${ }_{\text {Campus }}$
 KD Campus

IBPS PO/Clerk PHASE-I MOCK TEST-59 (SOLUTION)

REASONING

1. (3)
2. (3)

3. (2) Shubham > Aashu > Anuraag > Mandeep Hence, Shubham earns the maximum.
4. (4)
5. (2)
6. (3)
7. (4)

8. (3)

9. (4)
10. (2) I N D I V I D U A L
11. (5) Statement :

I. Can't say
II. Can't say
III. Can't say
IV. Can't say

But after comparing, we find that either I or III is true.
12. (2) Statement :

Conclusion :

I. Can't say
II. True
III. True
IV. True

Only II, III and IV follow.
13. (1) Statement :

Conclusion :

I. True
II. Can't say
III. True
IV. Can't say
Only I and III follow.
14. (3) Statement :

Conclusion :

I. Can't say
II. Can't say
III. True
IV. True

Only III and IV follow.
15. (1) Statement :

Conclusion

I. Can't say
II. Can't say
III. Can't say
IV. Can't say
None follows.
(16-20) :

Hewitt - Personnel	- Table Tennis
Suarez - Administration	- Football
Sreejesh - Administration	- Hockey
Jordan - Administration	- Basketball
Richards - Marketing	- Cricket
Giba - Personnel	- Volleyball
Sampras - Marketing	- Lawn Tennis
Lin Dan - Marketing	- Badminton

16. (3)
17. (2)
18. (5)
19. (1)
20. (4)

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

(21-25) :
$\$ \rightarrow \geq$
$\square \rightarrow=$
@ $\rightarrow>$
(C) $\rightarrow \leq$
\# \rightarrow <
21. (2) Statement :
$\mathrm{H}>\mathrm{T}<\mathrm{F}=\mathrm{E} \leq \mathrm{V}$
Conclusion:
I. $\mathrm{V} \geq \mathrm{F}$; true
II. $\mathrm{E}>\mathrm{T}$; True
III. H > V ; Can't say
IV. $\mathrm{T}<\mathrm{V}$; True

Only I, II and IV are true.
22. (5) Statement :

D $<\mathrm{R} \leq \mathrm{K}>\mathrm{F} \geq \mathrm{J}$
Conclusion:
I. J < R ; Can't say II. J < K ; True
III. $\mathrm{R}<\mathrm{F}$; Can't say
IV. $\mathrm{K}>\mathrm{D}$; True
23. (5) Statetment :
$N=B \geq W<H \leq M$

Conclusion :

I. $\mathrm{M}>\mathrm{W}$; True
II. $\mathrm{H}>\mathrm{N}$; Can't say
III. W = N ; Can't say
IV. W < N ; Can't say

But after camparing, we find that either III or IV and I are true.
24. (1) Statements :
$\mathrm{R} \leq \mathrm{D} \geq \mathrm{J}<\mathrm{M}>\mathrm{K}$
Conclusions:
I. K < J ; Can't say
II. D > M ; Can't say
III. $\mathrm{R}<\mathrm{M}$; Can't say
IV. D > K ; Can't say

None is true.
25. (4) Statements :
$\mathrm{M} \geq \mathrm{K}>\mathrm{N} \leq \mathrm{R}<\mathrm{W}$
Conclusions:
I. W $>\mathrm{K}$; Can't say
II. $M \geq R$; Can's say
III. K > W; Can't say
IV. $\mathrm{M}>\mathrm{N}$; True

But after comparing we find that either I or III and IV are true.
(26-30):
The machine rearranges words and numbers in such a way that numbers are arranged from the left side with the smallest number coming first and moving subsequently so that in the last step numbers are arranged in descending order. While the words are arranged from the right side as they appear in English
alphabetical order.
Input: 73 word show 1942 never break heart for 5921 value 6899
Step I: 1973 word show 42 never heart for 59 21 value 6899 break
Step II: 211973 word show 42 never heart 59 value 6899 break for

Step III: 42211973 word show never 59 value 6899 break for heart
Step IV: 5942211973 word show value 6899 break for heart never
Step V: 685942211973 word value 99 break for heart never show
Step VI: 736859422119 word 99 break for heart never show value
Step VII: 99736859422119 break for heart never show value word
26. (5)
27. (3)
28. (4)
29. (2)
30. (4)
(31-35) :

