## Campus <br> KD Campus

## SBI PO PHASE-I MOCK TEST-51 (SOLUTION)

## REASONING

1. (1) Given statement :
$\mathrm{M} \geq \mathrm{O} \geq \mathrm{L} \geq \mathrm{T}=\mathrm{E} \geq \mathrm{D}$
Thus, $\overline{\mathrm{O}} \geq \mathrm{D}$ or $\mathrm{D} \leq \mathrm{O}$ is true. Hence I is true.
Again, $\mathrm{M} \geq \mathrm{E}$ is true. Hence II is true.
2. (5) Given statement :
$\mathrm{B}<\mathrm{C}=\mathrm{D} \leq \mathrm{X} \leq \mathrm{Y}<\mathrm{Z}$
Thus, $\mathrm{B}<\mathrm{X}$ is true. Hence I is true.
Again, $\mathrm{C}<\mathrm{Z}$ or $\mathrm{Z}>\mathrm{C}$ is true. Hence conclusion Ii is not true.
3. (5) Given statement :
$\mathrm{R}<\mathrm{O} \leq \mathrm{L} \leq \mathrm{E}$
$\mathrm{G}=\mathrm{E} \geq \mathrm{S}$
$\mathrm{P} \leq \mathrm{S}$
Combining (i), (ii) and (iii), we get
$\mathrm{R}<\mathrm{O} \leq \mathrm{L} \leq \mathrm{E}=\mathrm{G} \geq \mathrm{S} \geq \mathrm{P}$
Thus, we can't compare $R$ and $P$. Hence $I$
( $\mathrm{R}>\mathrm{P}$ ) is not true. Again, $\mathrm{E} \geq \mathrm{P}$ or $\mathrm{P} \leq \mathrm{E}$
true. Hence II is true.
4. (3) Given statement :
$\mathrm{M} \geq \mathrm{O} \geq \mathrm{L} \geq \mathrm{T}=\mathrm{E} \geq \mathrm{D}$
Thus, $\mathrm{O} \geq \mathrm{T}$ or $\mathrm{T} \leq \mathrm{O}$ is ture.
Hence either $\mathrm{T}<\mathrm{O}$ is true or $\mathrm{T}=\mathrm{O}$ is true. Thus, conclusion I and II make a complementary pair.
5. (1) Given statement :
$\mathrm{S} \leq \mathrm{P} \leq \mathrm{A}=\mathrm{R}>\mathrm{E} \leq \mathrm{D}$
Thus, we can't compare A and D. Hence I ( $\mathrm{A}>\mathrm{D}$ ) is not true. Again, we can't compare S and E. Hence II $(\mathrm{S} \leq \mathrm{E})$ is not true.
6. (2) Given statement :
$\mathrm{R}<\mathrm{O} \leq \mathrm{L} \leq \mathrm{E}=\mathrm{G} \geq \mathrm{S} \geq \mathrm{P}$
Thus, $\mathrm{O} \leq \mathrm{G}$ is true. Hence either $\mathrm{O}<\mathrm{G}$ or $\mathrm{O}=\mathrm{G}$ is true. So, conclusion I and II make a complementary pair.
7. (3) Total number of students $=25+9=24$
8. (3)
(9-14) :

9. (1)
10. (2)
11. (2)
12. (5)
13. (2)
14. (1)
(15-18) :
$E$ is the daughter of $A$ and $F$ is the mother of $E$. So, A is the father of $E$ and hence the husband of F. Now D is the daughter of F. So, D and E are the daughters of A and F. Also, A is the son of C. Now, only B remains. Thus, B and C are the parents of A.
15. (4) The sex of $B$ and $C$ cannot be determined.
16. (5) Clearly, A and F are the parents of the children D and E .
17. (2) Clearly, B and C are the parents of the couple.
18. (3) Clearly, the females in the family are : either B or C, F, D and E.
(19-23) :

| Boy | Girl | City | Bike |
| :---: | :---: | :---: | :---: |
| A | P/Q | Jaipur | Bullet/Passion |
| D | Q/P | Jaipur | Passion/Bullet |
| F | R | Haridwar | Bullet |
| C | U | Mumbai | Karizma |
| B | S | Delhi | Karizma |
| E | T | Shimla | Discover |
| 19. (1) | 20. (4) |  | 21. (3) |
| 22. (2) | 23. (3) |  |  |

(24-25) :
Clearly, the arrangement of boys is as shown.

