SSC CPO SI MOCK TEST－ 08 （SOLUTION）

1．（C）Generally，shoe is made by leather． Similarly，highway is made by gravel．
2．（C）Clock shows time．Similarly， thermometer shows temperature．
3．（B）

4．（D）

5．（D）

7．（C）
8．（A）
9．（D）Single vowel is used in option（A），（B）and （C）．Whereas three vowels are used in option（D）．
10．（C）

11．（C）Except 15，all are prime numbers．
12．（D）

$\mathrm{L} \quad \mathrm{O} \quad \mathrm{P} \quad \mathrm{K}$
个opp \uparrow 个opp \uparrow
（D）$\underset{\text { 个 nopp } \uparrow}{\mathrm{K}_{\text {not }} \mathrm{Q}} \quad \begin{array}{ll}\mathrm{R} \\ \text { topp } \uparrow\end{array}$

13．（C）
$\frac{\text { Zenith }}{4} \frac{\text { Zephyr }}{1} \frac{\text { Zig Zag }}{5} \frac{\text { Zodiac }}{2} \frac{\text { Zoonomy }}{3}$
14．（D）$\frac{\text { Chamber }}{2} \frac{\text { Cheap }}{3} \frac{\text { Cheerful }}{4} \frac{\text { Chemistry }}{1}$
15．（D） $\mathrm{a} \underline{\mathrm{b}} \mathrm{c} / \underline{\mathrm{c}} \mathrm{b} \mathrm{a} / \underline{\mathrm{b}} \mathrm{c} \mathrm{a} / \underline{\mathrm{a}} \mathrm{c} \mathrm{b}$
16．（B）

17．（B）

$$
\begin{aligned}
& \text { I } \begin{array}{l}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array} \quad \mathrm{II}\left\{\begin{array}{l}
\mathrm{Y} \\
\mathrm{P} \\
\mathrm{Q}
\end{array}\right. \\
& \mathrm{I}+\mathrm{II}+\mathrm{III}\left\{\begin{array}{l}
\mathrm{Q} I \\
Z
\end{array}\right. \\
& \left\{\begin{array}{l}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{P} \\
\mathrm{Q} \\
\mathrm{Z}
\end{array}\right.
\end{aligned}
$$

So， Z is the weakest among all．

18．（B）Let $x+y=54$
$x-y=12$
（i）
$\therefore 2 x=66$
$\therefore x=33$
from equation（i）
$33+y=54$
$\therefore y=54-33$
$=21$
Here $x=33$ and $y=21$ ．So， 33 is higher number
19.
（C）Raja
 Raghu

Güru \longrightarrow Krishna
20．（D）BRAND
21．（C）REVISION
22．（C）L E V E L \rightarrow M F W F M

Similarly，
VELEL \rightarrow W FM F M

23．（B）

24．（C）Here， $\mathrm{E}=\mathrm{A}, \mathrm{A}=\mathrm{R}, \mathrm{R}=\mathrm{X}, \mathrm{M}=\mathrm{S}, \mathrm{T}=\mathrm{W}, \mathrm{P}$ $=\mathrm{O}, \mathrm{W}=\mathrm{E}$ and $\mathrm{O}=\mathrm{T}$
So，

25．（C）

26.

27．（A）$(8-4) \div(4-2)=2$ and
$(9-0) \div(7-4)=3$
Similarly，
$(9-1) \div(5-3)=4$
28．（B）

$\overline{15 \div 3}=\underset{\uparrow+1}{6}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
29. (A) $2+3 \Rightarrow(2 \times 3)-(2+3) \Rightarrow 6-5=1$
$5+7 \Rightarrow(5 \times 7)-(5+7) \Rightarrow 35-12=23$
$3+9 \Rightarrow(3 \times 9)-(3+9) \Rightarrow 27-12=15$
$4+8 \Rightarrow(4 \times 8)-(4+8) \Rightarrow 32-12=20$
30. (A) $9 \times 5 \times 6=270$
$3 \times 7 \times 20=420$
Similarly,

$$
\begin{aligned}
4 \times x \times 8 & =224 \\
32 x & =224 \\
x & =224 \div 32 \\
\therefore x & =7
\end{aligned}
$$

31. (D) $3 \times 3-3+3=6$
$9-3+3=6$
$12-3=6$ $9=6$ (False)
32. (D)

33. (C)

$B C=\sqrt{(A C)^{2}+(A B)^{2}}$
$=\sqrt{(4)^{2}+(3)^{2}}$
$=\sqrt{16+9}$
$=\sqrt{25}=5 \mathrm{~km}$
34. (A)

Here $\mathrm{BC}=\mathrm{DE}=50 \mathrm{M}$ and $\mathrm{BE}=\mathrm{CD}=30 \mathrm{M}$ Required distance $\mathrm{AE}=\mathrm{AB}-\mathrm{BE}$

$$
\begin{aligned}
& =40 \mathrm{M}-30 \mathrm{M} \\
& =10 \mathrm{M}
\end{aligned}
$$

35. (D)
36. (A)

37. (B)
38. (C)

39. (A) $8+22=30$ Students
40. (D)
41. (A) According to the universal rule, identify any two situation in which we have only one digit common. In the given dice only one digit is common i.e. (3). Now write the numbers as clockwise from the common number.

