2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

## BANK PO PHASE-I MOCK TEST-23 (SOLUTION)

## REASONING

1. (4)

2. (2)

3. (2)

4. (5)

5. (5)

6. (1) $-M \leftarrow 15 \rightarrow R \longleftarrow{ }^{10}$
$27^{\text {th }} \quad 11^{\text {th }}$
m's Postion from the left end of the row
$=(40-27)+1$
$=14$
7. (4) W A V E W I N S S A N E
$\downarrow \downarrow \downarrow \downarrow \quad \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$5 \% 3$ * 59 @ © © \% @ *
8. (1) As per Question.

Answer: As per question.
left - 142783 5 9—Right end
Second digit from right end.
9. (4)

10. (5) Except Austria all other are continents Austria is the country.
Solution (11-15) :

11. (2)
12. (2)
13. (1)
14. (5)
15. (2)
16. (1) ' $P$ ' lives on the Top floor of building.
17. (1) ' $Q$ ' lives on the Second floor.
18. (2) 'RSP' do not follow any symmetroy of arrangement.
19. (5) None as no one lives below's. S is on first floor.
20. (3) Four floors are between 'T' \& 'Q'.
(21-25) :
21. (5) $\mathrm{P}>\mathrm{X}>\mathrm{Y}=\mathrm{Q} \geq \mathrm{Z}$

Conclusion: (i) $Z<P$ : True
(ii) $\mathrm{P}>\mathrm{Q}$ : True
22. (2) $\mathrm{L}>\mathrm{I} ; \mathrm{H}>\mathrm{I} \geq \mathrm{J}>\mathrm{K}$

Conclusion : (i) $\mathrm{H}>\mathrm{L}$ : False
(ii) $\mathrm{L}>\mathrm{K}$ : True

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
23. (2) $\mathrm{O} \geq \mathrm{P}=\mathrm{Q}>\mathrm{R} ; \mathrm{O} \geq \mathrm{P}=\mathrm{Q}>\mathrm{S}$

Conclusion :
(i) $\mathrm{R}<\mathrm{S}$ : False
(ii) $\mathrm{O}>\mathrm{S}$ : True
24. (2) $\mathrm{D} \geq \mathrm{E}=\mathrm{H}>\mathrm{F}=\mathrm{G}$

D $\geq \mathrm{E}=\mathrm{H}<\mathrm{J}$
Conclusion :
(i) J $>$ D: False
(ii) $\mathrm{G}<\mathrm{J}$ : True
25. (1) $\mathrm{B}>\mathrm{J}>\mathrm{R}>\mathrm{Z}$

B $>\mathrm{J} \geq \mathrm{R}>\mathrm{F}<\mathrm{W}$
Conclusion:
(i) J > F : True
(ii) $\mathrm{B}>\mathrm{W}$ : False
26. (3)

Input : 20 ask never 356284 tall grass. Step I : tall 20 ask never 356284 grass Step II : tall 20 never ask 356284 grass. Step III : tall 20 never 35 ask 6284 grass. Step IV : tall 20 never 35 grass ask 6284.
Step V : tall 20 never 35 grass 62 ask 84.
27. (4) From the given step the input can not be determined.
28. (3)

Step III : yes 15 ultra 967352 home rest. Step IV : yes 15 ultra 529673 home rest. Step V : yes 15 ultra 52 rest 9673 home. Step VI : yes 15 ultra 52 rest 7396 home. Step VII : yes 15 ultra 52 rest 73 home 96.
29. (1)

Input : 49 box store 8463 on door 37 .
Step I : Store 49 box 8463 on door 37 .
Step II : Store 3749 box 8463 on door.
Step III : Store 37 on 49 box 8463 door.
Step IV : Store 37 on 49 door box 8463.
Step V : Store 37 on 49 door 63 box 84 .
30. (1)

Five steps
Input: Slow wheel 3257 high lake 1246.
Step I : wheel slow 3257 high lake 1246.
Step II : wheel 12 slow 3257 high lake 46.
Step III : wheel 12 slow 32 lake 57 high 46.
Step IV : wheel 12 slow 32 lake 4657 high.
Step V : wheel 12 slow 32 lake 46 high 57.
31. (2) T I G E R

(32-35) :
Good $=z t$
Make $=x y$
Finance $=m n$
Plan = lo
Helps = oj
Economy = $d n$
Progress = br
now $=F s$
develop/country $=r t / c l$
32. (5)
33. (4)
34. (2)
35. (3)