24. (5) Clearly, Atual is to the left of Kunal and Prashant is to the north-east of Atul.
25. (3) Required distance $=N A+A K+K D+D P$ $(25+40+60+90) \mathrm{m}=215 \mathrm{~m}$.
(26-30) :

26. (3)
27. (4)
28. (2) Golfer B and Swimmer H sit opposite to each other.
29. (2)
30. (3) B and F, when counted clockwise.

## Campus <br> KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
(31-35) :

| Person | Cities | Specialisation |
| :--- | :--- | :--- |
| M | Jaipur | Acting |
| N | Bangalore | IT |
| O | Lucknow | Designing |
| P | Delhi | Science |
| Q | Chennai | Choreography |
| R | Mumbai | Literature |
| S | Kolkata | Economics |
| T | Pune | Marketing |

31. (3)
32. (5)
33. (2)
34. (3)
35. (5)

## MATHS

36. (3) » $40^{\prime} \frac{4330}{100}+59^{\prime} \frac{5000}{100}$

$$
=1732+2950=4682 » 4700
$$

37. (5) ? $\approx 43931 \div 2111 \times 401$
$=20.81 \times 401$
$=8344.81 \approx 8350$
38. (2) $\sqrt{6354} \cdot 34.993=80$ ' 35 » 2800
39. (5) $17+349 » ? \div 21$
or, $366 \times 21=$ ?
or, $?=7686 \approx 7680$
40. (3) » $60 \div 12 \times 6=30$
41. (3) Required ratio $=20:(30+25)$
$=20: 55$
= $4: 11$
42. (4) In school $P=(30-20)=10$ thousand In school $Q=(25-15)=10$ thousand In school $R=(22.5-10)=12.5$ thousand Hence, only school P and School Q is required answer.
43. (1) In 2006, number of girls
$=(15+20+27.5) \times 1000=62500$
Required average $=\frac{62500}{3}=20833.33$
$\approx 20800$
44. (3) Total number of girls enrolled in the three school in $2004=(10+15+20)$
$=45$ thousand
$\square \quad$ Required $\%=\frac{45}{20} \times 100=225 \%$
45. (4) Total number of girls in $2004=45$ thousand
$2005=62.5$ thousand
$2006=62.5$ thousand $2007=75$ thousand $2008=77.5$ thousand
$\square \quad$ Required answer is 2007
46. (5) I. $\Rightarrow p^{2}+3 p+2 p+6=0$
$\Rightarrow p(p+3)+2(p+3)=0$
$\Rightarrow(p+3)(p+2)=0$
$\Rightarrow p=-2$ or -3
II. $\Rightarrow q^{2}+q+2 q+2=0$
$\Rightarrow q(q+1)+2(q+1)=0$
$\Rightarrow(q+1)(q+2)=0$
$\Rightarrow q=-1$ or -2
Obviously $p \leq \mathrm{q}$
47. (4) I. $\Rightarrow \mathrm{p}= \pm 2$
II. $\Rightarrow q^{2}+2 q+2 q+4=0$
$\Rightarrow q(q+2)+2(q+2)=0$
$\Rightarrow(q+2)(q+2)=0$
$\Rightarrow q=-2$
Obviously, $p \geq q$
48. (2) I. $\Rightarrow p^{2}+p-56=0$
$\Rightarrow p^{2}+8 p-7 p-56=0$
$\Rightarrow p(p+8)-7(p+8)=0$
$\Rightarrow(p+8)(p-7)=0$
$\Rightarrow p=7$ or -8
II. $\Rightarrow q^{2}-8 q-9 q+72=0$
$\Rightarrow q(q-8)-9(q-8)=0$
$\Rightarrow(q-8)(q-9)=0$
$\Rightarrow q=8$ or 9
Obviously, $p<q$
49. (1) We have,
$3 p+2 q=58$
$4 p+4 q=92$
$\Rightarrow 2 p+2 q=46$
By equation (i) - (ii) we get $p=12$
From equation (i), $3 \times 12+2 q=58$
$\Rightarrow 2 q=58-36=22$
$\Rightarrow q=11$
Hence, $p>q$
50. (2) I. $\Rightarrow 3 p^{2}+15 p+2 p+10=0$
$\Rightarrow 3 p(p+5)+2(p+5)=0$
$\Rightarrow(p+5)(3 p+2)=0$
$\Rightarrow p=-5$ or $-\frac{2}{3}$
II. $\Rightarrow 10 q^{2}+5 q+4 q+2=0$
$\Rightarrow 5 q(2 q+1)+2(2 q+1)=0$
$\Rightarrow(2 q+1)(5 q+2)=0$
$\Rightarrow q=-\frac{1}{2}$ or $-\frac{2}{5}$
Obviously, $p<q$