31. (1)
32. (4)
33. (3)
34. (2)
35. (5)

MATHS

36. (5) $\Rightarrow 95^{?}=95^{3.7} \div 95^{0.9989}$
$\Rightarrow 95^{?}=95^{3.7-0.9989}=95^{2.7011}$
\Rightarrow ? ≈ 2.7
37. (2) $? \approx \sqrt{10000}+\frac{3}{5} \times 1892$
$=100+1135.2$
$=1235.2 \approx 1230$
38
(3) $? \approx \frac{0.0004}{0.0001} \times 36=4 \times 36$
$=144 \approx 145$
38. (1) $?=12345 \times \frac{137}{100}$

$$
=16912.65 \approx 17000
$$

40. (3) $?=3739+164 \times 27$
$=3739+4428$
$=8167 \approx 8200$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
41. (2) Required average
$=\frac{280+354+433+343+535}{5}$
$=\frac{1945}{5}=389$
42. (4) Required difference $=(235+567)-134$
$=802-134=668$
43. (5) Required $\%=\frac{1102}{2142} \times 100=51.44 \% \approx 51 \%$
44. (4) Required number of animals
$=1480 \times \frac{65}{100}=962$
45. (3) Required number of lions
$=1072 \times \frac{3}{4}=804$
46. (2) Clearly,
9×360 children $=18 \times 72$ men
$=12 \times 162$ women
$\Rightarrow 45$ children $=18$ men $=27$ women
$\Rightarrow 5$ children $=2$ men $=3$ women
Now, 4 men +12 women +10 children
$=4$ men +8 men +4 men $=16$ men
$\because \quad 18$ men can complete the work in 72 days.
$\therefore \quad 16$ men can complete the same work
$=\frac{18 \times 72}{16}=81$ days
47. (3) Let the speed of boat in still water be x kmph and that of current be $y \mathrm{kmph}$.
$\therefore x+y=\frac{4.8}{\frac{8}{60}}=\frac{4.8 \times 60}{8}$
$\Rightarrow x+y=36$
and, $x-y=\frac{4.8}{\frac{9}{60}}=\frac{4.8 \times 60}{9}$
$\Rightarrow \quad x-y=32$
By equation (i) - (ii),
$x+y-x+y=36-32=4$
$\Rightarrow 2 y=4 \Rightarrow y=\frac{4}{2}=2 \mathrm{kmph}$
48. (3) Let the amount be ₹ x

Investment is done as given below.
Amount left $=x-\frac{40}{100} x=\frac{60 x}{100}$
$\frac{40}{100} x$ at 15% p.a
$\frac{50}{100}$ of $\frac{60 x}{100}=\frac{30 x}{100}$ at 10% p.a
Rest amount
$=x-\frac{40 x}{100}-\frac{30 x}{100}=\frac{30 x}{100}$ at 18% p.a
Interest earned by each at end of 1 year
By 1 st $\Rightarrow \frac{15}{100} \times \frac{40 x}{100}=\frac{60}{1000} x$
By 2 nd $\Rightarrow \frac{10}{100} \times \frac{30 x}{100}=\frac{30}{1000} x$
By $3 \mathrm{rd} \Rightarrow \frac{18}{100} \times \frac{30 x}{100}=\frac{54}{1000} x$
Total interest $=\frac{144}{1000} x$
$\therefore \quad$ Rate $\%=\frac{\overline{1000}}{x} \times 100=14.4 \%$
49. (1) C's present age $=85-7=78$ years

B's present age $=78-12=66$ years
A's present age $=\frac{3}{11} \times 66=18$ years
$\therefore \quad$ A's father's present age $=25+18=43$ years
50. (3) According to question,

CP of 20 articles $=\mathrm{SP}$ of x articles $=1$ (let)
$\therefore \quad$ CP of 1 articles $=\frac{1}{20}$
SP of 1 articles $=\frac{1}{x}$
Profit per cent $=\frac{\frac{1}{x}-\frac{1}{20}}{\frac{1}{20}}=\frac{25}{100}$
$\Rightarrow \quad \frac{20-x}{x}=\frac{1}{4}$
$\Rightarrow 80-4 x=x$
$\Rightarrow 5 x=80$
$\Rightarrow x=16$
51. (3) The given series is based on the following pattern.

