21. (A) | ( | (C) | A) | 61. (B) | (B) | . (C) | (C) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. (B) | B | 12. (B) | 22. (D) | 32. (B) | 42. (C) | 52. (C) | 62. (D) | 72. (B) | 2. (A) | . |
| (B) | B) | 13. (D) | 23. | 3. | (B) | 53. (D) | . | 3. (D) | 3. (C) | 3. |
| 4. (D) | D) | 14. (A) | 24. (D) | 4. | , | 54. | , | . (D) | 4. (B) | . (B) |
| (D) | (D) | 15. (D) | 5. | 35. | 45. (C) | 55. (C) | 65. | 75. (D) | 85. (A) | 5. |
| (D) | ) | 16. (c) | 26. | 36. | 46. (C) | 56. (C) | 66. | 76. (D) | 86. (B) | 6. (B) |
| (C) | C) | 17. (A) | 27. | 37. (A) | 47. (C) | 57. (D) | 67. (C) | 77. (C) | 87. (D) | . (A) |
| (B) | B) | 18. (B) | 28. | 38. | 48. (C) | 58. (B) | 68. | 78. (A) | 88. (C) | 98. (B) |
| 9. (C) | ( | 19. (D) | 29. | 39. ( | 49. (B) | 59. (D) | 69. (C) | 79. (C) | 89. (A) | 99. (A) |
| (C) | C) | 20. (B) | 30. (B) | 40. (D) | 50. (B) | 60. (A) | 70. (B) | 80. (C) | 90. (D) | 00 |

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777