## Campus <br> KD Campus

## 2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

51. (3) The series is as follows :
$4 \times 1+2=4+2=6$
$6 \times 2+3=12+3=15 \neq 18$
$15 \times 3+4=45+4=49$
$49 \times 4+5=196+5=201$
$201 \times 5+6=1005+6=1011$
52. (5) The series is as follows:
$48 \times \frac{3}{2}=72 ; 72 \times \frac{3}{2}=108 ;$
$108 \times \frac{3}{2}=162 ; 162 \times \frac{3}{2}=243$ and
$243 \times \frac{3}{2}=364.5 \neq 366$
53. (1) The series is as follows :
$2 \times 6+7 \times 6=12+42=54$
$54 \times 5+6 \times 5=270+30=300$
$300 \times 4+5 \times 4=1200+20=1220$
$1220 \times 3+4 \times 3=3660+12$
$=3672 \neq 3674$
$3672 \times 2+3 \times 2=7344+6=7350$
54. (2) $2^{3}=8 ; 3^{3}=27$;
$4^{3}=64 ; 5^{3}=125 ;$
$6^{3}=216 \neq 218$ and
$7^{3}=343$
55. (4) $19+7^{2}=19+49=68$
$68+6^{2}=68+36=104 \neq 102$
$104+5^{2}=104+25=129$
$129+4^{2}=129+16=145$
$145+3^{2}=145+9=154$
56. (3) The word RECTITUDE has 9 letters in which RCTTD are consonants and EIUE are vowels and T and E come twice. We have to arrange RCTTD (EEIU)
$\therefore \quad$ Number of arrangements
$=\frac{4!}{2!} \times \frac{6!}{2!}=4 \times 3 \times 6 \times 5 \times 4 \times 3=4320$
57. (2) Let the share of Lucky be ₹ $x$
$\therefore \quad$ Then, the share of Javed is $₹(30600-x)$
$x \times\left(1+\frac{4}{100}\right)^{3}=(30600-x)\left(1+\frac{4}{100}\right)^{2}$
$\Rightarrow x \times \frac{104}{100}=30600-x$
$\Rightarrow \frac{204}{100} x=30600$
$\Rightarrow x=\frac{30600 \times 100}{204}=₹ 15000$
58. (4) Total amount spent
$=\left(\frac{591}{3}+\frac{45}{60} \times 780\right)$ paise
$=197+585=782$ Paise $=₹ 7.82$
59. (1) $3600=4 \times 9 \times 100=2^{2} \times 3^{2} \times 5^{2} \times 2^{2}$
$=2^{4} \times 3^{2} \times 5^{2}$
$3240=810 \times 4=3^{2} \times 3^{2} \times 2 \times 5 \times 2^{2}$
$=3^{4} \times 2^{3} \times 5$
Third number $=2^{2} \times 3^{5} \times 7^{2}$
60. (2) Marks obtained by Priti in subject B
$=\frac{150 \times 56}{100}=84$
Total marks obtained by Priti in all
subjects $=\frac{450 \times 54}{100}=243$
$\therefore \quad$ Marks obtained in subject C
$=243-73-84=86$
61. (1) Total students in class $V$
$=\frac{72}{360} \times 1200=240$
$\square$ Girls $=\frac{240}{5} \times 2=96$
Total students in class VI
$=\frac{43.2}{360} \times 1200=144$
Girls $=\frac{144}{4} \times 1=36$
Similarly, $\mathrm{VII}_{\text {girls }}=72, \mathrm{VIII}_{\text {girls }}=84$,
$\mathrm{IX}_{\text {girls }}=108, \mathrm{X}_{\text {girls }}=96$
Average $=\frac{96+36+72+84+108+96}{6}$
$=\frac{492}{6}=82$
62. (5) Total girls $=492$ (as above)

