Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

SBI PO PHASE - I - 150 (SOLUTION)

3. (3)

Institutes \times Schools \times Colleges Universities
4. (4)

5. (4)

(6-10):

Employees	Departments	Sports
P	Finance	Table Tennis
Q	Accounts	Foot ball
R	Accounts	Hockey
S	Accounts	Basket ball
T	Banking	Cricket
U	Finance	Volleyball
V	Banking	Lawn Tennis
W	Banking	Badminton

6. (3)
7. (2)
8. (5)
9. (1)
10. (5)
11. (4)
12. (2)
13. (4)
(14-18) :
14. (4) $\mathrm{D}=\mathrm{H} \geq \mathrm{P} \geq \mathrm{Z}>\mathrm{N}$
I. $\mathrm{D} \geq \mathrm{N} \rightarrow$ False
II. $\mathrm{Z}<\mathrm{D} \rightarrow$ False

Neither conclusion I nor II is true.
15. (4) $\mathrm{F} \geq \mathrm{J} \leq \mathrm{B}=\mathrm{S}<\mathrm{N}$
I. $\mathrm{S}>\mathrm{N} \rightarrow$ False
II. $\mathrm{F} \leq \mathrm{N} \rightarrow$ False

Neither conclusion I nor II is true.
16. (1) $\mathrm{C}<\mathrm{E} \leq \mathrm{P} \leq \mathrm{S}$ and $\mathrm{C}<\mathrm{E} \leq \mathrm{P}>\mathrm{Q}$
I. $\mathrm{S}>\mathrm{C} \rightarrow$ True
II. $\mathrm{E}<\mathrm{Q} \rightarrow$ False

Only conclusion I is true.
17. (2) $\mathrm{S} \geq \mathrm{R}>\mathrm{G}=\mathrm{N}<\mathrm{L} \leq \mathrm{Q}$
I. $\mathrm{R}>\mathrm{L} \rightarrow$ False
II. $\mathrm{Q}>\mathrm{N} \rightarrow$ True

Only conclusion II is true.
18. (1) $\mathrm{S} \geq \mathrm{U}>\mathrm{V}=\mathrm{T}$
I. $\mathrm{S}>\mathrm{T} \rightarrow$ True
II. $\mathrm{N}>\mathrm{U} \rightarrow$ False

Only conclusion I is true
(19-23) :

19. (2)
20. (1)
21. (5)
22. (3)
23. (2)
(24-25) :

24. (5)
25. (3) Required distance $=25+40+60+90$ $=215$ metres
(26-29):
26. (2) From I:

Hence, statement I is not sufficient

Campus

 KD Campus

 KD Campus}

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

From II:

M is south west of N .
27. (1) From I:
tell me the cost - @ 0 \# 9
Cost was very high - \& 6 \# 3
From II:
Some cost was discount - $1 \boxed{8} \boxed{7}$
Some people like discount - 875% Hence, statement II is not sufficient.
28. (3)
29. (2)
30. (1)

(31-35) :

Person	Game	T-shirt	Mobile
U	Carrom	Blue	Moto G
V	Kho-Kho	Yellow	Lenovo
W	Chess	Violet	Lenovo
X	Hockey	Red	Micromax
Y	Tennis	Orange	Moto G
Z	Badminton	Green	Micromax

31. (2) 32. (1) 33. (5)
32. (2)
33. (3)

Maths

(36-40) :
36. (1) $\frac{169}{45} \times \frac{125}{208} \div \frac{5}{16}+\frac{7}{9}$
$=\frac{169}{45} \times \frac{125}{208} \times \frac{16}{5}+\frac{7}{9}$
$=\frac{65}{9}+\frac{7}{9}=\frac{72}{9}=8$
37. (1) $\frac{3}{8}$ of $168 \times 15 \div 5+\sqrt{?}=549 \div 9+235$
$\Rightarrow \frac{3}{8} \times 168 \times 3+\sqrt{?}=61+235$
$\Rightarrow 189+\sqrt{\text { ? }}=296$
$\Rightarrow \sqrt{?}=296-189=107$
\Rightarrow ? $=107 \times 107=11449$
38. (2) $1456 \div 16 \times 14+22=(?)^{2}$
$\Rightarrow 91 \times 14+22=(?)^{2}$
$\Rightarrow 1296=(?)^{2}$
\therefore ? $=36$
39. (1) $(0.64)^{4} \div(0.512)^{3} \times(0.8)^{4}=(0.8)^{?+3}$
$\Rightarrow(0.8)^{8} \div(0.8)^{9} \times(0.8)^{4}=(0.8)^{?+}$
$\Rightarrow ?+3=8-9+4$
$\Rightarrow ?+3=3$
\Rightarrow ? $=0$
40.