## MATHS

36. (5) $24 \div x \times 225=450$
$x=\frac{24 \times 225}{450}$ or $x=12$ approx
37. (2) $30.01^{2}-19.98^{2}-?=21.81^{2}$
$900-400-x=475$ (use approximation)
$500-\mathrm{x}=475$ or
$x=500-475$
$x=25$ approx
38. (2) $820.15+2379.85+140.01 \times 4.99=$ ?
$x=820.15+2379.85+140 \times 5$
$x=820.15+2379.85+700$ (use approximation)
$x=3200+700$ or $x=3900$ approx
39. (3) $39.97 \%$ of $649.8 \div 13.05=45.12-$ ?
$39.97 \%$ of $649.8 \div 13.05=45.12-x$
$40 \%$ of $650 \div 13.05=45.12-x$ (use approximation)
$x=25$
40. (4) $(674.87+59.98) \div 35.02=$ ?
$x=(674.87+59.98) \div 35.02$
$x=(675+60) \div 35$ (use approximation)
$x=735 \div 35$ or $x=21$
41. (3) Let the sum invested in scheme $B$ is $P$ and the sum invested in scheme $A$ is 6100 - P
For scheme B
$\mathrm{SI}=\frac{\mathrm{P} \times 10 \times 4}{100}=\frac{4 \mathrm{P}}{10}$
For scheme A
$A=(6100-P)\left(1+\frac{r}{100}\right)^{a}$
$A=(6100-P)\left(1+\frac{10}{100}\right)^{2}$
$A=(6100-P) \frac{121}{100}$
$6100-\mathrm{P}+\mathrm{CI}=(6100-\mathrm{P}) \frac{121}{100}$
$\mathrm{CI}=(6100-\mathrm{P})\left(\frac{121}{100}-1\right)$
$=(6100-P) \frac{21}{100}$
Given that,
CI = SI so,
$(6100-\mathrm{P}) \frac{21}{100}=\frac{4 \mathrm{P}}{10}$ or $\mathrm{P}=$ Rs. 2100
Amount invested in Scheme A
$=6100-2100=$ Rs. 4000

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
42. (4) Cost Price of all oranges = Rs. 1200

Selling price of all oranges $=1200\left(\frac{110}{100}\right)$
= Rs. 1320
Cost price of $1 / 3^{\text {rd }}$ of those oranges $=\frac{1200}{3}=$ Rs. 400
But he sold it at $20 \%$ loss i.e.
Selling price of $1 / 3^{\text {rd }}$ of those oranges
$=400 \times \frac{80}{100}=$ Rs. 320
Price at which A sells the rest of the oranges to gain overall profit of $10 \%=$ $1320-320$ = Rs. 1000
Cost price of rest of the oranges $=$ Rs. 800 Profit percent on which A sell the rest of the oranges $=\frac{1000-800}{800} \times 100=25 \%$
43. (5) Correctios: Read their ratio of age after 4 years is 4:5
Let the Bob's present age is $x$
Abby's present age $=x+8$
$\frac{x+4}{x+8+4}=\frac{4}{5}$ or $x=28$ years
44. (3)

Respective ratio between the profits of
A, B and C $=4 \times 12: 6 \times 8: 5 \times 8=6: 6: 5$
Total annual profit earned $=\frac{250}{1} \times 17$ = ₹ 4250
45. (5) Distance between point $A$ and point $B$ is given as $\mathrm{d}=\frac{\mathrm{S}_{1} \mathrm{~S}_{2}\left(t_{1}+t_{2}\right)}{\mathrm{S}_{1}-\mathrm{S}_{2}}$
$d=8 \times 5 \times \frac{\frac{48}{60}+\frac{15}{60}}{8-5}=40 \times \frac{\frac{63}{60}}{3}$ or $d=14 \mathrm{kms}$
46. (1) $158 \quad 78 \quad 38 \quad 18 \quad 8 \quad$ ? 158
$78=158-80$
$38=78-\frac{80}{2}$
$18=38-\frac{80}{4}$
$8=18-\frac{80}{8}$
$x=8-\frac{80}{16}=3$
47. (1)

48. (1)