Total boys $=1200-492=708$
Required different $=708-492=216$
63. (3) $\operatorname{Total}_{\mathrm{VIII}}=\frac{54}{360} \times 1200=180$
$\square \quad$ Boys $=\frac{180}{15} \times 8=96$
$\operatorname{Total}_{\mathrm{x}}=\frac{57.6}{360} \times 1200=192$
$\square \quad$ Boys $=\frac{192}{2} \times 1=96$
64. (3) $\operatorname{Total}_{\mathrm{v}}=\frac{72}{360} \times 1200=240$

Boys $_{\mathrm{v}}=\frac{240}{5} \times 3=144$, Girls $_{\mathrm{v}}=96$
and different $=48$
$\operatorname{Total}_{\text {VII }}=\frac{57.6}{360} \times 1200=192$
$\square$ Boys $_{\mathrm{VII}}=\frac{192}{8} \times 5=120$, Girls $_{\mathrm{VII}}=72$
and different $=48$


2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\square \quad$ Required $\%=\frac{48}{48} \times 100=100 \%$
65. (2) Boys $_{\mathrm{VI}}=108$

Girls $_{x}=96$
Required $\%=\frac{108-96}{96} \times 100=\frac{1200}{96} \%$
$=12.5 \%$
(66-70) :
IPL- 1

$x+y=(180-105)=75$
$x+z=(230-125)=105$
$y+z=(290-190)=100$
adding (i) + (ii) + (iii), we get
$2(x+y+z)=280$
ค $\quad x+y+z=140$
$x=40, y=35$ and $z=65$
66. (4) Required number of players
$=25+45+40=110$
Required number of players
$=45+65+110=220$
67. (4) Required number of players
$=45+65+110=220$
Required \% $=\frac{220}{400} \times 100=55 \%$
68. (5) Number of players who played at least two $\mathrm{IPL}=40+35+65+80=220$

Required \% $=\frac{220}{400} \times 100=55 \%$
69. (4) Only IPL $1=25$, only IPL $2=45$

Total $=70$
Required \% $=\frac{70}{80} \times 100=87.5 \%$
70. (2) At least one IPL $=400$

At most one $\mathrm{IPL}=25+45+110=180$
Required less $\%=\frac{400-180}{400} \times 100$
$=\frac{22000}{400}=55 \%$ less

## ENGLISH LANGUAGE

(81-85) : CFABDE
81. (1)
82. (3)
83. (1)
84. (5)
85. (2)
96. (5) No error
97. (4) Replace 'nice' by 'nicer'.
98. (4) Replace 'another' by 'other'.
99. (2) Replace 'a' by 'an'.
100. (2) Replace it with 'on you staying here' or 'on that you stay'.

## Campus <br> KD Campus



# Campus <br> KD Campus 

## SBI PO PHASE -I MOCK TEST - 51 (ANSWER KEY)

1. (1)
2. (5)
3. (3)
4. (5)
5. (4)
6. (3)
7. (1)
8. (2)
9. (3)
10. (3)
11. (1)
12. (2)
13. (2)
14. (5)
15. (2)
16. (1)
17. (4)
18. (5)
19. (2)
20. (3)
21. (1)
22. (4)
23. (3)
24. (2)
25. (3)
26. (5)
27. (3)
28. (4)
29. (2)
30. (3)
31. (3)
32. (5)
33. (2)
34. (3)
35. (5)
36. (3)
37. (5)
38. (2)
39. (5)
40. (3)
41. (3)
42. (4)
43. (1)
44. (3)
45. (4)
46. (5)
47. (2)
48. (1)
49. (2)
50. (3)
51. (5)
52. (1)
53. (2)
54. (4)
55. (3)
56. (2)
57. (4)
58. (1)
59. (2)
60. (1)
61. (5)
62. (3)
63. (3)
64. (2)
65. (4)
66. (4)
67. (5)
68. (4)
69. (2)
70. (2)
71. (3)
72. (1)
73. (5)
74. (3)
75. (3)
76. (5)
77. (4)
78. (2)
79. (1)
80. (1)
81. (3)
82. (1)
83. (5)
84. (2)
85. (5)
86. (4)
87. (3)
88. (4)
89. (2)
90. (2)
91. (1)
92. (5)
93. (2)
94. (3)
95. (5)
96. (4)
97. (4)
98. (2)
99. (2)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

