Campus

KD Campus Pvt. Ltd

SSC TIER II (MATHS) MOCK TEST - 42 (SOLUTION)

1. (C) Le the two consecutive even numbers are x and $x+2$
A.T.Q,
$x(x+2)=4224$
$\Rightarrow x^{2}+2 x-4224=0$
$\Rightarrow x^{2}+66 x-64 x-4224=0$
$\Rightarrow(x-64)(x+66)=0$
$\Rightarrow x=64$
\therefore Square root of smaller number
$=\sqrt{64}=8$
2. (B) Let the number is x
A.T.Q,
$16\left(3653-x^{2}\right)=34112$
$\Rightarrow 3653-x^{2}=2132$
$\Rightarrow x^{2}=1521 \Rightarrow x=39$
\therefore Required number $=39$
3. (D) A.T.Q,
$\left(n^{3}-\mathrm{n}\right)\left(\mathrm{n}^{2}-9\right)=\mathrm{n}\left(\mathrm{n}^{2}-1\right)(\mathrm{n}-3)(\mathrm{n}+3)$
$=n(n-1)(n+1)(n-3)(n+3)$
Because $\mathrm{n}>3$ but $\mathrm{n}=4$
$=4(3)(5)(1)(7)=420$
4. (C) Given lines are
$7 x-4 y+6=0$ and $3 x-11 y+4=0$
$\therefore \mathrm{m}_{1}=\frac{7}{4}$ and $\mathrm{m}_{2}=\frac{3}{11}$
If the angle between the given lines is θ,
then $\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{7}{4}-\frac{3}{11}}{1+\frac{7}{4} \times \frac{3}{11}}\right|$
$\Rightarrow \tan \theta=1 \Rightarrow \theta=45^{\circ}$
5. (D) A.T.Q,
$\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+\frac{1}{180}+\frac{1}{270}$
$=\frac{1}{3 \times 6}+\frac{1}{6 \times 9}+\frac{1}{9 \times 12}+\frac{1}{12 \times 15}+\frac{1}{15 \times 18}$
$=\frac{1}{3}\left[\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}+\frac{1}{15}-\right.$
$\left.\frac{1}{18}\right]=\frac{1}{3}\left[\frac{1}{3}-\frac{1}{18}\right]$
$=\frac{1}{3}\left[\frac{6-1}{18}\right]=\frac{1}{3} \times \frac{5}{18}=\frac{5}{54}$
6. (B) A.T.Q,
$=\sqrt{\frac{(0.4)^{2}+(0.41)^{2}+(0.041)^{2}}{(0.04)^{2}+(0.041)^{2}+(0.0041)^{2}}}$

$=\sqrt{\frac{100000000}{1000000}}=\sqrt{100}=10$
7. (C) Let the number is x
A.T.Q,
\therefore Required percentage
$=\frac{\frac{5}{4} x-\frac{4}{5} x}{\frac{5}{4} x} \times 100$
$=\frac{9 x}{20} \times \frac{4}{5 x} \times 100=36 \%$
8. (D) A.T.Q,
L.C.M of $3,6,9,12,15$ and $18=180$
\therefore The bell will toll together after every
$=180 \mathrm{sec}(3 \mathrm{~min})$
Hence,
In 45 minute, they will toll together
$=\frac{45}{3}+1=16$ times
9. (A) A.T.Q,
$(9)^{21} \times(36)^{4} \times(4)^{8} \times 144 \times 169$
$=(3)^{42} \times 2^{8} \times 3^{8} \times(2)^{16} \times 2 \times 2 \times 2 \times 2 \times 3$
$\times 3 \times 13 \times 13$
Number of factor
$=42+8+8+16+4+2+2=82$
10. (B) We known that HCF of
$\left(\mathrm{a}^{\mathrm{m}}-1\right)$ and $\left(\mathrm{a}^{\mathrm{n}}-1\right)$
$=\left(\mathrm{a}^{\mathrm{HCF} \text { of } \mathrm{m} \text { and } \mathrm{n}}-1\right)$
A.T.Q,
$\therefore \mathrm{HCF}$ of $\left(3^{6}-1\right)\left(3^{8}-1\right)$
$=\left(3^{2}-1\right)=9-1=8$
11. (C) Value of 8 th result
$=(8 \times 57+8 \times 65)-15 \times 60=76$
12. (D) A.T.Q,