49. (1) $78 \quad 64 \quad 48 \quad 30 \quad 10 \quad$ ? 78
$64=78-14$
$48=64-16$
$30=48-18$
$10=30-20$
$x=10-22=-12$
50. (2) $12.5 \quad 8 \quad 5.5 \quad 4 \quad 3 \quad ?$
12.5
$8=12.5-2 \times 2-0.5$
$5.5=8-2-0.5$
$4=-5.5-\frac{2}{2}-0.5$
$3=4-\frac{2}{4}-0.5$
$x=3-\frac{2}{8}-0.5=2.25$
51. (2) Number of cellular phones (both Nokia and Samsung) sold by store $B=6400 \times$
$\frac{21}{100}=1344$
Number of Nokia cellular phones sold by
store $A=3000 \times \frac{24}{100}=720$
Required percent $=\frac{1344-720}{720} \times 100$
$=\frac{62400}{720}=86 \frac{2}{3} \%$
52. (5) Required central angle $=360 \times \frac{33}{100}$
$=118.8^{\circ}$
53. (2) Total number of Samsung cellular phones sold by stores $B, C \& D=$ Total number of cellular phones sold by stores B, C \& D. Total number of Nokia cellular phones sold by stores $B, C \& D$
$=6400 \times \frac{21+15+33}{100}-3000 \times \frac{18+20+30}{100}$
$=4416-2040=2376$
Required average $=\frac{2376}{3}=792$
54. (2) Total number of cellular phones (both Nokia and Samsung) sold by store $\mathrm{A}=$
$6400 \times \frac{19}{100}=1216$
Total number of Nokia cellular phones sold by stores $B$ and $E$ together $=3000 \times$ $\frac{8+18}{100}=780$
Required difference $=1216-780=436$
55. (1) Number of Samsung cellular phones sold by store $E=$ Total number of cellular phones sold by store E - Number of Nokia cellular phones sold by store E
$=6400 \times \frac{12}{100}-3000 \times \frac{8}{100}=768-240=528$ Number of phones (both Nokia and Samsung) sold by store C $=6400 \times \frac{15}{100}$ $=960$

Required percentage $=\frac{528}{960} \times 100=55 \%$

## Direction (56-60) :

$$
\text { Total = } 4800
$$

A $=2000$
Male $=1400$
ops $=840$
admin $=70$
other $=490$
Female $=\mathbf{6 0 0}$ ops $=285$
admin $=144$
other $=171$

B = 2800
Male = 2240
ops $=1456$
admin $=196$
other $=588$
Female $=560$
ops $=364$
admin $=49$
other $=147$
56. (4) Required percentage $=\frac{490}{1400} \times 100=35 \%$
57. (5) Required percentage $=\frac{364}{560} \times 100=65 \%$
58. (4) Required total $=285+364=649$
59. (1) Average number of males working in 'Amin' in both the companies together
$=\frac{70+196}{2}=133$

Average number of females working in 'Other Departments' in both the companies together
$=\frac{171+147}{2}=159$
$\therefore$ difference $=26$
60. (2) Total number of employees (both male and female) who work in Admin in company $B=49+196=245$
Total number of employees (both male and female) who work in Other department in company $\mathrm{B}=588+147$ $=735$
Required ratio $=245: 735=1: 3$
61. (3) Total number of bikes $=43470+84560$ $+56760+78650+69000+94880$
$=427320$
$\therefore$ Average $=\frac{427320}{6}=71220$
$=71.22$ thousand
62. (2) Total number of bikes sold by Company
$D=78.65 \times \frac{9}{11}=64.35$ thousand $=64350$
63. (1) Total number of unsold bikes of

