2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

HARYANA CONSTABLE MOCK TEST-65 (SOLUTION)

1.	(B)	26.	(C)	51.	(B)	76.	(C)
2.	(B)	27.	(B)	52.	(A)	77.	(D)
3.	(B)	28.	(D)	53.	(D)	78.	(C)
4.	(A)	29.	(B)	54.	(A)	79.	(A)
5.	(C)	30.	(A)	55.	(A)	80.	(C)
6.	(A)	31.	(C)	56.	(C)	81.	(C)
7.	(B)	32.	(C)	57.	(C)	82.	(C)
8.	(B)	33.	(A)	58.	(B)	83.	(D)
9.	(D)	34.	(C)	59.	(B)	84.	(A)
10.	(C)	35.	(C)	60.	(A)	85.	(D)
11.	(B)	36.	(A)	61.	(D)	86.	(A)
12.	(D)	37.	(D)	62.	(B)	87.	(A)
13.	(A)	38.	(D)	63.	(B)	88.	(B)
14.	(A)	39.	(B)	64.	(A)	89.	(B)
15.	(D)	40.	(A)	65.	(D)	90.	(B)
16.	(B)	41.	(D)	66.	(C)	91.	(D)
17.	(C)	42.	(D)	67.	(C)	92.	(C)
18.	(A)	43.	(B)	68.	(B)	93.	(D)
19.	(B)	44.	(A)	69.	(C)	94.	(C)
20.	(B)	45.	(A)	70.	(A)	95.	(C)
21.	(D)	46.	(C)	71.	(B)	96.	(D)
22.	(B)	47.	(A)	72.	(B)	97.	(D)
23.	(C)	48.	(B)	73.	(D)	98.	(C)
24.	(C)	49.	(C)	74.	(D)	99.	(B)
25.	(D)	50.	(B)	75.	(B)	100.	(B)

Explanation:

3. (B) $2486-85=2401=(49)^{2}$
4. (A) $\because \frac{a^{3}-b^{3}}{a^{2}+a b+b^{2}}=a-b$

$$
\begin{aligned}
& \therefore \frac{(0.96)^{3}-(0.1)^{3}}{(0.96)^{2}+(0.096)+0.01} \\
& =\frac{(0.96)^{3}-(0.1)^{3}}{(0.96)^{2}+(0.096 \times 0.1)+(0.1)^{2}} \\
& =0.96-0.1 \\
& =0.86
\end{aligned}
$$

8. (B) $\sqrt{\left(\frac{1}{4}\right) \times\left(\frac{1}{49}\right) \div\left(\frac{25}{121}\right)}$

$$
\begin{aligned}
& =\sqrt{\left(\frac{1}{4}\right) \times\left(\frac{1}{49}\right) \times\left(\frac{121}{25}\right)} \\
& =\frac{1}{2} \times \frac{1}{7} \times \frac{11}{5}=\frac{11}{70}
\end{aligned}
$$

9. (D) (3 men $=4$ women) $\xrightarrow{\text { Total work }} 43$ days Now,
7 men +5 women
$=7$ men $+\left(5 \times \frac{3}{4}\right)$ men
$=\left(7+\frac{15}{4}\right)$ men $=\left(\frac{28+15}{4}\right)$ men
$=\frac{43}{4} \mathrm{men}$
Now,
$\because 3$ men $\xrightarrow{\text { Total work }} 43$ days
$\therefore 1$ men $\xrightarrow{\text { Total work }}(43 \times 3)$ days

$$
\begin{aligned}
& \therefore \frac{43}{4} \text { men } \xrightarrow{\text { Total work }} \frac{43 \times 3}{43 / 4} \\
& =12 \text { days }
\end{aligned}
$$

16. (B)

$$
\begin{aligned}
\mathrm{CP} \xrightarrow{+20 \%} \mathrm{MP} \xrightarrow{-20 \%} & \mathrm{SP} \\
=x \times 1.2 & =x \times 1.2 \times 0.8 \\
& =0.96 x
\end{aligned}
$$