Total runs scored in 30 overs $=30 \times 4.6$
= 138 runs
\therefore Required run rate in last 20 overs
$=\frac{290-138}{20}=\frac{152}{20}=7.6 \mathrm{run}$

Campus

KD Campus Pvt. Ltd

13. (C) A.T.Q,

Weight of the fourth man
$=(80 \times 4-84 \times 3)=68 \mathrm{~kg}$
and
Weight of fifth man $=68+3=71 \mathrm{~kg}$ Now,
Total weight after replacing fifth to one of first three $=79 \times 4=316 \mathrm{~kg}$
Weight of two from first three $=316-68-71$
$=177 \mathrm{~kg}$.
Weight of replaced man $=(84 \times 3-177)$
$=75 \mathrm{~kg}$
14. (B) $\frac{\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{H}_{1}}{\mathrm{~W}_{1}}=\frac{\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{H}_{2}}{\mathrm{~W}_{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{1 \times 1 \times(6+4)}{1} \\
& =\frac{1 \times 1 \times(6+6+x)}{1 \frac{1}{2}} \\
& \Rightarrow 10=\frac{(12+x) 2}{3} \\
& \Rightarrow 30=24+2 x \\
& \Rightarrow x=3
\end{aligned}
$$

Hence, required time period $=3$ hours
15. (D) A.T.Q

Total work $=25 \times 7=175$
Work done oby first man on first day $=5$ units
Work done on the second day $=5+10$ $=15$ units

Work done on the third day $=5+10+15$ = 30 units

Work done on the fourth day $=5+10+$ $15+20=50$ units

Work done on the fifth day $=5+10+15$
$+20+25=75$ units
Work done in 5 days $=5+15+30+50$
$+75=175$ units
Hence, work will be finish in 5 days
16. (A) New solution $=300 \times \frac{60}{100} \times \frac{100}{40}=450$

Required quantity $=450-300=150 \mathrm{gms}$
17. (A) A.T.Q,

| \mathbf{A} | $\mathbf{:}$ | \mathbf{C} |
| :--- | ---: | :--- | :--- |
| Efficiency -4 | $:$ | 3 |
| Time- | $\underbrace{3}:$ | 4 |
| 1 unit $=$ | 3 | |

Number of days taken by A
$=3 \times 3=9$ days.
and, Number of days taken by C
$=3 \times 4=12$ days
Now,

	A	$:$	B	$:$	C
Time-			2	$:$	3
	A	$:$	B	$:$	C
Time	9	$:$	8	$:$	12

\therefore Number of days taken by A to do the remaining work
$=\frac{72-(9+6) 3}{8}=\frac{27}{8}=3 \frac{3}{8}$ days
18. (B) A.T.Q,
$\frac{150 \times 25}{\frac{1}{4}}=\frac{100 \times 60}{\mathrm{~W}_{2}} \Rightarrow \mathrm{~W}_{2}=\frac{2}{5}$
Remaining work $=1-\frac{1}{4}-\frac{2}{5}=\frac{7}{20}$
Now, $\frac{x \times 35}{\frac{7}{20}}=\frac{150 \times 25}{\frac{1}{4}}$
$\Rightarrow x \times 20 \times 35$
$=150 \times 25 \times 4 \times 7$
$\Rightarrow x=150$
\therefore Required number of men $=150$
19. (C)

Required time
$=\frac{18}{(3-2)} \times \frac{5}{6}=15$ hours
20. (A) A.T.Q,

Now,
Efficiency- 8 : $20=28 \quad 7 \quad: \quad 21=28$
$\therefore \quad$ Efficiency of A, B and C is 13,8 and 7 respectively
\therefore Time taken by A to finish the work alone
$=\frac{(13+8+7) \times 12}{13}=25 \frac{11}{13}$ days
09555208888

