Campus
 KD Campus

IBPS PO/Clerk PHASE-I MOCK TEST-62 (SOLUTION)

6. (4)
7. (3)
8. (1)
(9-10) :
For point B to be in the southeast of point A, Shahrukh shall move towards east.

9. (1)
10. (5) $25+5-15$ $=15 \mathrm{~km}$.
(11-16) :

Step II : train 85 omit 3641 elect 12 lakes yards 59
Step III : 41 train 8536 elect 12 lakes yards 59 omit
Step IV: lakes 41 train 85 elect 12 yards 59 omit 36
Step V : 12 lakes 41 train 85 yards 59 omit 36 elect
17. (5) 18. (5) 19. (2)
20. (2) 21. (4)
(22-26) :

$$
\begin{array}{ll}
\text { © } \rightarrow \geq & @ \rightarrow< \\
\circledR \rightarrow= & \$ \rightarrow \leq \\
\# \rightarrow> &
\end{array}
$$

22. (2) $\mathrm{M}<\mathrm{T} \leq \mathrm{R} \geq \mathrm{J}$
I. $J>M$; Can't say II. $R>M$; true
III. J = T ; Can't Say
23. (5) $\mathrm{D} \geq \mathrm{B} \leq \mathrm{H}=\mathrm{F}$
I. F $<$ B ; Can't say
II. F < D ; Can't say
III. H < D ; Can't say
24. (5) $\mathrm{H}=\mathrm{M}<\mathrm{T} \leq \mathrm{K}$
I. $\mathrm{K}>\mathrm{M}$; True
II. T > H ; True
III. $\mathrm{H}<\mathrm{K}$; True
25. (3) $N \leq A>J \geq D$
I. $\mathrm{N}<\mathrm{J}$; Can't say II. A $\geq \mathrm{D}$; False
III. D < A ; True
26. (2) $R=T<M \leq K$
I. $\mathrm{K}<\mathrm{R}$; False
II. M > R ; True
III. K > T ; True
(27-31) :

Days	Persons	Colours
Monday	G	Pink
Tuesday	B	Silver
Wednesday	E	Blue
Thursday	A	Yellow
Friday	C	Green
Saturday	D	Orange
Sunday	F	Red

27. (1)
28. (4)
29. (3)
30. (5)
31. (2)
32. (1) Note the relationship with US economy.
33. (3) If an economy is speculative, it cannot be so trustworthy and hence we can't predict or determine the prices of goods or commodity with respect to that economy. Hence, it weakens the argument of the author.
34. (5)
35. (2) It clearly strengthens the argument of the author, who is optimistic about the decline in the price.

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

MATHS

36. (2) $?=\frac{623898 \times 99}{60000}=1029.43 \approx 1030$
37. (3) $?=\frac{4}{3} \times \frac{3}{7} \div \frac{6}{7} \div \frac{5}{9}$
$=\frac{4}{5} \times \frac{3}{7} \times \frac{7}{6} \times \frac{9}{5}=\frac{18}{25}$
38. (1) $(399.98)^{2}=$?
\Rightarrow ? $\approx(400)^{2}=160000$
39. (3) $\sqrt{624.9995}+(4.9989)^{2}=? \div \frac{1}{4.9900865}$
$\Rightarrow \sqrt{625}+(5)^{2} \approx ? \div \frac{1}{5}$
$\Rightarrow 25+25 \approx ? \times 5$
\Rightarrow ? $=\frac{50}{5}=10$
40. (3) $989.001+1.00982 \times 76.792=$?
\Rightarrow ? $\approx 989+1 \times 77$
$=989+77=1066 \approx 1065$
41. (1) Difference $=8.6 \times \frac{22}{100}-5.4 \times \frac{15}{100}$ $=1.892-0.81=1.082$ lakh $=108200$
42. (4) $\mathrm{C}_{2000}=5.4 \times \frac{10}{100}=0.54$ lakh
$\mathrm{C}_{2010}=8.6 \times \frac{8}{100}=0.688$
\square Required average $=\frac{0.54+0.688}{2}$
$=\frac{1.228}{2}$ lakh $=61400$
43. (3) Sum $=5.4 \times \frac{8}{100}+8.6 \times \frac{18}{100}$ $=0.432+1.548=1.98$ lakh
44. (4) Total number of vacancies in 2010
$=\frac{48000^{\prime} 100}{6}=800000$
\square vacancies in city $B=20 \%$ of 800000 $=160000=1.60$ lakh
45. (5) $\mathrm{C}_{2000}=5.4 \times \frac{10}{100}=0.54$ lakh
$C_{2010}=8.6 \times \frac{8}{100}=0.688$ lakh
$\square \quad \%$ rise $=\frac{20.688-0.54}{\S_{8}^{0}} \frac{\ddot{\partial}}{\dot{\phi}} \times 100$
$=27.407 \% \approx 27.41 \%$
46. (3) Let one worker of category I can finish the work in $\frac{2 \mathrm{~m}}{3} \mathrm{~h}$.
Two workers of category II can finish the work in $\frac{m}{2} h$.
so, required time $=\frac{\frac{2 m}{3} \times \frac{m}{2}}{\frac{2 m}{3}+\frac{m}{2}}$
$=\frac{2 \mathrm{~m}^{2}}{7 \mathrm{~m}}=\frac{2}{7} \mathrm{~m} / \mathrm{h}$
47. (3) According to the question,