Hence, 308 will come in place of question mark.
52. (5) The given series is based on the following pattern.

Hence, 10 will come in place of question mark.

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

53. (2) The given series is based on the following pattern.
$5 \times 1+(1)^{2}=6$
$6 \times 2+(2)^{2}=16$
$16 \times 3+(3)^{2}=57$
$57 \times 4+(4)^{2}=244$
Hence, 16 will come in place of question mark.
54. (1) The given series is based on the following patterns.

Hence, 34 will come in place of question mark.
55. (4) The given series is based on the following pattern.
$5 \times 2+1=11$
$11 \times 2+3=25$
$25 \times 2+5=55$
$55 \times 2+7=117$
56. (2) Required probability $=\frac{5_{\mathrm{C}_{2}}}{7_{\mathrm{C}_{2}}}=\frac{10}{21}$
57. (3) Let the number of children be x
$\therefore \quad$ No. of sweets received by each
child $=\frac{405}{x}$
$\Rightarrow \frac{405}{x}=20 \%$ of x
$\Rightarrow \frac{405}{x}=\frac{x}{5}$
$\Rightarrow \quad x^{2}=405 \times 5$
$\Rightarrow x=\sqrt{405 \times 5}$
$\Rightarrow x=\sqrt{81 \times 5 \times 5}=9 \times 5=45$
$\therefore \quad$ Required no. of sweets received by each child $=\frac{405}{45}=9$
58. (5) Ratio of the earned profit = Ratio of the equivalent capitate of Alka and Priti
$=45000 \times 12: 52000 \times 4$
$=45 \times 3: 52$
$=135: 52$
Sum of ratios $=135+52=187$
$\therefore \quad$ Priti's share
$=₹\left(\frac{52}{187} \times 56165\right)=₹ 15618.07$
59. (1) Given that

Area of outer rectangle $=19 \times 16=304 \mathrm{~m}^{2}$

Area of inner rectangle $=15 \times 12=180 \mathrm{~m}^{2}$
$\therefore \quad$ Required area $=(304-180)=124 \mathrm{~m}^{2}$
60. (1) Total runs in the first 10 overs
$=10 \times 3.2=32$
Runs rate in the remaining 40 overs
$=\frac{282-32}{40}=\frac{250}{40}=6.25$
61. (3) Production cost

$$
\begin{aligned}
& =24 \text { é } \frac{10}{\text { êt } 100}, \frac{3}{10}+\frac{17}{100} \cdot \frac{8 \text { ù }}{17} \text { h̆ } \\
& =24[0.03+0.08]=24 \times 0.11=2.64 \text { crore }
\end{aligned}
$$

(2) $\mathrm{Q}_{\mathrm{I}_{1}}=24 \times \frac{20}{100} \times \frac{2}{5}=1.92$ crore
$\mathrm{R}_{\mathrm{I}_{2}}=24 \times \frac{15}{100} \times \frac{7}{15}=1.68$ crore
Different $=1.92-1.68=0.24$ crore
= 24 lakh
63. (4) $\operatorname{Profit}_{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}=24 \times \frac{25}{100}$ é $\frac{\hat{e} 14}{25}, \frac{20}{100}+\frac{11}{25}, \frac{30}{100}$ ù

Profit $=24 \times \frac{25}{100} \times \frac{1}{250}[28+33]$
$=1.464$ crore
64. (2) $\operatorname{Profit}_{\mathrm{Q}}=24 \times \frac{20}{100} \times \frac{3}{5} \times \frac{25}{100}$
$=0.72$ crore
Profit $_{s}=24 \times \frac{13}{100} \times \frac{8}{13} \times \frac{30}{100}$
$=0.576$ crore
$\square \operatorname{Profit}_{(\mathrm{Q}+\mathrm{s})}=0.72+0.576=1.296$ crore
65. (1) Profit $_{\mathrm{P}}=24 \times \frac{25}{100} \times \frac{14}{25} \times \frac{20}{100}$
$=0.672$ crore
Profit $_{\mathrm{T}}=24 \times \frac{10}{100} \times \frac{7}{10} \times \frac{25}{100}$
$=0.42$ crore
$\square \quad$ Ratio $=\frac{0.672}{0.42}=\frac{8}{5}=8: 5$