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
21. (B) A.T.Q,
$\begin{aligned} & \mathrm{A}+\mathrm{B}-9 \\ & \mathrm{~B}+\mathrm{C}-12\end{aligned}>36<4$
Wordk done by A and B in 5 days
$=4 \times 5=20$ units
Work done by B and C in 3 days
$=3 \times 3=9$ units
\therefore Efficiency of $\mathrm{C}=\frac{36-20-9}{7}=1$
\therefore Required number of days
$=\frac{36}{1}=36$ days
22. (C) A.T.Q,
$5 \mathrm{M}+7 \mathrm{~W}=1450$ \qquad
$3 \mathrm{M}+4 \mathrm{~W}=850$
Solving equation (i) and (ii), we get
$\mathrm{W}=100$
and $\mathrm{M}=150$
6 men and 8 women earn in 9 days
$=(6 \times 150+8 \times 100) \times 9=₹ 15300$
23. (D) A.T.Q,

Now
Same $\sum_{4 \times 3 \times} 3 \begin{array}{ll}\text { Milk: Water } \\ 3 \times & :\end{array}$
Now,
Milk : Water
$\left.\begin{array}{rrr}12 & \text { : } \\ 12 & \text { : } & 16\end{array}\right]$ units
$\therefore 7$ units $=56$ litre
1 units = 8 litre
\therefore Required difference
$=16 \times 8-12 \times 8=32$ litre
24. (C) A.T.Q,

Second candle $-5>_{4}^{5} 20$
$\frac{20-5 t}{20-4 t}=\frac{3}{4}$
$\Rightarrow 80-20 \mathrm{t}=60-12 \mathrm{t}$
$\Rightarrow \mathrm{t}=\frac{5}{2}=2 \frac{1}{2}$ hours
25. (B) A.T.Q,

\therefore Required ratio $=28: 27$

Required difference $=300-30=270$
30. (D) Let present age of $\mathrm{B}=x$ years
A.T.Q,
$x+13+6=(x-2) 4$
$\Rightarrow x+19=(x-2) 4$
$\Rightarrow 27=3 x$
$\Rightarrow x=9$
D

Present age of $A=9+13=22$ years

Campus

KD Campus Pvt. Ltd

31. (C) A.T.Q,

Required average
$=\frac{50000+60000+40000+80000+70000}{5}$
$=\frac{300000}{5}=60000$
32. (C) A.T.Q,

Required percentage $=\frac{10000}{60000} \times 100$
$=16 \frac{2}{3} \%$
33. (C) A.T.Q,

Required average
$=\frac{20000+30000+15000+40000+25000}{6}$
$=\frac{130000}{5}=26000$
34. (C) A.T.Q,

Required ratio $=20000: 10000=2: 1$
35. (A) A.T.Q,

Required average $=\frac{40000}{50000} \times 100=80 \%$
36. (B) A.T.Q,
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
$\Rightarrow 16=4\left(x^{2}+y^{2}-x y\right)$
$\Rightarrow x^{2}+y^{2}-x y=4$ \qquad
$\Rightarrow(x+y)^{2}-3 x y=4$
$\Rightarrow 16-3 x y=4$
$\Rightarrow x y=4$ \qquad
From equation (i) and (ii), we get
$x^{2}+y^{2}=8$
Now,
$x^{4}+y^{4}=\left(x^{2}+y^{2}\right)^{2}-2 x^{2} y^{2}$
$\Rightarrow x^{4}+y^{4}=64-32 \Rightarrow x^{4}+y^{4}=32$
37. (D) A.T.Q,
$5-8 x-x^{2}$
$=5-(x+4)^{2}+16$
$=21-(x+4)^{2}$
Hence, maximum value of the expression $=21$
38. (B) A.T.Q,
$x+\frac{1}{x}=4$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=16-2$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=14$
and,
$\Rightarrow x^{3}+\frac{1}{x^{3}}=64-12$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=52$
Now,
$\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x^{3}+\frac{1}{x^{3}}\right)=14+52$
$\Rightarrow x^{3}+\frac{1}{x^{2}}=66-25$
$\Rightarrow x^{3}+\frac{1}{x^{2}}=41$
39. (B) A.T.Q,
$x^{2}+\frac{1}{x^{2}}=\frac{17}{16}$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}=\frac{17}{16}+2$
$\Rightarrow x+\frac{1}{x}=\frac{7}{4}$
Now,
$\left(x+\frac{1}{x}\right)^{3}=\left(\frac{7}{4}\right)^{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=\frac{343}{64}-\frac{21}{4}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=\frac{343-336}{64}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=\frac{7}{64}$
40. (C) A.T.Q,
$2 x=\sqrt{5}+\frac{1}{\sqrt{5}}$
$\Rightarrow x=\frac{5+1}{2 \sqrt{5}}=\frac{3}{\sqrt{5}}$
$\Rightarrow x^{2}=\frac{9}{5}$
$\Rightarrow x^{2}-1=\frac{4}{5}$
Now,
$\frac{\sqrt{x^{2}-1}}{1-\sqrt{x^{2}-1}}=\frac{\sqrt{\frac{4}{5}}}{1-\sqrt{\frac{4}{5}}}$
$=\frac{\frac{2}{\sqrt{5}}}{\frac{\sqrt{5}-2}{\sqrt{5}}}=\frac{2}{\sqrt{5}-2}=2 \sqrt{5}+4$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
41. (A) A.T.Q,
$\sqrt{55+\sqrt{76+\sqrt{11+\sqrt{180+\sqrt{256}}}}}$
$=\sqrt{55+\sqrt{76+\sqrt{11+\sqrt{180+16}}}}$
$=\sqrt{55+\sqrt{76+\sqrt{11+14}}}$
$=\sqrt{55+\sqrt{76+5}}$
$=\sqrt{55+9}=\sqrt{64}=8$
42. (D) A.T.Q,