Average speed $=\frac{2 x y}{x+y}$ where x and y are two different speeds covering same distance
Average speed $=\frac{2 \times 40 \times 20}{(20+40)}=26.66 \mathrm{~km} / \mathrm{h}$
48. (1) According to question,

SI for 10 years $=\frac{1000 \times 5 \times 10}{100}=₹ 500$
Now, $\mathrm{P}=₹ 1500, \mathrm{~A}=₹ 2000$
$\therefore \quad \mathrm{SI}=₹ 500$
$\therefore 500=\frac{1500 \times 5 \times T}{100}$
$\Rightarrow T=\frac{500 \times 100}{1500 \times 5}=6 \frac{2}{3}$ years

$=16 \frac{2}{3}$ years
49. (4) Let the number of passengers travelling by I ${ }^{\text {st }}$ Class and $\mathrm{II}^{\text {nd }}$ Class be x and $50 x$ respectively.
Then amount collected from $\mathrm{I}^{\text {st }}$ Class and $\mathrm{II}^{\text {nd }}$ Class will be ₹ $3 x$ and ₹ $50 x$ respectively. Given, $3 x+50 x=1325$
$\Rightarrow 53 x=1325$
$\Rightarrow x=25$
\therefore Amount collected from $\mathrm{II}^{\text {nd }}$ Class
$=50 \times 25=₹ 1250$
50. (2) According to question,
$(17+19)=36 \%$ of the cost price = ₹ 162
100% of the cost price
$=\frac{162}{36} \times 100=₹ 450$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
51. (4) The given series is based on the following pattern:
$5 \times 1+1^{2}=6$
$6 \times 2+2^{2}=16$
$16 \times 3+3^{2}=57$
$57 \times 4+4^{2}=244$
$244 \times 5+5^{2}=1245$
Similarly,
$2 \times 1+1^{2}=3$
$3 \times 2+2^{2}=10$
$10 \times 3+3^{2}=39$
$39 \times 4+4^{2}=\mathbf{1 7 2}$
52. (5) The given series is based on the following pattern:
$3+(2)^{1}=5$
$5+(2)^{2}=9$
$9+(2)^{3}=17$
$17+(2)^{4}=33$
$33+(2)^{5}=65$
Similarly,
$7+(2)^{1}=9$
$9+(2)^{2}=13$
$13+(2)^{3}=21$
$21+(2)^{4}=\mathbf{3 7}$
53. (3) The given series is based on the following pattern:
$7 \times 0.5+0.5=4$
$4 \times 1+1=5$
$5 \times 1.5+1.5=9$
$9 \times 2+2=20$
$20 \times 2.5+2.5=52.5$
Similarly,
$3 \times 0.5+0.5=2$
$2 \times 1+1=3$
$3 \times 1.5+1.5=6$
54. (2) The given series is based on the following pattern:
$3 \times 3+1=10$
$10 \times 3+2=32$
$32 \times 3+3=99$
$99 \times 4+4=400$
Similarly,
$2 \times 3+1=7$
$7 \times 3+2=\mathbf{2 3}$
55. (1) The given series is based on the following pattern:
$5 \times 2-2=8$
$8 \div 2+2=6$
$6 \times 2-2=10$
$10 \div 2+2=7$
$7 \times 2-2=12$
Similarly,
$7 \times 2-2=12$
$12 \div 2+2=8$
$8 \times 2-2=14$
56. (4) $\frac{\mathrm{I}_{\mathrm{Q}}}{\mathrm{E}_{\mathrm{Q}}}=1.05$
$\frac{I_{P}}{E_{p}}=0.75$
$\square \operatorname{Reqd} \%=\frac{1.05}{0.75} \times 100=140 \%$
57. (4) Exports of Q in year 2008 can't be determined.
58. (1) \square The ratio of imports to exports is the same for Company P in the year 2007 and Company Q in the year 2004, then the sum of their imports will be $\left(\mathrm{I}_{\mathrm{P}}+\mathrm{I}_{\mathrm{Q}}\right)=0.8 \times\left(\mathrm{E}_{\mathrm{P}}+\mathrm{E}_{\mathrm{Q}}\right)=0.8 \times 180$ = 144 lakh
59. (4) $\frac{I_{P}}{E_{p}}=0.75$
$\square \mathrm{I}_{\mathrm{P}}=0.75 \times \mathrm{E}_{\mathrm{P}}$
$=0.75 \times 120=90$ lakh
$\frac{\mathrm{I}_{\mathrm{Q}}}{\mathrm{E}_{\mathrm{Q}}}=0.6$
$\mathrm{E}_{\mathrm{Q}}=\frac{\mathrm{I}_{\mathrm{Q}}}{0.6}=\frac{120}{0.6}=200$ lakh
Required difference $=200-90=110$ lakh
(1) $\frac{I_{P}}{E_{P}}=0.5$
$\mathrm{E}_{\mathrm{P}}=\frac{\mathrm{I}_{\mathrm{P}}}{0.5}=\frac{80}{0.5}=160$ lakh
$\frac{\mathrm{I}_{\mathrm{Q}}}{\mathrm{E}_{\mathrm{Q}}}=1.2$
$\square \mathrm{I}_{\mathrm{Q}}=1.2 \times 60=72$ lakh
$\square \operatorname{Reqd} \%=\frac{72}{160} \times 100=45 \%$
61. (3) According to question, the product of four numbers will be positive in the following ways.
(i) All the four numbers are postive, then probability $=\frac{{ }^{6} C_{4}}{{ }^{14} C_{4}}$
(ii) All the four numbers are negative, then probability $=\frac{{ }^{8} C_{4}}{{ }^{14} C_{4}}$
(iii) Two numbers are positive and two are negative, then probability $=\frac{{ }^{6} C_{2}{ }^{\prime}{ }^{8} C_{2}}{{ }^{14} C_{4}}$
Hence, required probability of the event