Here, we have $3 \rightarrow 6 \rightarrow 2$ in figure (I).
Now, look at the figure (II).
Where We have $3 \rightarrow 1 \rightarrow 4$.
Now, write both of them one above the after as.

From given dice I \& II
3-6-2
5(3) 1-4
Here $6 \underset{ }{\text { opp }} 1$
$2 \stackrel{\text { opp }}{\longleftrightarrow} 4$
So, 5 will be the opposite of 3 .
42. (D) In the given dices 2 and 4 are common surfaces. So remaining surfaces will be opposite to each other.
43. (B)
44. (C)
45. (A)
46. (A)
47. (C)
48. (B)
49. (D)
50. (C)
101. (D) Ist term $=2=1^{2}+1$

2 nd term $=5=2^{2}+1$
3 rd term $=10=3^{2}+1$
$\therefore \quad$ 25th term $=25^{2}+1$

$$
=625+1
$$

$$
=626
$$

102. (A)

329	
3	$10 \overline{87} \overline{02} \overline{10}$
+3	9
62	187
+2	124
649	6302
+9	5841
6587	46110
+7	46109
6594	1

Smallest positive integer which is to be deducted from 10870210 to make it a perfect square $=1$ Ans.
103. (B) $\sqrt{\frac{1.296 \times 0.081 \times 5.776}{1.5625 \times 0.0361 \times 72.9 \times 64}}$

$$
=\sqrt{\frac{1296 \times 81 \times 5776}{15625 \times 0361 \times 729 \times 64}}
$$

$$
=\sqrt{\frac{2^{4} \times 3^{4} \times 3^{4} \times 2^{4} \times 19^{2}}{5^{6} \times 19^{2} \times 3^{6} \times 2^{6}}}
$$

$$
=\sqrt{\frac{2^{8-6} \times 3^{8-6} \times 19^{2-2}}{5^{6}}}
$$

$$
=\sqrt{\frac{2^{2} \times 3^{2} \times 1}{5^{6}}}
$$

$$
=\frac{2 \times 3}{5^{3}}=\frac{6}{125}=0.048
$$

104. (D) Part of the tank filled by both pipes P and Q in 1 minute $=\frac{1}{12}+\frac{1}{16}=\frac{4+3}{48}=\frac{7}{48}$ Part of the tank filled by them in x minutes $=\frac{7}{48} x$

Remaining part $=1-\frac{7 x}{48}=\frac{48-7 x}{48}$
$\because \quad$ in 1 minute $\frac{1}{12}$ part is filled by P
$\therefore \quad$ in 5 minutes $\frac{5}{12}$ part is filled by P
$\therefore \quad$ ATQ, $\frac{48-7 x}{48}=\frac{5}{12}$
$\Rightarrow \frac{48-7 x}{48}=\frac{5}{12}$
$\Rightarrow 48-7 x=20$
$\Rightarrow \quad x=4$ Ans.
105. (C) Work done by his son alone in 1 day
$=\frac{1}{6}-\frac{1}{9}=\frac{3-2}{18}=\frac{1}{18}$
Hence his son completes the work in 18 days.
106. (A) Price after 15\% discount to the member $=50000 \times \frac{95}{100} \times \frac{85}{100}=₹ 40375$
Amount taken from the member

$$
=₹ 40000
$$

Benefit of the member $=40375-40000$

$$
\text { = ₹ } 375
$$

107. (D) Single equivalent discount

$$
\begin{aligned}
& =100-100 \times \frac{80}{100} \times \frac{90}{100} \times \frac{95}{100} \\
& =100-68.4 \\
& =31.6 \%
\end{aligned}
$$

