RRB MOCK TEST-1 (Solution)

1. (D) $\mathrm{M}(+)$

2. (C) Wood is the odd one out because it is a material used to make table, chair and cupboard.
3. (B)
4. (D)

5. (A)

6. (A)
7. (A) The new letter sequence is E C N A B R U T S I D. Clearly, S comes after T
8. (A) Each letter of the word is moved four step back to decode it. So GEORGE will be CAKNCA
9. (C) Number of persons between Amrita and Mukul $=50-(10+25)=15$. Since Mamta lies in middle of these 15 persons, so Mamta's position is 8th from Amrita i.e. 18th from the front.
10. (C)
11. (D)

Hence required direction is South-West.
12. (A) This is a simple subtraction series. Each number is 35 less than the previous number.
13. (C)

14. (D)
15. (D)
16. (B) All except Eagle are flightless birds.
17. (C) Given Number - $7 \underline{3} \underline{4} 6285$

Ascending Order - $2 \underline{3} 45678$
18. (C) $(12+18+30) / 10=\mathbf{6}$,
$(16+24+40) / 10=8$,
Similarly, $(45+18+27) / 10=9$.
19. (C) As Ornithologist is a specialist of Birds. Similarly, Archealogist is a specialist of Archealogy.
20. (C) The correct order is :Key, Lock, Door, Room, Switch on i,e 1, 3, 2, 4, 5.
21. (A) Required sum $=(80-3 \times 3)$ years $=(80-$ 9) years $=71$ years.
22. (A) The pattern is $-45,-35,-25, \ldots$. So, missing term $=20-15=5$.
23. (A) N O P Q R S T U V W X Y Z M L K J I H G F E D C B A.
\square required answer is $(16+5)=21$ th letter from your right is S .
24. (A) The fig. (X) is similar to the Form I. So, when the sheet shown in fig. (X) is folded to form a cube then one of the two half-shaded faces lies opposite to one of the blank faces and the other half-shaded face lies opposite to another blank face. The two remaining blank faces lie opposite to each other. Thus, both the cubes shown in figures (1) and (4) can be formed when the sheet shown in fig. (X) is folded. Also, though the cubes shown in figures (2) and (3) have faces that can appear adjacent to each other but the cube formed by folding the sheet in fig. (X) cannot be rotated to form either of the two. Hence, the cubes in figures (2) and (3) cannot be formed.
25. (A) By analysing the word LOGICAL, we can observe the logic used to code is

L	O	G	I	C	A	L
+2	+2	+2	+1	-2	-2	-2
N	Q	I	J	A	Y	J

Similarly by applying the same logic we can code FINANCE as HKPBLAC.
26. (C) Let the income of the family $=₹ 100$
\therefore Expenditure on food $=100 \times \frac{25}{100}=₹ 25$
After increase of 20% income
$=100 \times \frac{120}{100}=₹ 120$
According to the question,
Expenditure is same in both cases.
$\therefore \%$ expenditure $=\frac{25}{120} \times 100=\frac{250}{12}$
$\%$ expenditure $=20.833 \%$
$\%$ decrease in expenditure $=25-20.833$
= 4.16\%
27. (D) $\mathrm{P}=₹ 15600$
$R=10 \%$
for 2 yrs. S.I. $=\frac{15600 \times 10 \times 2}{100}=₹ 3120$
After 2nd yr. $\mathrm{P}=₹(15600+3120)$
= ₹ 18720
R = 10\%
For 2 yr ., S.I. $=\frac{18720 \times 10 \times 2}{100}=₹ 3744$
Required amount $=₹(3120+3744)$
= ₹ 6864
28. (C)

Train		Bus		Car
4	$:$	3	$:$	2
1	$:$	2	$:$	4
4	$:$	6	$:$	8
2	$:$	3	$:$	4

Train fair $=\frac{2}{2+3+4} \times 720$
$=\frac{2}{9} \times 720=₹ 160$
29. (B) $20 \%=\frac{1}{5}$

1 unit $=₹ \frac{3000}{30}=₹ 100$
Difference $=1 \times 100=₹ 100$
30. (B)

Time taken by both the taps to fill the tank
$=\frac{20}{5}=4$ hours
According to question,
When leak is open then total time $=(4+1)$
= 5 hours

Time taken by leak to empty the tank $=\frac{20}{1}$
= 20 hours
31.
(A) Expression
$=\sqrt{8+\sqrt{57+\sqrt{38+\sqrt{108+\sqrt{169}}}}}$
$=\sqrt{8+\sqrt{57+\sqrt{38+\sqrt{108+13}}}}$
$=\sqrt{8+\sqrt{57+\sqrt{38+\sqrt{121}}}}$
$=\sqrt{8+\sqrt{57+\sqrt{38+11}}}$
$=\sqrt{8+\sqrt{57+\sqrt{49}}}$
$=\sqrt{8+\sqrt{57+7}}=\sqrt{8+\sqrt{64}}$
$=\sqrt{8+8}=\sqrt{16}=4$
32. (A) Taking LCM of 8, 5, 3 and 2 i.e. 120.
than, multiplying every fraction by 120 .