Company A $=43470 \times \frac{2}{9}=9660$
Total no. of unsold bikes of company E
$=69000 \times \frac{2}{5}=27600$
$\therefore$ Reqd $\%=\frac{9660}{27600} \times 100=35 \%$
64. (3) Difference $=94880 \times \frac{(5-3)}{8}$
$=94880 \times \frac{2}{8}=23720$
65. (2) Total number of bikes produced by all companies together $=427320$
Total number of bikes sold by all companies together
$=43470 \times \frac{7}{9}+84560 \times \frac{5}{7}+56760 \times \frac{5}{6}$
$+78650 \times \frac{9}{11}+69000 \times \frac{3}{5}+94880 \times \frac{5}{8}$
$=33810+60400+47300+64350+41400$
$+59300=306560$
Reqd $\%=\frac{306560}{427320} \times 100=71.74 \%=72 \%$
66. (2) I. $6 \mathrm{X}^{2}+5 \mathrm{X}+1=0$
$\Rightarrow 6 \mathrm{X}^{2}+3 \mathrm{X}+2 \mathrm{X}+1=0$
$\Rightarrow 3 \mathrm{X}(2 \mathrm{X}+1)+(2 \mathrm{X}+1)=0$
$\Rightarrow(3 X+1)(2 X+1)=0$
$\therefore \mathrm{X}=-\frac{1}{3}$ or $\mathrm{X}=-\frac{1}{2}$
II. $15 \mathrm{Y}^{2}+8 \mathrm{Y}+1=0$
$\Rightarrow 15 \mathrm{Y}^{2}+5 \mathrm{Y}+3 \mathrm{Y}+1=0$
$\Rightarrow 5 \mathrm{Y}(3 \mathrm{Y}+1)+1(3 \mathrm{Y}+1)=0$
$\Rightarrow(5 Y+1)(3 Y+1)=0$
$\therefore \mathrm{Y}=-\frac{1}{5}$ or $\frac{1}{3}$
Hence, $\mathrm{X} \leq \mathrm{Y}$
67. (5) I. $X^{2}+5 X+6=0$
$\Rightarrow X^{2}+3 X+2 X+6=0$
$\Rightarrow X(X+3)+2(X+3)=0$
$\Rightarrow(\mathrm{X}+2)(\mathrm{X}+3)$
$\therefore \mathrm{X}=-2$ or -3
II. $4 \mathrm{Y}^{2}+24 \mathrm{Y}+35=0$
$\Rightarrow 4 \mathrm{Y}^{2}+14 \mathrm{Y}+10 \mathrm{Y}+35=0$
$\Rightarrow 2 \mathrm{Y}(2 \mathrm{Y}+7)+5(2 \mathrm{Y}+7)=0$
$\Rightarrow(2 Y+5)(2 X+7)=0$
$\therefore \quad \mathrm{Y}=-\frac{5}{2}$ or $-\frac{7}{2}$
Relationship between $X$ and $Y$ cannot be established.
68. (2) I. $2 \mathrm{X}^{2}+5 \mathrm{X}+3=0$
$\Rightarrow 2 \mathrm{X}^{2}+2 \mathrm{X}+3 \mathrm{X}+3=0$
$\Rightarrow 2 \mathrm{X}(\mathrm{X}+1)+3(\mathrm{X}+1)=0$
$\Rightarrow(2 \mathrm{X}+3)(\mathrm{X}+1)=0$
$\therefore \mathrm{X}=-\frac{3}{2}$ or -1
II. $\mathrm{Y}^{2}+9 \mathrm{Y}+14=0$
$\Rightarrow Y^{2}+7 Y+2 Y+14=0$
$\Rightarrow \mathrm{Y}(\mathrm{Y}+7)+2(\mathrm{Y}+7)=0$
$\Rightarrow(Y+2)(Y+7)=0$
$\therefore \quad Y=-2$ or -7
$\Rightarrow$ Hence, $X>Y$
69. (1) I. $88 \mathrm{X}^{2}-19 \mathrm{X}+1=0$
$\Rightarrow 88 \mathrm{X}^{2}-11 \mathrm{X}-8 \mathrm{X}+1=0$
$\Rightarrow 11 \mathrm{X}(8 \mathrm{X}-1)-1(8 \mathrm{X}-1)=0$
$\Rightarrow(11 \mathrm{X}-1)(8 \mathrm{X}-1)=0$
$\therefore x=\frac{1}{11}$ or $\frac{1}{8}$
II. $132 \mathrm{Y}^{2}+23 \mathrm{Y}+1=0$
$\Rightarrow 132 \mathrm{Y}^{2}+12 \mathrm{Y}+11 \mathrm{Y}+1=0$
$\Rightarrow 12 \mathrm{Y}(11 \mathrm{Y}+1)+1(11 \mathrm{Y}+1)=0$
$\Rightarrow(12 \mathrm{Y}+1)(11 \mathrm{Y}+1)=0$
$\therefore \mathrm{Y}=-\frac{1}{12}$ or $-\frac{1}{11}$
Hence, $X \geq Y$
70. (2) I. $6 \mathrm{X}^{2}-7 \mathrm{X}+2=0$
$\Rightarrow 6 \mathrm{X}^{2}-4 \mathrm{X}-3 \mathrm{X}+2=0$
$\Rightarrow 2 \mathrm{X}(3 \mathrm{X}-2)-1(3 \mathrm{X}-2)=0$
$\Rightarrow(2 \mathrm{X}-1)(3 \mathrm{X}-2)=0$
$\therefore \mathrm{X}=\frac{1}{2}$ or $\frac{2}{3}$
II. $20 \mathrm{Y}^{2}-31 \mathrm{Y}+12=0$
$\Rightarrow 20 \mathrm{Y}^{2}-15 \mathrm{Y}-16 \mathrm{Y}+12=0$
$\Rightarrow 5 \mathrm{Y}(4 \mathrm{Y}-3)-4(4 \mathrm{Y}-3)=0$
$\Rightarrow(5 \mathrm{Y}-4)(4 \mathrm{Y}-3)=0$
$\therefore Y=\frac{4}{5}$ or $\frac{3}{4}$
Hence, X > Y