1) $\sqrt{6^{2} \times 22 \div 2-(6)^{3}+28}$
$=\sqrt{36 \times 11-216+28}=\sqrt{208}=14.42$
(41-45) :
41. (3) No. of qualified candidates in the year
$1995=900 \times \frac{64}{100}=576$
No. of male candidates who qualified in the year $1995=576-176=400$
\therefore Required ratio $=400: 176$
= 25: 11
42. (4) No. of qualified candidates in the year 1996
$=700 \times \frac{140}{100} \times \frac{25}{100}=245$
43. (3) Let the appeared candidates in the year $1992=500$
and qualified candidates in the year 1992 $=400$
No. of qualified female candidate
$=\frac{400}{8} \times 3=150$
\therefore Required $\%=\left(\frac{150}{500} \times 100\right) \%=30 \%$
44. (4) No. of qualified candidates in the year
$1994=\left(\frac{72}{4} \times 14\right)=252$
\therefore Total no. of appeared candidates in the
year $1994=\left(\frac{252}{42} \times 100\right) \%=600$
45. (2) No. of qualified candidates in the year
$1993=480 \times \frac{60}{100}=288$
\therefore No. of qualified candidates in the year $1991=249 \times 2-288=210$
\therefore Required $\%=\left(\frac{210}{700} \times 100\right) \%=30 \%$

$K D$ Campus

 KD Campus

 KD Campus}

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

(46-50):

46. (3) The pattern of the number series is:
$4 \times 0.5+1=2+1=3$
$3 \times 1+1.5=3+1.5=4.5$
$4.5 \times 1.5+2=6.75+2$
$=8.75 \neq \mathbf{8 . 5}$
$8.75 \times 2+2.5=17.5+2.5=20$
$20 \times 2.5+3=50+3=53$
$53 \times 3+3.5=162.5$
47. (2) The pattern of the number series is :
$12000 \div 5-5=2400-5=2395$
$2395 \div 5-5=479-5$
$=474 \neq 472$
$474 \div 5-5=94.8-5=89.8$
$89.8 \div 5-5=17.96-5=12.96$
$12.96 \div 5-5=-2.408-2.408 \div 5-5$
$=-5.4816$
48. (5) The pattern of the number series is:
$1 \times 1+7 \times 1=1+7=8$
$8 \times 2+6 \times 2=16+12=28$
$28 \times 3+5 \times 3=84+15=99$
$99 \times 4+4 \times 4=396+16=412$
$412 \times 5+3 \times 5=2060+15=2075$
$2075 \times 6+2 \times 6=12450+12$
$=12462 \neq \mathbf{1 2 4 6 0}$
49. (1) The pattern of the number series is :
$144 \times 1.5=216 \neq 215$
$216 \times 2.5=540$
$540 \times 3.5=1890$
$1890 \times 4.5=8505$
$8505 \times 5.5=46777.5$
$46777.5 \times 6.5=304053.75$
50. (5) The pattern of the number series is:
$2222-7^{3}=2222-343=1879$
$1879-6^{3}=1879-216=1663$
$1663-5^{3}=1663-125=1538$
$1538-4^{3}=1538-64=1474$
$1474-3^{3}=1474-27=1447$
$1447-2^{3}=1447-8$
$=1439 \neq 1440$
51. (3) According to question, work done by A in 4 days $=\frac{4}{8}=\frac{1}{2}$
Net work done by $(A+B)$ in 1 day
$\left(\frac{1}{8}-\frac{1}{3}\right)=\frac{-5}{24}$
Work done by $(\mathrm{A}+\mathrm{B})$ in 2 days
$=\frac{-5}{24} \times 2=\frac{-5}{12}$
\therefore Work done in 6 days $=\frac{1}{2}+\left(-\frac{5}{12}\right)=\frac{1}{12}$
\therefore Remaining $\frac{11}{12}$ of the wall is built by A in

$$
\frac{8 \times 11}{12}=\frac{88}{12}=\frac{22}{3}=7 \frac{1}{3} \text { days }
$$