$$
\begin{aligned}
& =\frac{{ }^{6} C_{4}+{ }^{8} C_{4}+{ }^{6} C_{2} \times{ }^{8} C_{2}}{{ }^{14} C_{4}} \\
& =\frac{15+70+15 \times 28}{1001}=\frac{505}{1001}
\end{aligned}
$$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
62. (2) Seats in executive class $=10 \%$ of $500=50$ Seats in chair car $=500-50=450$
Booking seats in total $=85 \%$ of $500=425$
Booking in executive class $=96 \%$ of $50=48$
\therefore Booking in chair class $=(425-48)=377$
Empty seats in chair class $=450-377=73$
63. (4) Let the amount invested by Ram and Shyam is $3 x$ and $5 x$ respectively and after 6 month Mohan joined amount equal to Shyam.
Then, Ratio of Ram, Shyam and Mohan in profit
$=3 x \times 12: 5 x \times 12: 5 x \times 6=6: 10: 5$
64. (3) Let the side of the square be x.

Then, $(\sqrt{2} x)^{2}=(12 \sqrt{2})^{2}$
$\Rightarrow x=12$
Now, perimeter of equilateral triangle
$=12 \times 4=48 \mathrm{~cm}$
Side of equilateral triangle
$=\frac{48}{3}=16 \mathrm{~cm}$
Area of equilateral triangle
$=\frac{\sqrt{3}}{4} \times(16)^{2}=64 \sqrt{3} \mathrm{~cm}^{2}$
65. (2) Let the share of Q be ₹ x.
\therefore Then, the share of P is $₹(30600-x)$.

$$
x \times\left(1+\frac{4}{100}\right)^{3}=(30600-x)\left(1+\frac{4}{100}\right)^{2}
$$