108. (D) SP at 20% discount $=825 \times \frac{80}{100}=₹ 660$
$\mathrm{CP}=\frac{\mathrm{SP} \times 100}{100+\% \text { gain }}$
$=\frac{660 \times 100}{110}=₹ 600$
109. (D) Let the number of boys $=3 x$ $\&$ the number of girls $=2 x$, then, ATQ,

$$
\begin{aligned}
\frac{3 x}{2 x+6} & =\frac{6}{5} \\
\Rightarrow \quad 15 x & =12 x+36 \\
\Rightarrow \quad x \quad & =\frac{63}{3}=12 \\
\therefore x & =12
\end{aligned}
$$

Number of boys $=3 \times 12=36$
110. (D) Let the number of coins of denomination

$$
\text { ₹ } 1=5 x
$$

$$
50 \text { paise }=6 x
$$

$$
25 \text { paise }=8 x
$$

ATQ,
$5 x+\frac{6 x}{2}+\frac{8 x}{4}=240$

$$
\Rightarrow 5 x+3 x+2 x=240
$$

$$
\Rightarrow \quad 10 x=240
$$

$\Rightarrow \quad x=24$
Number of 25 paise coins $=8 \times 24$

$$
=192
$$

111. (B) Copper in Type A brass $=\frac{8}{11}$

Copper in Type B brass $=\frac{15}{22}$
Copper in Type C brass $=\frac{5}{7}$
Required Ratio $=\frac{\frac{5}{7}-\frac{15}{22}}{\frac{5}{7}-\frac{8}{11}}=\frac{\frac{110-105}{154}}{\frac{55-56}{77}}$
$=\frac{5}{154} \times \frac{77}{-1}=\frac{5}{2}$
= $5: 2$
112. (A) Total weight of 180 students

$$
=180 \times 50 \mathrm{~kg}=9000 \mathrm{~kg}
$$

Let the number of boys $=x$, then, number of girls $=180-x$
ATQ,
$x \times 60+(180-x) \times 45=9000$
$\Rightarrow 60 x-45 x+180 \times 45=9000$
$\Rightarrow 15 x=9000-8100$
$\Rightarrow x=\frac{900}{15}=60$
Number of boys $=60$
Number of girls = 180-60=120 Ans.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
113. (A) Total marks of section one $=60 \times 40$

$$
\begin{aligned}
& =2400 \\
\text { Total marks of all sections } & =100 \times 72 \\
& =7200 \\
\text { Average marks of two section } & =\frac{7200-2400}{100-40} \\
& =\frac{4800}{60}=80
\end{aligned}
$$

114. (C) Total weight of 35 students $=35 \times \frac{95}{2} \mathrm{~kg}$

$$
=1662.5 \mathrm{~kg}
$$

Total weight of 35 Students + Teacher

$$
=36 \times 48=1728 \mathrm{~kg}
$$

Teacher's age $=1728-1662.5=65.5 \mathrm{~kg}$

$$
=65 \frac{1}{2} \mathrm{~kg}
$$

115. (C) Net CP $=₹(2000+400)=₹ 2400$

$$
\begin{aligned}
\% \text { gain } & =16 \frac{2}{3}=\frac{50}{3} \% \\
\mathrm{SP} & =\frac{\mathrm{CP}(100+\% \text { gain })}{100} \\
& =\frac{2400\left(100+\frac{50}{3}\right)}{100} \\
& =\frac{2400 \times 350}{100 \times 3}=2800
\end{aligned}
$$

116. (A) CP of 36 oranges at 4% loss $=\frac{1 \times 100}{96}$

$$
=₹ \frac{100}{96}
$$

SP at 8% gain $=\frac{100}{96} \times \frac{108}{100}=₹ \frac{9}{8}$
$\because ₹ \frac{9}{8}$ is the SP of 36 oranges
$\therefore ₹ 1$ is the SP of $\frac{36}{\frac{9}{8}}=36 \times \frac{8}{9}$

$$
=32 \text { oranges }
$$

117. (B) Let the CP of the whole consignment $=₹ 1$, then,

SP of $\frac{2}{3}$ of a consignment + SP of $\frac{1}{3}$ of the consignment

$$
\begin{aligned}
=\frac{105}{100} \times \frac{2}{3}+\frac{98}{100} \times \frac{1}{3} & =\frac{210}{300}+\frac{98}{300} \\
& =\frac{308}{300}
\end{aligned}
$$