52. (1) If the length of train-B be x metre, then

Speed of train $=\frac{240+x}{50}=\frac{240}{20}$
$\Rightarrow \frac{240+x}{50}=12$
$\Rightarrow 240+x=600$
$\Rightarrow x=360$ metre
53. (

\therefore Required amount
$=₹(11200+2856)$
= ₹ 14056
54. (1) Numbers $=2 x$ and $3 x$
$\therefore \quad \frac{2 x+4}{3 x+4}=\frac{5}{7}$
$\Rightarrow 15 x+20=14 x+28$
$\Rightarrow x=28-20=8$
$=$ Difference between numbers.
55. (3) According to question purchasing capacity $=$ Rs 160
A reduction of 20% means, now a person gets $\frac{5}{2} \mathrm{~kg}$ for Rs 32 and this is the present price of that commodity.
\therefore Present price per kg $=\frac{32}{5} \times 2$
= Rs 12.8
Let the originai price be Rs x, then new price is arrived after reduction 20% of it.
$\therefore x \times 0.8=12.8 \Rightarrow x=\operatorname{Rs} 16$

(56-60):

56. (4) From statement I,
$3 \times 5=15 ; 5 \times 9=45$ (An odd number) It is also obvious from statement II.
57. (5) The answer is not possible with the help of even both the statements. We need more information like sum or average of their ages or ratio of their after some time or before sometime etc.
58. (2) $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$
$=₹(4 \times 62880)$

$K D$ Campus

 KD Campus

 KD Campus}

From statement II,
$A+C+D=₹(3 \times 61665)$
$\therefore \quad$ B's salary $=(A+B+C+D)^{\prime}$ s salary - (A + C + D)'s salary
59. (3) From statement I,

The three digit number is divisible by 9 .
From statement II,
Number $=6 \times 6$
A number is divisible by 9 if sum of its digits is divisible by 9.
Clearly, * = 6
because $666 \div 9=74$
60. (4) From statement I,

Let CP of 1 printer = ₹ 1
$\therefore \quad$ CP of 5 printers $=₹ 5$
and SP of 5 printers $=₹ 6$
$\therefore \quad$ Gain $\%=\frac{1}{5} \times 100=20 \%$
$\therefore \quad \mathrm{CP}=\frac{100}{120} \times 3000=₹ 2500$
$\therefore \quad$ Gain $=₹(3000-2500)=₹ 500$
From statement II, we can also find the answer.
61. (2) Perimeter $=$ Distance covered in 8 min . $=\left(\frac{12000}{60} \times 8\right) \mathrm{m}=1600 \mathrm{~m}$.
Let length $=3 x$ metres and breadth $=2 x$ metres.
Then, $2(3 x+2 x)=1600$ or $x=160$
\therefore Length $=480 \mathrm{~m}$ and Breadth $=320 \mathrm{~m}$
\therefore Area $=(480 \times 320) \mathrm{m}^{2}=153600 \mathrm{~m}^{2}$
62. (4) Cost of $\frac{1}{4}$ of goods $=\frac{400}{4}=₹ 100$

SP of $\frac{1}{4}$ of goods $=100 \times \frac{80}{100}=₹ 80$
SP of whole item $=400 \times \frac{120}{100}=₹ 480$
\therefore SP of the remaining $\frac{3}{4}$ of goods must
be ₹ $(480-80)=₹ 400$
But the CP of three-fourths of goods
$=₹ 100 \times 3=₹ 300$
\therefore Gain $\%=\left(\frac{100}{300} \times 100\right) \%=33 \frac{1}{3} \%$
63. (1) Total no. of balls $=5+8=13$
\therefore Required probability $=\frac{{ }^{5} C_{3}}{{ }^{13} C_{3}} \times \frac{{ }^{8} C_{3}}{{ }^{13} C_{3}}$
$=\frac{140}{20449}$
64. (5) CP of 1000 kg of mixture
$110000-30000=₹ 80000$
\therefore CP of one kg of mixture $=₹ 80$
By the method of alligation :