$\Rightarrow x \times \frac{104}{100}=30600-x$
$\Rightarrow \frac{204}{100} x=30600$
$\Rightarrow x=\frac{30600 \times 100}{204}=₹ 15000$
66. (5) I. $\Rightarrow p^{2}+3 p+2 p+6=0$
$\Rightarrow p(p+3)+2(p+3)=0$
$\Rightarrow(p+3)(p+2)=0$
$\Rightarrow p=-2$ or -3
II. $\Rightarrow q^{2}+q+2 q+2=0$
$\Rightarrow q(q+1)+2(q+1)=0$
$\Rightarrow(q+1)(q+2)=0$
$\Rightarrow q=-1$ or -2
Obviously, $p \leq q$
67. (4) I. $\Rightarrow p= \pm 2$
II. $\Rightarrow q^{2}+2 q+2 q+4=0$
$\Rightarrow q(q+2)+2(q+2)=0$
$\Rightarrow(q+2)(q+2)=0$
$\Rightarrow q=-2$
Obviously, $p \geq q$
68. (2) I. $\Rightarrow p^{2}+p-56=0$
$\Rightarrow p^{2}+8 p-7 p-56=0$
$\Rightarrow p(p+8)-7(p+8)=0$
$\Rightarrow(p+8)(p-7)=0$
$\Rightarrow p=7$ or -8
II. $\Rightarrow q^{2}+17 q+72=0$
$\Rightarrow q-8 q-9 q+72=0$
$\Rightarrow q(q-8)-9(q-8)=0$
$\Rightarrow(q-8)(q-9)=0$
$\Rightarrow q=8$ or 9
Obviously, $p<q$
69. (1) We have,
$3 p+2 q=58$
$4 p+4 q=92$
$\Rightarrow 2 p+2 q=46$
By (i) - (ii) we get $p=12$
From (i), $3 \times 12+2 q=58$
$\Rightarrow 2 q=58-36=22$
$\Rightarrow q=11$
Obviously, $p>q$
70. (2) I. $\Rightarrow 3 p^{2}+15 p+2 p+10=0$
$\Rightarrow 3 p(p+5)+2(p+5)=0$
$\Rightarrow(p+5)(3 p+2)=0$
$\Rightarrow p=-5$ or $-\frac{2}{3}$
II. $\Rightarrow 10 q^{2}+5 q+4 q+2=0$
$\Rightarrow 5 q(2 q+1)+2(2 q+1)=0$
$\Rightarrow(2 q+1)(5 q+2)=0$
$\Rightarrow q=-\frac{1}{2},-\frac{2}{5}$
Obviously, $p<q$

ENGLISH LANGUAGE

96. (4) Replace 'applies' by 'apply', as it shall follow infinitive.
97. (3) Replace 'efforts' by 'effort'.
98. (1) Replace 'from' by 'of'
99. (2) Replace 'ambitious' as it is superfluous.
100. (2) Replace 'necessary' by 'necessarily'.

$K D$
 Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Campus
 KD Campus

1. (5)
2. (2)
3. (2)
4. (1)
5. (3)
6. (4)
7. (2)
8. (4)
9. (3)
10. (1)
11. (1)
12. (5)
13. (4)
14. (2)
15. (3)
16. (4)
17. (1)
18. (1)
19. (5)
20. (5)
21. (2)
22. (2)
23. (4)
24. (2)
25. (5)
26. (5)
27. (3)
28. (3)
29. (4)
30. (3)
31. (5)
32. (2)
33. (1)
34. (3)
35. (5)
36. (2)
37. (2)
38. (3)
39. (1)
40. (3)
41. (3)
42. (1)
43. (4)
44. (3)
45. (4)
46. (5)
47. (3)
48. (1)
49. (4)
50. (2)
51. (4)
52. (5)
53. (3)
54. (5)
55. (1)
56. (4)
57. (4)
58. (1)
59. (4)
60. (1)
61. (3)
62. (2)
63. (4)
64. (3)
65. (2)
66. (5)
67. (4)
68. (2)
69. (1)
70. (2)
71. (4)
72. (3)
73. (5)
74. (4)
75. (2)
76. (4)
77. (3)
78. (4)
79. (2)
80. (3)
81. (1)
82. (1)
83. (3)
84. (3)
85. (4)
86. (2)
87. (4)
88. (5)
89. (2)
90. (1)
91. (2)
92. (3)
93. (3)
94. (2)
95. (4)
96. (4)
97. (3)
98. (1)
99. (2)
100.(2)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