Profit $=\frac{308}{300}-1=\frac{8}{300}$
When the profit is $₹ \frac{8}{300}$, Cost of consignment is ₹ 1
When the profit is $₹ 1$, Cost of consignment is ₹ $\frac{300}{8}$
When the profit is ₹ 400, Cost of consignment is $₹ \frac{300}{8} \times 400=300 \times 50$
$=₹ 15000$
118. (C) 35% of $x=735$

$$
x=\frac{735 \times 100}{35}
$$

Now 80% of $x=\frac{80}{100} \times \frac{735 \times 100}{35}$

$$
\text { = ₹ } 1680
$$

119. (A) Let the original price $=₹ 100$

$$
\text { new price }=125 \% \text { of } 100
$$

$$
=₹ 125
$$

From ₹ 125 , ₹ 25 will be deducted
From ₹ 1 , ₹ $\frac{25}{125}$ will be deducted
From ₹ 100 , ₹ $\frac{25}{125} \times 100=20 \%$ Ans.
120. (A) Let the total distance $=x \mathrm{~km}$, then, ATQ,
$\frac{\frac{x}{2}}{30}+\frac{\frac{x}{2}}{25}=11$
$\Rightarrow \frac{x}{60}+\frac{x}{50}=11$
$\Rightarrow \frac{5 x+6 x}{300}=11$
$\Rightarrow x=300 \mathrm{~km}$
121. (C) Time taken by the man to cover 1 km
$=\left(\frac{1}{10}+\frac{4}{60}\right) \mathrm{hrs}$.
$=\frac{1}{10}+\frac{1}{15}=\frac{5}{30}=\frac{1}{6} \mathrm{hrs}$.
Total time taken by the man to cover
$10 \mathrm{kms}=(9+1) \mathrm{kms}$
$=\frac{1}{6} \times 9+\frac{1}{10}$
$=\frac{3}{2}+\frac{1}{10}=\frac{15+1}{10}=\frac{16}{10}=\frac{8}{5} \mathrm{hrs}$.
$=1 \mathrm{hr}+\frac{3}{5} \times 60$ minutes
$=60+36=96$ minutes
122. (D) Scheme A Scheme B Scheme C

P_{1}	P_{2}	$\mathrm{P}_{3} \rightarrow$ principal
10%	12%	$15 \% \rightarrow$ rate
6 yrs	10 yrs	$12 \mathrm{yrs} \rightarrow$ time

$A_{1}=P_{1}+\frac{P_{1} \times 10 \times 6}{100}=\frac{160 P_{1}}{100}$
$A_{2}=P_{2}+\frac{P_{2} \times 12 \times 10}{100}=\frac{220 P_{2}}{100}$
$\mathrm{A}_{3}=\mathrm{P}_{3}+\frac{\mathrm{P}_{3} \times 15 \times 12}{100}=\frac{280 \mathrm{P}_{3}}{100}$
$\because \quad \mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{A}_{3}$
$\Rightarrow P_{1}: P_{2}: P_{3}=77: 56: 44$
123. (A) $P=₹ 16000$
$\mathrm{R}=\frac{5}{2} \%$ half yearly
$\mathrm{T}=1 \frac{1}{2} \mathrm{yrs}=3$ half years
$\mathrm{CI}=16000\left[\left(1+\frac{5}{200}\right)^{3}-1\right]$
$=16000\left[\left(\frac{205}{200}\right)^{3}-1\right]$
$=16000 \times\left[\left(\frac{41}{40}\right)^{3}-1\right]$
$=1600 \times \frac{68921-64000}{64000}=\frac{4921}{4}$
= ₹ $1230.25=1230 \frac{1}{4}$
124. (C) Length of the solid $=(10+10+10+10) \mathrm{cm}$

$$
=40 \mathrm{~cm}
$$

breadth of the solid $=10 \mathrm{~cm}$
height of the solid $=10 \mathrm{~cm}$
Total Surface Area $=2(l b+b h+l h)$
$=2[40 \times 10+10 \times 10+40 \times 10]$
$=2[400+100+400]$
$=1800 \mathrm{~cm}^{2}$
125. (B) Inradius $=\frac{1}{3}$ of median

$$
\begin{array}{rlrl}
\Rightarrow & 4 & =\frac{1}{3} \text { of median } \\
\Rightarrow \text { median } & =12 \mathrm{~cm} \\
\Rightarrow \frac{\sqrt{3}}{2} \times \text { Side } & =12 \\
\text { Side } & =8 \sqrt{3} \mathrm{~cm}
\end{array}
$$

Area of the equilateral $\Delta=\frac{\sqrt{3}}{4} \times(8 \sqrt{3})^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} \times 8 \times 8 \times 3 \\
& =48 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