$$
\begin{aligned}
& x^{2}+\frac{2 x}{3}+1=\left(x+\frac{1}{3}\right)^{2}+p^{2} \\
& \Rightarrow x^{2}+\frac{2 x}{3}+1=x^{2}+\frac{1}{9}+\frac{2 x}{3}+p^{2} \\
& \therefore p^{2}+\frac{1}{9}=1 \\
& \Rightarrow p^{2}=\frac{8}{9} \\
& \Rightarrow p= \pm \frac{2 \sqrt{2}}{3}
\end{aligned}
$$

43. (A) A.T.Q,
$\frac{4 x-3 y}{3 x+4 y}=\frac{6}{7}$
$\Rightarrow 28 x-21 y=18 x+24 y$
$\Rightarrow 10 x=45 y$
$\Rightarrow \frac{x}{y}=\frac{9}{2}$
Now,
$\left(\frac{\sqrt{x}+y}{\sqrt{x}-y}\right)^{2}=\left(\frac{3+2}{3-2}\right)^{2}=25$
44. (D) A.T.Q,
$a^{2}+b^{2}+c^{2}+a b+b c+c a$
$=\frac{1}{2}\left[(a+b)^{2}+(b+c)^{2}+(c+a)^{2}\right]$
$=\frac{1}{2}\left[(15)^{2}+(11)^{2}+(14)^{2}\right]=271$
45. (A) A.T.Q,
$x \sin \theta-\cos \theta=1$
put $\theta=90^{\circ}$
$\Rightarrow x(1)-0=1$
$\Rightarrow x=1$
Now,
$x^{2}-\left(1+x^{2}\right) \cos \theta=(1)^{2}-(1+1)(0)=1$
46. (D) A.T.Q,
$\cos \frac{\pi x}{4}=x^{2}-4 x+4$
through option (D)
$\cos 90^{\circ}=x^{2}-4 x+4$
$\Rightarrow 0=(2)^{2}-4(2)+4$
$\Rightarrow 0=4-8+4$
\therefore Required value of $x=2$
47. (C) A.T.Q,
$\cot \theta=\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}$
$\Rightarrow \cot ^{2} \theta=\frac{(\cos \theta-\sin \theta)^{2}}{(\cos \theta+\sin \theta)^{2}}$
Now, Adding 1 on both sides, we get
$1+\cot ^{2} \theta=1+\frac{(\cos \theta-\sin \theta)^{2}}{(\cos \theta+\sin \theta)^{2}}$
$\Rightarrow \operatorname{cosec}^{2} \theta=\frac{(\cos \theta+\sin \theta)^{2}+(\cos \theta-\sin \theta)^{2}}{(\cos \theta+\sin \theta)^{2}}$
$\Rightarrow \operatorname{cosec}^{2} \theta=\frac{2}{(\cos \theta+\sin \theta)^{2}}$
$\Rightarrow \frac{1}{\sin \theta}=\frac{\sqrt{2}}{(\cos \theta+\sin \theta)}$
$\Rightarrow \sin \theta+\cos \theta$
$= \pm \sqrt{2} \sin \theta$
48. (D) A.T.Q,
$\cos 24^{\circ}+\cos 5^{\circ}+\cos 175^{\circ}+\cos 204^{\circ}+$ $\cos 300^{\circ}$
$\Rightarrow \cos 24^{\circ}+\cos 5^{\circ}+\cos \left(180^{\circ}-5^{\circ}\right)+\cos$
$\left(180^{\circ}+24^{\circ}\right)+\cos \left(360^{\circ}-60^{\circ}\right)$
$=\cos 24^{\circ}+\cos 5^{\circ}-\cos 5^{\circ}-\cos 24^{\circ}+\cos$
$60^{\circ}=\frac{1}{2}$
49. (C) A.T.Q,
$\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right)$
$\Rightarrow \cos \left(45^{\circ}-30^{\circ}\right)$
$=\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}$
$\Rightarrow \cos \left(45^{\circ}-30^{\circ}\right)=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}$
$\Rightarrow \cos 15^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
and,
$\cos 15^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{4}$