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
66. (4) I. $x^{2}+5 x+6=0$
$\Rightarrow x^{2}+2 x+3 x+6=0$
$\Rightarrow x(x+2)+3(x+2)=0$
$\Rightarrow(x+3)(x+2)=0$
$\therefore \quad x=-3$ or -2
II. $y^{2}+3 y+2=0$
$\Rightarrow y^{2}+2 y+y+2=0$
$\Rightarrow y(y+2)+1(y+2)=0$
$\Rightarrow(y+1)(y+2)=0$
$\therefore \quad y=-1$ or -2
Clearly, $x \leq y$
67. (2) I. $x^{2}-10 x+24=0$
$\Rightarrow x^{2}-6 x-4 x+24=0$
$\Rightarrow \quad x(x-6)-4(x-6)=0$
$\Rightarrow(x-4)(x-6)=0$
$\therefore \quad x=4$ or 6
II. $y^{2}-9 y+20=0$
$\Rightarrow y^{2}-5 y-4 y+20=0$
$\Rightarrow y(y-5)-4(y-5)=0$
$\Rightarrow(y-4)(y-5)=0$
$\therefore \quad y=4$ or 5
$\therefore \quad x \geq y$
68. (4) I. $x^{2}=961$
$\Rightarrow x= \pm 31$
II. $y=\sqrt{961}=31$
$\square \quad x \leq y$
69. (2) I. $x^{2}-x-72=0$
$\Rightarrow x^{2}-9 x+8 x-72=0$
$\Rightarrow x(x-9)+8(x-9)=0$
$\Rightarrow(x+8)(x-9)=0$
$\therefore \quad x=-8$ or 9
II. $y^{2}=64$
$\Rightarrow \quad y= \pm 8$
Clearly, $x \geq y$
70. (5) I. $x^{2}=463+321=784$
$\therefore \quad x= \pm 28$
II. $y^{2}=308+421=729$
$\therefore \quad y= \pm 27$

ENGLISH LANGUAGE

(91-95) : (CGDBFEA)
91. (2)
92. (1)
93. (3)
94. (4)
95. (2)
96. (4) Replace 'with' by 'about'.
97. (3) Replace 'yet' by 'but'.
98. (1) Replace 'deliberately' by 'deliberate'.
99. (1) Replace 'based' by 'having'.
100. (5) No error.

Campus
 KD Campus

Campus
 KD Campus

1. (3)
2. (5)
3. (3)
4. (3)
5. (2)
6. (4)
7. (2)
8. (3)
9. (4)
10. (3)
11. (4)
12. (2)
13. (5)
14. (5)
15. (1)
16. (3)
17. (1)
18. (3)
19. (2)
20. (5)
21. (1)
22. (4)
23. (2)
24. (5)
25. (3)
26. (5)
27. (1)
28. (4)
29. (4)
30. (2)
31. (4)
32. (1)
33. (4)
34. (3)
35. (2)
36. (5)
37. (5)
38. (2)
39. (3)
40. (1)
41. (3)
42. (2)
43. (4)
44. (5)
45. (4)
46. (3)
47. (2)
48. (3)
49. (1)
50. (3)
51. (3)
52. (5)
53. (2)
54. (1)
55. (4)
56. (2)
57. (3)
58. (5)
59. (1)
60. (1)
61. (3)
62. (2)
63. (4)
64. (2)
65. (1)
66. (4)
67. (2)
68. (4)
69. (2)
70. (5)
71. (3)
72. (4)
73. (4)
74. (3)
75. (3)
76. (2)
77. (5)
78. (2)
79. (4)
80. (3)
81. (1)
82. (2)
83. (5)
84. (3)
85. (4)
86. (1)
87. (2)
88. (2)
89. (3)
90. (4)
91. (2)
92. (1)
93. (3)
94. (4)
95. (2)
96. (4)
97. (3)
98. (1)
99. (2)
100.(5)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