126. (D) \because height of the cylinder $=$ radius of the
sphere $=r$ (say)
Let ' R ' be the radius of the cylinder
$\frac{\text { Volume of cylinder }}{\text { Volume of the sphere }}=\frac{\pi \mathrm{R}^{2} \mathrm{r}}{\frac{4}{3} \pi \mathrm{r}^{3}}=1$
$[\because$ vol. of cylinder $=$ vol. of the cone]
$\Rightarrow R^{2}=\frac{4}{3} r^{2}$
$\mathrm{R}=\frac{2}{\sqrt{3}} \mathrm{r}$
$\frac{\text { TSA of cylinder }}{\text { TSA of the sphere }}=\frac{2 \pi \mathrm{R}(\mathrm{h}+\mathrm{r})}{4 \pi \mathrm{r}^{2}}$
$=\frac{2 \pi R(r+R)}{4 \pi r^{2}}$
$=\frac{2 \pi \times \frac{2 r}{\sqrt{3}}\left(r+\frac{2}{\sqrt{3}} r\right)}{4 \pi r^{2}}$
$=\frac{\frac{4 \pi r}{\sqrt{3}} \times \frac{(\sqrt{3}+2)}{\sqrt{3}} r}{4 \pi r^{2}}$
$=\frac{\sqrt{3}+2}{3}$
Required Ratio $=(\sqrt{3}+2): 3$
127. (A) CSA of Cone $=$ CSA of Sphere

$$
\begin{aligned}
\pi \mathrm{rl} l & =4 \pi \mathrm{r}^{2} \\
l & =4 \mathrm{r}
\end{aligned}
$$

Now, height of the cone $=\sqrt{l^{2}-r^{2}}$

$$
\begin{aligned}
& =\sqrt{(4 r)^{2}-r^{2}} \\
& =\sqrt{15} \mathrm{r} \text { Ans. }
\end{aligned}
$$

128. (D) Let the sides of two equilateral triangles be $x \& 2 x$ respectively.

$$
\text { Required Ratio }=\frac{\frac{\sqrt{3}}{4}(x)^{2}}{\frac{\sqrt{3}}{4}(2 x)^{2}}=\frac{x^{2}}{4 x^{2}}=\frac{1}{4}
$$

$$
=1: 4
$$

129. (C) Area of the path $=\pi\left[r_{o}{ }^{2}-r_{i}^{2}\right]$

$$
\begin{aligned}
& =\frac{22}{7}\left[(18+7)^{2}-18^{2}\right] \\
& =\frac{22}{7}\left[25^{2}-18^{2}\right] \\
& =\frac{22}{7} \times 43 \times 7 \\
& =946 \mathrm{~m}^{2}
\end{aligned}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
130.(D) Equation of the straight line parallel to the y-axis is $x=-2$
131. (D) $2 a+3 b=4$
$\Rightarrow(2 a+3 b)^{3}=4^{3}$
$\Rightarrow(2 a)^{3}+(3 b)^{3}+3 \times 2 a \times 3 b(2 a+3 b)=64$
$\Rightarrow 8 a^{3}+27 b^{3}+18 a b(4)=64$
$\Rightarrow 8 a^{3}+27 b^{3}+72 a b=64$
132. (C) $\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}=34$
$\Rightarrow \frac{\left(x+\sqrt{x^{2}-1}\right)^{2}}{\left(x-\sqrt{x^{2}-1}\right)\left(x+\sqrt{x^{2}-1}\right)}$

$$
+\frac{\left(x-\sqrt{x^{2}-1}\right)^{2}}{\left(x+\sqrt{x^{2}-1}\right)\left(x-\sqrt{x^{2}-1}\right)}=34
$$

$\Rightarrow \frac{\left(x+\sqrt{x^{2}-1}\right)^{2}}{x^{2}-\left(x^{2}-1\right)}+\frac{\left(x-\sqrt{x^{2}-1}\right)^{2}}{x^{2}-\left(x^{2}-1\right)}=34$
$\Rightarrow\left(x+\sqrt{x^{2}-1}\right)^{2}+\left(x-\sqrt{x^{2}-1}\right)^{2}=34$
$\Rightarrow 2\left[x^{2}+x^{2}-1\right]=34$
$\Rightarrow 2 x^{2}-1=17$
$\Rightarrow \quad x^{2}=9$
$\therefore x= \pm 3 \quad(\because x<0)$
$\Rightarrow x=-3$
133. (C) $(x+y+z)=6$

Let $a=x-1, b=y-z, c=z-3$
Now, $a+b+c=x-1+y-2+z-3$
$=x+y+z-6$
$=6-6=0$
$\therefore \quad a^{3}+b^{3}+c^{3}=3 a b c$
$\Rightarrow(x-1)^{3}+(y-2)^{3}+(z-3)^{3}$
$=3(x-1)(y-2)(z-3)$
134. (A) Let the angles of the triangle be $x^{\circ}, 4 x^{\circ}$ and $5 x^{0}$.