Campus

KD Campus Pvt. Ltd

50. (C) A.T.Q,
$\cot \theta+\cos \theta=p$ \qquad
and,
$\cot \theta-\cos \theta=q$ \qquad
Now,
$p^{2}=\cot ^{2} \theta+\cos ^{2} \theta+2 \cot \theta \cos \theta$
and,
$q^{2}=\cot ^{2} \theta+\cos ^{2} \theta-2 \cot \theta \cos \theta$ \qquad
Solving equation (iii) and (iv), we get
$p^{2}-q^{2}=4 \cot \theta \cos \theta$
$\Rightarrow p^{2}-q^{2}=4 \sqrt{\cot ^{2} \theta \cos ^{2} \theta}$
$\Rightarrow p^{2}-q^{2}=4 \sqrt{\cot ^{2} \theta\left(1-\sin ^{2} \theta\right)}$
$\Rightarrow p^{2}-q^{2}=4 \sqrt{\cot ^{2} \theta-\cos ^{2} \theta}$
$\Rightarrow p^{2}-q^{2}=4 \sqrt{(\cot \theta-\cos \theta)(\cot \theta+\cos \theta)}$
$\Rightarrow p^{2}-q^{2}=4 \sqrt{p q}$
51. (B) A.T.Q,
$\theta=30^{\circ}$
$\frac{1}{2} \sqrt{1+\cos \theta}-\frac{1}{2} \sqrt{1-\cos \theta}$
$=\frac{1}{2} \sqrt{1+\cos 30^{\circ}}-\frac{1}{2} \sqrt{1-\cos 30^{\circ}}$
$=\frac{1}{2} \sqrt{1+\frac{\sqrt{3}}{2}}-\frac{1}{2} \sqrt{1-\frac{\sqrt{3}}{2}}$
$=\frac{1}{2} \sqrt{\frac{2+\sqrt{3}}{2}}-\frac{1}{2} \sqrt{\frac{2-\sqrt{3}}{2}}$
$=\frac{1}{2 \sqrt{2}}[\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}]$
$=\frac{1}{4}[\sqrt{4+2 \sqrt{3}}-\sqrt{4-2 \sqrt{3}}]$
$=\frac{1}{4}\left[\sqrt{(1+\sqrt{3})^{2}}-\sqrt{(\sqrt{3}-1)^{2}}\right]$
$=\frac{1}{4}[1+\sqrt{3}-\sqrt{3}+1]=\frac{1}{2}$
and, $\cos 60^{\circ}=\frac{1}{2}$
$\therefore \frac{1}{2} \sqrt{1+\cos \theta}-\frac{1}{2} \sqrt{1-\cos \theta}=\cos 2 \theta$
52. (B) A.T.Q,

In BPQ,
$\frac{P Q}{P B}=\tan 30^{\circ}$
$\Rightarrow \mathrm{BP}=20 \sqrt{3} \mathrm{~m}$
Now, In $\triangle \mathrm{ABP}$
$\frac{\mathrm{AB}}{\mathrm{BP}}=\tan 60^{\circ}$
$\Rightarrow \mathrm{AB}=20 \sqrt{3} \times \sqrt{3}$
$\Rightarrow A B=60 \mathrm{~m}$
\therefore Height of the tower $=60 \mathrm{~m}$
53. (D) A.T.Q,