$\frac{3}{8} \times 120$,	$\frac{3}{5} \times 120$,	$\frac{2}{3} \times 120$,	$\frac{1}{2} \times 120$
\downarrow	\downarrow	\downarrow	\downarrow
45	72	80	60
$80>72>60>45$			

80 i.e. $\frac{2}{3}$ is largest
33. (D) $\frac{\text { curved surface of cylinder }}{\text { curved surface of cone }}=\frac{8}{5}$
$\Rightarrow \frac{2 \pi r h}{\pi r \sqrt{h^{2}+r^{2}}}=\frac{8}{5}$
$\Rightarrow \frac{h}{\sqrt{h^{2}+r^{2}}}=\frac{4}{5}$
On squaring both sides,
$\frac{h^{2}}{h^{2}+r^{2}}=\frac{16}{25} \Rightarrow \frac{h^{2}+r^{2}}{h^{2}}=\frac{25}{16}$
$\Rightarrow 1+\frac{r^{2}}{h^{2}}=\frac{25}{16} \Rightarrow \frac{r^{2}}{h^{2}}=\frac{25}{16}-1=\frac{9}{16}$
$\therefore \frac{r}{h}=\frac{3}{4}$
34. (C) According to the question,
Man : Woman : Girl

Efficiency $\rightarrow 6: 3 \quad: \quad 1$
money received by (woman + girl)
$=\frac{10000}{10} \times 4$
= ₹ 4000
35. (D) Since 90% of the total votes have been polled.
So, Let total votes A + B + C = 100\%
(total vote polled i.e. 90% of the total votes)
According to the question :-
$\mathrm{A}-\mathrm{C}=18,000$
But $\mathrm{A}=\frac{3}{2} \mathrm{~B}$
B - C = 5\%
So, B = 5\% + C
and $\mathrm{A}=\frac{3}{2} \mathrm{~B}=\frac{3}{2}(5 \%+\mathrm{C})$
Now A + B + C = 100\%
$\frac{3}{2}(5 \%+C)+5 \%+C+C=100 \%$
after solving
$\Rightarrow \mathrm{C}=25 \%$
$\Rightarrow \mathrm{B}=30 \%$
$\Rightarrow A=45 \%$
Again A - C = 18,000
$20 \%=18,000$
Total votes polled $100 \%=90,000$
Hence,
Total votes $=\frac{10}{9} \times 90,000=1,00,000$
36. (C) Let the quantities of $A \& B$ are $4 x$ and x respectively.
According to question
$\frac{4 x-10 \times \frac{4}{5}}{x+10 \times \frac{4}{5}}=\frac{2}{3}$
$\Rightarrow \frac{4 x-8}{x+8}=\frac{2}{3}$
$\Rightarrow x=4$
So, quantity of liquid A in the jar
$=4 \times 4=16$ litre
37. (A)

Car $1 \rightarrow 10 \mathrm{~km} / \mathrm{h}$
Car $2 \rightarrow 8 \mathrm{~km} / \mathrm{hr}+8.5 \mathrm{~km} / \mathrm{h}+9 \mathrm{~km} / \mathrm{h} \ldots$
Ist hour IInd hour + \qquad
Let A is a point from where both the cars are moving toward the destination B , and C is a point where the car 2 overtakes the car 1.
Let after t hours the second car overtake the first car.
then equate the distance because both have travelled the same distance.
Distance covered by car $1=$ distance covered by car 2
$10 t=\frac{t}{2}\left[2 \times 8+(t-1) \frac{1}{2}\right]$
$20=16+\frac{t-1}{2}$
$t-1=8 \Rightarrow t=9$ hours
Distance covered by the first car in 9 hours $=9 \times 10=90 \mathrm{~km}$
So after 90 km the second car will overtake the first car.
38. (A) C.I. for 2 years at $8 \%=16.64 \%$