Now,
$5 x^{0}=4 x^{0}+x^{0}$
(sum of two angles = 3rd angle)
\therefore The given triangle is right angled triangle.
135. (B) ABC is a Δ and AD is the median whose mid point is E .
Draw DG || BE through D.

Now, In $\Delta \mathrm{ADG}$.
E is the mid point of $A D$ and $E F|\mid D G$.
$\Rightarrow \quad \mathrm{F}$ is the mid point of AG .
$\Rightarrow \quad \mathrm{AF}=\mathrm{FG}$
....... (A)
[A line through the mid point of a side of a Δ parallel to another side bisects the 3rd side]
Again, In $\triangle B C F$,
$D G \| B F$ and D is the mid point of $B C$.
$\Rightarrow G$ is the mid point of $C F$.
$\Rightarrow \mathrm{CG}=\mathrm{FG}$ \qquad (B) [same reason]

From (A) \& (B)
$\mathrm{AF}=\mathrm{FG}=\mathrm{GC}=\frac{1}{3} \mathrm{AC}=\frac{1}{3} \times 15=5 \mathrm{~cm}$
$\therefore \quad C F=5+5=10 \mathrm{~cm}$
136. (D)
$\because O A=A B$
$\Rightarrow \Delta \mathrm{OAB}$ is equilateral.
$\Rightarrow \angle \mathrm{AOB}=60^{\circ}$

$$
\text { Again, } \begin{aligned}
\angle \mathrm{AOB} & =2 \angle \mathrm{APB} \\
60^{\circ} & =2 \angle \mathrm{APB} \\
\angle \mathrm{APB} & =30^{\circ}
\end{aligned}
$$

Also, $\angle \mathrm{APB}+\angle \mathrm{AQB}=180^{\circ}$ (cyclic quad.)
$\Rightarrow 30+\angle \mathrm{AQB}=180^{\circ}$
$\therefore \quad \angle \mathrm{AQB}=150^{\circ}$
137. (C) $\because B P$ and CQ are two medians.
$\Rightarrow \mathrm{PQ}|\mid \mathrm{BC}$

$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{PGQ})}{\operatorname{ar}(\triangle \mathrm{BGC})}=\frac{1}{4}$
$\Rightarrow \frac{\operatorname{ar}(\Delta \mathrm{BGC})}{\operatorname{ar}(\triangle \mathrm{PGQ})}=\frac{4}{1}$
$\Rightarrow \frac{3 \operatorname{ar}(\triangle \mathrm{BGC})}{3 \operatorname{ar}(\triangle \mathrm{PGQ})}=\frac{12}{3}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PGQ})}=\frac{12}{1}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{PGQ}): \operatorname{ar}(\triangle \mathrm{ABC})=1: 12$
138. (C) 3rd angle
$=180^{\circ}-\left(30^{\circ} 45^{\prime} 15^{\prime \prime}+28^{\circ} 14^{\prime} 45^{\prime \prime}\right.$
$=180^{\circ}-\left(58^{\circ} 59^{\prime} 60^{\prime \prime}\right)$
$=180^{\circ}-\left(58^{\circ} 60^{\prime}\right)$
$=180^{\circ}-59^{\circ}$
$=121^{\circ}=121 \times \frac{\pi}{180}$
$=\frac{2 \pi^{\mathrm{c}}}{3} \mathrm{rad}$ approx. Ans.
139. (C) $5 \cos \theta+12 \sin \theta=13$
$\Rightarrow \frac{5}{13} \cos \theta+\frac{12}{13} \sin \theta=1$
Let $\frac{5}{13}=\cos \theta \& \frac{12}{13}=\sin \theta$
$\Rightarrow \cos ^{2} \theta+\sin ^{2} \theta=1$
$\therefore \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{12}{13}}{\frac{5}{13}}=\frac{12}{5}$
140. (C)

Let A \& B are the two ships on the two sides of a light house LM.