Required ratio $=3: 2$
65. (4) $\because \frac{3}{5} \%$ of total distance
$40 \times 3+60 \times 4.5$
$=120+270=390 \mathrm{~km}$
\therefore Total distance $=\frac{390}{3} \times 5=650 \mathrm{~km}$
\therefore Remaining distance $=650-390$
$=260 \mathrm{~km}$
\therefore Average speed $=\frac{260}{4}=65 \mathrm{kmph}$
(66-70) :
66. (2) $x^{2}-51 x+650=0$
$\Rightarrow x^{2}-26 x-25 x+650=0$
$\Rightarrow x(x-26)-25(x-26)=0$
$\Rightarrow(x-25)(x-26)=0$
$\Rightarrow x=25,26$
II. $y^{3}=15625$
$\Rightarrow y=25$
Clearly, $x \geq y$
67. (5) I. $2 x^{2}-33 \bar{x}+91=0$
$\Rightarrow 2 x^{2}-26 x-7 x+91=0$
$\Rightarrow 2 x(x-13)-7(x-13)=0$
$\Rightarrow(2 x-7)(x-13)=0$
$\Rightarrow x=\frac{7}{2}, 13$
II. $2 y^{2}-39 y+70=0$
$\Rightarrow 2 y^{2}-4 y-35 y+70=0$
$\Rightarrow 2 y(y-2)-35(y-2)=0$
$\Rightarrow(2 y-35)(y-2)=0$
$\Rightarrow y=\frac{35}{2}, 2$
68. (3) I. $x^{2}-32 x+255=0$
$\Rightarrow x^{2}-15 x-17 x+255=0$
$\Rightarrow x(x-15)-17(x-15)=0$
$\Rightarrow(x-17)(x-15)=0$
$\Rightarrow x=17,15$
II. $y^{2}-39 y+378=0$
$\Rightarrow y^{2}-21 y-18 y+378=0$
$\Rightarrow y(y-21)-18(y-21)=0$
$\Rightarrow(y-18)(y-21)=0$
$\Rightarrow y=18,21$
Clearly, $x>y$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

69. (3) I. $2 x^{2}-30 x-19 x+285=0$
$\Rightarrow 2 x(x-15)-19(x-15)=0$
$\Rightarrow(2 x-19)(x-15)=0$
$\Rightarrow x=\frac{19}{2}, 15$
II. $y^{2}+2 y-48=0$
$\Rightarrow y^{2}+8 y-6 y-48=0$
$\Rightarrow y(y+8)-6(y+8)=0$
$\Rightarrow(y-6)(y+8)=0$
$\Rightarrow y=6,-8$
Clearly, $x<y$
70. (5) I. $64 x^{2}-50=14$
$\Rightarrow 64 x^{2}=64$
$\Rightarrow x^{2}=1$
$\Rightarrow x=+1,-1$
II. $9 y^{2}+\sqrt{121}=\sqrt{225}$
$\Rightarrow 9 y^{2}+11=15$
$\Rightarrow 9 y^{2}=4$
$\Rightarrow y^{2}=\frac{4}{9}$
$\Rightarrow y=+\frac{2}{3},-\frac{2}{3}$

ENGLISH LANGUAGE

(91-95) : (CGDBFEA)
91. (2)
92. (1)
93. (3)
94. (4)
95. (2)
96. (4) Replace 'with' by 'about'.
97. (3) Replace 'yet' by 'but'.
98. (1) Replace 'deliberately' by 'deliberate'.
99. (1) Replace 'based' by 'having'.
100. (5) No error.

Campus
 KD Campus

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Campus
 KD Campus

SBI PO PHASE - I - 150 (ANSWER KEY)

1. (4)
2. (2)
3. (3)
4. (3)
5. (4)
6. (4)
7. (3)
8. (2)
9. (5)
10. (1)
11. (4)
12. (5)
13. (2)
14. (4)
15. (4)
16. (4)
17. (1)
18. (2)
19. (1)
20. (2)
21. (1)
22. (5)
23. (3)
24. (2)
25. (5)
26. (3)
)
27. (3)
28. (1)
29. (1)
30. (1)
31. (3)
32. (4)
33. (5)
34. (2)
35. (3)
36. (4)
37. (2)
38. (4)
39. (1)
40. (5)
41. (4)
42. (2)
43. (5)
44. (3)
45. (3)
46. (5)
47. (3)
48. (4)
49. (4)
50. (3)
51. (3)
52. (2)
53. (5)
54. (2)
55. (4)
56. (3)
57. (1)
58. (2)
59. (5)
60. (3)
61. (4)
62. (1)
63. (2)
64. (2)
65. (3)
66. (4)
67. (2)
68. (1)
69. (3)
70. (4)
71. (2)
72. (4)
73. (3)
74. (1)
75. (2)
76. (5)

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

Note:- Whatapp with Mock Test No. and Question No. at 7053606571 for any of te doubts. Join the group and you may also share your suggestions and experience of sunday Mock Test.

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