Amount $=₹ 5832=116.64 \%$
Principal $=\frac{5832}{116.64} \times 100=₹ 5000$
39. (B) Let the amount be ₹ x
\therefore According to question,
$\frac{8}{3} x-\frac{3}{8} x=55$
$\Rightarrow \frac{64 x-9 x}{24}=55$
$\Rightarrow \frac{55 x}{24}=55$ or, $x=₹ 24$
40. (B) Relative speed $=63-3=60 \mathrm{~km} / \mathrm{hr}$
\therefore Required time $=\frac{500 \times 18}{60 \times 5}=30 \mathrm{sec}$
41. (D) First number \times Second number
$=\mathrm{HCF} \times \mathrm{LCM}$
$\Rightarrow 75 \times$ Second number
$=15 \times 225$
$=\frac{15 \times 225}{75}=45$
42. (A) Area of path $=x(l+b-x)$
$=5(60+40-5)$
$=5 \times 95=475 \mathrm{~m}^{2}$
\therefore Total cost $=475 \times \frac{60}{100}=₹ 285$
43. (A) A single discount equal to the two successive discounts
$=\left(10+5-\frac{10 \times 5}{100}\right) \%=14.5 \%$
\therefore Selling price of the article
$=85.5 \%$ of ₹ 240
$=₹ \frac{85.5 \times 240}{100}=₹ 205.20$
44. (C) $101+102+103+\ldots+200$
$S=(100+1)+(100+2)+(100+3)+\ldots .$.
$+(100+100)$
Thus, it consists of 100 terms.
$=(100+100+100+\ldots .100$ times $)+(1+2$
$+3+\ldots .+100)$
$=(100 \times 100)+(1+2+3+\ldots+100)$
$=10000+\frac{100 \times(100+1)}{2}$
$=10000+5050=15050$
45. (A) $\mathrm{CP}=\frac{2400}{(100+25)} \times 100=₹ 1920$

SP = ₹ 2040
Profit $=2040-1920=₹ 120$
$\%$ profit $=\frac{120}{1920} \times 100=6.25 \%$
46. (D) Sita's current age is $\frac{6}{5}$ times of her age at the time of her marriage which means her current age is 6 units and her age at the time of marrage was 5 units. But she got married 6 years ago which means 1 unit is equal to 6 years so her current age is 36 years and her son's age is $\frac{1}{12}$ of her current age i.e. 3 years.
47. (B) \because ABCD is a cyclic quadrilateral.
$\therefore \angle \mathrm{C}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow \angle \mathrm{D}=180^{\circ}-48^{\circ}=132^{\circ}$
48. (D) Let the amounts invested in 2014 in companies P and Q be Rs. $8 x$ and Rs. $9 x$ respectively.
Then, interest received after one year from Company P
$=₹(6 \%$ of $8 x)=₹ \frac{48}{100} x$
and interest after one year from
Company Q
$=₹(4 \%$ of $9 x)=₹ \frac{36}{100} x$.
\therefore Required ratio $=\left(\frac{\frac{48}{100} x}{\frac{36}{100} x}\right)=\frac{4}{3}$,
49. (D) Let ₹ x lakhs be invested in Company P in 2012, then amount invested in Company Q in $2012=₹(30-x)$ lakhs.
Total interest from the two Companies after 1 year
$=₹[(7.5 \%$ of $x)+(9 \%$ of $(30-x)]$ lakhs
$=₹\left[27-\left(\frac{1.5 x}{100}\right)\right]$ lakhs
$\therefore\left[27-\left(\frac{1.5 x}{100}\right)\right]=2.43 \Rightarrow x=18$.
i.e., amount invested in Company P = ₹18 lakhs.
50. (D) Difference $=₹[(10 \%$ of 4.75$)-(8 \%$ of 4.75)] lakhs.
$=₹(2 \%$ of 4.75$)$ lakhs $=₹ 0.095$ lakhs = ₹ 9500

Campus

1. (D)
2. (C)
3. (B)
4. (D)
5. (A)
6. (A)
7. (A)
8. (A)
9. (C)
10. (C)
11. (D)
12. (A)
13. (C)
14. (D)
15. (D)
16. (B)
17. (C)
18. (C)
19. (C)
20. (C)
21. (A)
22. (A)
23. (A)
24. (A)
25. (A)
26. (C)
27. (D)
28. (C)
29. (B)
30. (B)
31. (A)
32. (A)
33. (D)
34. (C)
35. (D)
36. (C)
37. (A)
38. (A)
39. (B)
40. (B)
41. (D)
42. (A)
43. (A)
44. (C)
45. (A)
46. (D)
47. (B)
48. (D)
49. (D)
50. (D)
51. (B)
52. (A)
53. (B)
54. (A)
55. (B)
56. (D)
57. (A)
58. (C)
59. (A)
60. (A)
61. (B)
62. (B)
63. (C)
64. (D)
65. (B)
66. (A)
67. (D)
68. (B)
69. (D)
70. (C)
71. (A)
72. (A)
73. (B)
74. (C)
75. (B)
76. (A)
77. (D)
78. (B)
79. (B)
80. (D)
81. (C)
82. (B)
83. (A)
84. (C)
85. (A)
86. (A)
87. (D)
88. (B)
89. (A)
90. (D)
91. (A)
92. (A)
93. (C)
94. (D)
95. (A)
96. (C)
97. (B)
98. (D)
99. (B)
100. (B)