Here, SP < CP \Rightarrow Loss
and loss $\%=\frac{C P-S P}{C P} \times 100 \%$
$=\frac{x-0.96 x}{x} \times 100 \%$
$=\frac{0.04 x}{x} \times 100 \%=4 \%$
$\Rightarrow 4 \%$ Loss
17. (C)

$$
\Rightarrow \text { Req. ratio }=2: 3
$$

18. (A) Average

$$
\begin{array}{r}
=\frac{61+67+71+73+79+83+89}{7} \\
=\frac{523}{7}=74.71 \approx 74.85
\end{array}
$$

24. (C) Total age of 14 girls and teachers
$=225$
Total age of 14 girls $=14 \times 14=196$ teacher's age $=225-196$

$$
=29 \text { years }
$$

25. (D) No of required days $=\frac{21 \times 28}{21+28}=12$ days
26. (C) CP of 23 toys $=$ SP of 20 toys

$$
\Rightarrow(\mathrm{CP} \text { of } 1 \text { toy }):(\mathrm{SP} \text { of } 1 \text { toy })
$$

$$
20: 23
$$

(SP $>\mathrm{CP} \Rightarrow$ Profit)
$\Rightarrow \%$ Profit $=\frac{S P-C P}{C P} \times 100 \%$
$=\frac{23-20}{20} \times 100 \%$

$$
=\frac{3}{20} \times 100 \%=15 \%
$$

35. (C) If, then B's income is more than A's income by
A's income is $\frac{5}{6}$ th of B's income.
\Rightarrow B's income is $\frac{6}{5}$ of A's income.
$=\left(\frac{6}{5} \times 100\right) \%=120 \%$
\Rightarrow B's income is 120% of A's income.
\Rightarrow B's income is more than A's income $120 \%-100 \%=20 \%$
36. (D)

37. (B) (A) $7+3+2+5=17$
(B) $4+2+5+7=18$
(C) $5+4+2+5=16$
(D) $3+2+5+7=17$
38. (A) Speed of second train $=\frac{360 \mathrm{~km}}{4 \mathrm{hr}}$ $=90 \mathrm{~km} / \mathrm{hr}$ and,
\because The ratio between the speeds of two trains is 8:9

So,
Speed of First train $=\frac{8}{9} \times 90 \mathrm{~km} / \mathrm{hr}$

$$
=80 \mathrm{~km} / \mathrm{hr}
$$

Distance covered by $1^{\text {st }}$ train in 3 hours $=80 \mathrm{~km} / \mathrm{hr} \times 3 \mathrm{hrs}$

$$
=240 \mathrm{~km}
$$

45. (A) For 2 years,

$$
\begin{aligned}
& \mathrm{CI}-\mathrm{SI}=\frac{\mathrm{Pr}^{2}}{100^{2}} \\
& 32=\frac{\mathrm{P} \times 8^{2}}{100^{2}} \\
\Rightarrow & \mathrm{P}=\frac{32 \times 100 \times 100}{64} \\
= & 5000 \\
\Rightarrow & \text { Required sum }=₹ 5000
\end{aligned}
$$

49. (C)
50. (B) Total members $=2+3+1=6$
51. (B)

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
59. (B) $\frac{\text { Member }}{3}$, $\frac{\text { Family }}{1}$, Community
$\frac{\text { Locality }}{4} \frac{\text { Country }}{5}$
60. (A) Position of Suresh from initial point
$=39-(17+7)+1$
$=40-24$
$=16 \mathrm{th}$
66. (C) REVISION
67. (C) Changing the sign as per the instruction
$5+2 \times 12 \div 6-2=7$
$5 \times 2+12-6 \div 2=19$
$5 \times 2+12 \div 6-2=10$
$5-2 \times 12 \div 6+2=3$
77. (D)

78. (C)

79. (A)

Here, $\mathrm{DC}=8 \mathrm{~km}$

$$
\begin{aligned}
\mathrm{KF} & =4 \mathrm{~km} \\
\mathrm{AB} & =2 \mathrm{~km} \\
\therefore \quad \mathrm{AF} & =\mathrm{DC}-(\mathrm{KF}+\mathrm{AB}) \\
& =8-(4+2) \\
& =8-6=2 \mathrm{~km}
\end{aligned}
$$

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