In Δ LMA,
$\tan 30^{\circ}=\frac{\mathrm{LM}}{\mathrm{AM}}$
$\frac{1}{\sqrt{3}}=\frac{100}{\mathrm{AM}} \Rightarrow \mathrm{AM}=100 \sqrt{3} \mathrm{~m}$
In $\Delta \mathrm{LMB}$,
$\tan 45^{\circ}=\frac{\mathrm{LM}}{\mathrm{MB}}$
$1=\frac{100}{\mathrm{MB}} \Rightarrow \mathrm{MB}=100 \mathrm{~m}$
\therefore The distance between the two ships

$$
\begin{aligned}
& =\mathrm{AB}=\mathrm{AM}+\mathrm{MB} \\
& =100 \sqrt{3}+100 \\
& =100(\sqrt{3}+1) \mathrm{m} \\
& =100 \times(1.73+1) \mathrm{m} \\
& =100 \times 2.73 \mathrm{~m} \\
& =273 \mathrm{~m}
\end{aligned}
$$

141. (D) Let total expenditure be $₹ x$, then 30% of $x=19,500$
$x=\frac{19500 \times 100}{30}=₹ 65,000$
Cost of Royalty $=20 \%$ of 65,000

$$
=₹ 13,000
$$

142. (B) Central angle of the sector for the cost of paper $=\frac{15}{100} \times 360^{\circ}=54^{\circ}$
143. (D) Let the total expenditure $=₹ y$

$$
15 \% \text { of } y=5000
$$

$$
y=₹ \frac{5000 \times 100}{15}
$$

Total cost excluding advertisement
charges $\&$ royalty $=64 \%$ of $\frac{5000 \times 100}{15}$
$=\frac{64}{100} \times \frac{5000 \times 100}{15}=₹ 21333 \frac{1}{3}$
144. (C) Let the total expenditure $=₹ x$.
5% of $x=12000$
$x=\frac{12000 \times 100}{5}=₹ 2,40,000$
Marked price $=125 \%$ of $2,40,000$
$=\frac{125}{100} \times 2,40,000=₹ 3,00,000$
Marked price of each copy $=\frac{3,00,000}{3,000}$
= ₹ 100
145. (C) Percentage less of advertisement charge with respect to Royalty
$=\frac{20-16}{20} \times 100=\frac{4}{20} \times 100=20 \%$
146. (C) The number of patients surveyed $=2+12+15+25+18+12+3+1=88$
147. (B) Average age of first detection of the disease
$=\frac{6 \times 2+10 \times 12+14 \times 15+18 \times 25+22 \times 18+26 \times 12+30 \times 3+34 \times 1}{88}$
$=\frac{12+120+210+450+396+312+90+34}{88}$
$=18.45$ years Ans
148. (A) Maximum number of patients susceptible to the disease is at the age of 18 years
149. (C) Number of patients below 20 yrs of age $=2+12+15+25=54$
150. (B) The percentage of patients above 20 yrs
$=\frac{18+12+3+1}{88} \times 100$
$=\frac{34}{88} \times 100=38.64 \%$

2007，OUTRAM LINES，1ST FLOOR，OPPOSITE MUKHERJEE NAGAR POLICE STATION，DELHI－110009

MEANINGS IN ALPHABETICAL ORDER

Word

Affect
Amicable
Appalling
Archaeologist
Association
Benevolence
Carving
Cautious
Connoisseur
Consoling
Council
Cruelty
Curtail
Dictatorship
Earnest
Effects
Entail
Fictitious
Flatter

Genial
Grim
Inmates
Irreverence
Jury
Laudable
Morbidity
Mores
Numismatist
Oligarchy
Panacea
Perseverance
Philatelist
Puddle
Repel
Reticence
Rites
Rituals
Shabby
Smug
Stagnate
Stoicism
Theocracy
Totalitarianism
Tradition

Meaning in English

To influence
Characterized by friendship and goodwill
Offending／Terrifying
One who studies past human life and activities
Formal organisation of people
An act of kindness
Removing parts by cutting into a surface
Careful
Expert in fine art
Comforting
A body serving in an administrative capacity
A cruel act，inhuman treatment
Restrict，Curb
System ruled by one person
Serious and sincere
Result／consequences
Imply／to have a part of
False／Assumed
Praise in a way that is not sincere

Kind／friendly
Unpleasant
Person serving sentence in a jail
Disrespect
Group of judges

Praiseworthy
Unhealthy state of mind
Custom accepted by particular group
One who collects coins
System governed by few people
Remedy to curve all disease
Persistent determination
Who collects postal stamps
Pool
Push back
The quality or state of being reserved
An established ceremony prescribed by a religion
Any customary observation
In poor condition because of old age
Self－satisfied
Not flowing／not active
indifference to pleasure and pain
Government ruled by religious leaders
Government in which ruler is an absolute dictator
Custom