## ENGLISH LANGUAGE

71. (2)
72. (1)
73. (4)
74. (5)
75. (4)
76. (3)
77. (4)
78. (3)
79. (3)
80. (1)
81. (1) Remove 'are' from the sentence.
82. (5) No error.
83. (2) 'arrive' should be replaced by 'arrived'.
84. (1) Use 'The' before 'habit'.
85. (1) 'what' should be replaced by 'how'.
86. (1)
87. (5)
88. (3)
89. (4)
90. (2)
91. (2)
92. (2)
93. (1)
94. (4)
95. (2)
96. (1)
97. (3)

## VOCABULARIES

Word
Traitor

Quest
Scandals
Enlightened
Obsolete
Egalitarian
Contemporary
Enrichment

Inculcate

Sideline

Prolonged
Demonstration

Unforeseen
Conflict

Reckless

Malign
Diagnosis

Harmony
Discomfiture
Consensus
Perverted

Credible
Fraudulent

Pioneering

Trivial
Gigantic
Playful
Imbibe

Meaning in English
One who betrays another's trust or is false to an obligation or duty
A search for an alternative that meets cognitive criteria
A disgraceful event
Having knowledge and spiritual insight
Old-fashioned or no longer useful
Favoring social equality
Existing or happening in the same time period
The act of improving the quality of something, often by adding something to it
To cause (something) to be learned by (someone) by repeating it again and again
To prevent somebody from having an important part in something Continuing for a long time
An event in which people gather together in order to show that they support or oppose something or someone That you did not expect to happen
Strong disagreement between people, groups, etc., that results in often angry argument
Not showing proper concern about the possible bad results of your actions
To say bad things about somebody/something publicly
The act of identifying a disease, illness, or problem by examining someone or something
A pleasing combination or arrangement of different things
A feeling of confusion or embarrassment
A general agreement about something
To change (something good) so that it is no longer what it was or should be
Able to be believed : reasonable to trust or believe
Intended to cheat somebody, usually in order to make money illegally
Introducing ideas and methods that have never been used before

Not important
Extremely large
Happy and full of energy
To absorb something

## Meaning in Hindi

 गद्य रख $\mathrm{T}^{`}$ ज
अनै तिकका र्य
प्र बु द्ध
पु रा ने ढं ग का, अप्र चलि
समा नता वा दी, $\mathrm{F}^{\prime}$ द $\mathrm{q}_{\mathrm{T}} \mathrm{T}$
समक ली न
समृ द्धि करप

समझा ना, कर ई बा तमन मे
ठा ना

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

## BANK PO PHASE -I MOCK TEST - 23 (ANSWER KEY)

1. (4)
2. (3)
3. (2)
4. (2)
5. (5)
6. (5)
7. (1)
8. (4)
9. (1)
10. (4)
11. (5)
12. (2)
13. (2)
14. (1)
15. (5)
16. (2)
17. (1)
18. (1)
19. (2)
20. (5)
21. (3)
22. (5)
23. (2)
24. (2)
25. (2)
26. (1)
27. (4)
28. (3)
29. (1)
30. (1)
31. (2)
32. (5)
33. (4)
34. (2)
35. (3)
36. (5)
37. (2)
38. (2)
39. (3)
40. (4)
41. (3)
42. (4)
43. (5)
44. (3)
45. (5)
46. (1)
47. (1)
48. (1)
49. (1)
50. (2)
51. (2)
52. (5)
53. (2)
54. (2)
55. (1)
56. (4)
57. (5)
58. (4)
59. (1)
60. (2)
61. (3)
62. (2)
63. (1)
64. (3)
65. (2)
66. (2)
67. (5)
68. (2)
69. (1)
70. (2)
71. (2)
72. (3)
73. (4)
74. (1)
75. (4)
76. (2)
77. (4)
78. (3)
79. (5)
80. (3)
81. (2)
82. (4)
83. (1)
84. (1)
85. (5)
86. (2)
87. (1)
88. (1)
89. (1)
90. (5)
91. (3)
92. (4)
93. (2)
94. (2)
95. (2)
96. (1)
97. (4)
98. (2)
99. (1)
100. (3)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