Meaning in Hindi
अस्स पड ．ना
मै ラけ१पू ण「
\％T य वह／ड रा ने वा व
पु रा तर वविद्
सं \quad ा
उ दा रता／पार फक्ता रिता
तरा श ना／नव का शं
सर्क
प रख \uparrow
प्रां ति दे ना
समित
क्रू रता
हा ट T ना
ता ना प T ही
गं भ \uparrow रता पू प $^{\circ}$
परिप ग म／नती ज
अर्परहा य हा＇ना
अवा स तविक
झू ठ१ ता री प करना／
करना
हँ सु ख／मिलनस र
गं \＆\uparrow १ र
स्क्रै दी
अप्मा न
निप T° यकसमति $=$ य य थिश T^{\prime}
का सू ह
प्रश्र सी य
अए वस था मा नसिकता
री ति－रिवा ज

अल पज्ञा धिर य
रा मबा प
गं $\%$ १ रता
टि कट संग्र ही
छा＇टा ता ला ब
प छे हट T ना
सं को च
री ति
संसका $/$ कर्म－का पड
ष ट T पु रा ना
अ $\overline{\text { г }}$ म संतु षट
ठ हरा हु आ
आ ₹ मसं यम
धर्म तं ラT
अधिगा यकवा दी
प्रथ T T

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SSC CPO SI MOCK TEST - 08 (ANSWER KEY)

1	(C)	26.	C)			76. (B)	101. (D)	126. (D)	151. (C)	176. (B)
	(C)	27.	(A)	52.	(B)	77. (C)	102. (A)	127. (A)	152. (A)	177. (A)
3.	(B)	28.	(B)	53.	(B)	78. (B)	103. (B)	128. (D)	153. (B)	178. (*)
4.	(D)	29.	(A)	54.	(A)	79. (B)	104. (D)	129. (C)	154. (C)	79.
5.	(D)	30.	(A)	55.	(B)	80. (B)	105. (C)	130. (D)	155. (C)	180
6.	(B)	31	(D)	56.	(D)	81. (C)	106. (A)	131. (D)	156. (C)	181
7.	(C)	32.	(D)	57.	(C)	82. (B)	107. (D)	132. (C)	157. (C)	182. (B)
8.	(A)	33.	(C)	58.	(C)	83. (B)	108. (D)	133. (C)	158. (D)	183
9.	(D)	34.	(A)	59.	(C)	84. (C)	109. (D)	134. (A)	159. (A)	18
10.	(C)	35.	(D)	60.	(D)	85. (B)	110. (D)	135. (B)	160. (D)	185. (C)
	(C)	36.	(A)		()	86. (B)	111. (B)	136. (D)	161. (B)	186.
12.	(D)	37.	(B)	62.	(C)	87. (D)	112. (A)	137. (C)	162. (B)	187.
13.	(C)	38.	(C)	63.	(A)	88. (D)	113. (A)	138. (C)	163. (B)	188.
14.	(D)	39.	(A)	64.	(C)	89. (C)	114. (C)	139. (C)	164. (B)	189.
5.	(D)	40.	(D)	65.	(C)	90. (C)	115. (C)	140. (C)	165. (B)	190. (A)
16.	(B)	41.	(A)	66.	(A)	91. (B)	116. (A)	141. (D)	166. (D)	191. (A)
17.	(B)	42.	(D)	67.	(B)	92. (C)	117. (B)	142. (B)	167. (B)	92.
	(B)	43.	(B)	68.	(C)	93. (A)	118. (C)	143. (D)	168. (C)	193. (A)
	(C)	44.	(C)	69.	(B)	94. (B)	119. (A)	144. (C)	169. (A)	194. (C)
		45.	(A)	70.	(C)	95. (C)	120. (A)	145. (C)	170. (B)	195. (A)
	(C)	46.	(A)	71.	(B)	96. (C)	121. (C)	146. (C)	171. (D)	196. (A)
		47.	(C)	72.	(D)	97. (C)	122. (D)	147. (B)	172. (A)	197. (B)
	(B)	48.	(B)	73.	(D)	98. (C)	123. (A)	148. (A)	173. (C)	198. (B)
	(C)	49.	(D)	74.		99. (C)	124. (C)	149. (C)	174. (C)	199. (C)
25.	(C)	50.	(C)	75.	(B)	100. (B)	125. (B)	150. (B)	175. (B)	200. (D)

151. (C); Change 'he had fallen' into 'he fell'. If 154. (C); Change 'furnitures' into 'furniture'. Fur'since' is preceded by Present Perfect Tense, it is followed by Simple Past Tense.
152. (A); 'Having broken down' must be replaced by 'since the car had broken down'.
153. (B); Change 'has' into 'have'. If a subject and the verb are joined by a relative pronoun, the verb used will agree with the antecedent of the relative pronoun.
niture is an uncountable noun. So it must be in singular form.
154. (C); Change 'real good' into 'really good'. Adjective is qualified by an 'adverb' and 'really' is an adverb whereas 'real' is an adjective.

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