$\frac{x}{y}=\tan 30^{\circ}$
$\Rightarrow y=\sqrt{3} x$
and,
$\frac{10+x}{y}=\tan 60^{\circ}$
$\Rightarrow y=\frac{10+x}{\sqrt{3}}$
Solving equation (i) and (ii), we get
$\sqrt{3} x=\frac{10+x}{\sqrt{3}}$
$\Rightarrow 3 x=10+x$
$\Rightarrow x=5$
\therefore Height of the tower $=10+5=15 \mathrm{~m}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

54. (A) A.T.Q,

Initial	Final
20	21
20	21
20	21
8000	9261
$\downarrow \times 32$	$\downarrow \times 32$

256000296352
\therefore Total population on Ist January 2008
= 296352
55. (B) Let the original fraction $=\frac{x}{y}$
A.T.Q,
$\frac{\frac{x \times 125}{100}}{\frac{y \times 96}{100}}=\frac{5}{3}$
$\Rightarrow 25 x=32 y$
$\Rightarrow \frac{x}{y}=\frac{32}{25}$
56. (C) A.T.Q,

Students failed in English $=(100-65)$
= 35\%
Students failed in Mathmatics
$=(100-75)=25 \%$
Total number of students passed in both the subjects $=100-[35+25-15]$
$=55 \%$
\therefore Total number of students appeared in the examination $=\frac{3300}{55} \times 100=6000$
57. (D) A.T.Q,
C. P
S. P

First article 4×37 Second article 25×3

Now,
First article 148
second article 75
223 units $=1784$
$\therefore 148$ units $\frac{1784}{223} \times 148=1184$
\therefore Cost price of first article $=₹ 1184$
58. (A) Let C.P of 1 cm cloth $=1$ unit
A.T.Q,
$112 \mathrm{CP}=100$
96 SP = 100

Now,
$672 \mathrm{CP}=600$
$672 \mathrm{SP}=700$
And, selling cash payment
$=\frac{700 \times 95}{100}=665$ units
\therefore Required profit \%
$=\frac{65}{600} \times 100=10.8 \%$
59. (C) Let the cost price of radio $=₹ x$
A.T.Q,
$750-x=x-530$
$\Rightarrow 2 x=1280$
$\Rightarrow x=640$
\therefore Cost price of radio $=₹ 640$
\therefore Required profit
$=\frac{960-640}{640} \times 100=50 \%$
60. (A)

A.T.Q,
\therefore Cost price of the article
$=\frac{48}{12} \times 100=₹ 400$
61. (B) A.T.Q,

Required selling price $=\frac{500 \times 100 \times 120}{80 \times 100}$
= ₹ 750
62. (C) A.T.Q,

Cost price of 45 toffees $=\frac{100 \times 100}{96}$
$=\frac{625}{6}$ paise
Selling price at 8\% profit
$=\frac{625}{6} \times 108=112.50$ paise
\therefore Required number of toffees
$=\frac{45}{112.50} \times 100=40$

Campus

KD Campus Pvt. Ltd

63. (B) A.T.Q,

Price
3
$3 \quad 8 \times 5 \times 2$
12
30
40
80
Selling price of 120 apples $=24 \times 2=$ ₹ 48
\therefore Profit percentage $=\frac{6}{42} \times 100=14.28 \%$
64. (D) A.T.Q,

$\angle \mathrm{ABC}=90^{\circ} \quad$ (angle in segment)
$\angle \mathrm{ABE}=90^{\circ}-60^{\circ}=30^{\circ}$
and, $\angle \mathrm{ABE}=\angle \mathrm{ACE}=30^{\circ}$
$\therefore \angle \mathrm{CED}=\angle \mathrm{ACE}=30^{\circ}$ (alternate interior angles)
65. (C) A.T.Q,

$\angle \mathrm{AEB}=66^{\circ}+44^{\circ}=110^{\circ}$
and, $\angle \mathrm{BED}=55^{\circ}$
$\therefore \angle \mathrm{ABC}=180^{\circ}-90^{\circ}-55^{\circ}=35^{\circ}$
66. (B) A.T.Q,
$H=12 \times 2=24 \mathrm{~cm}$
We know that
$\frac{P+B-H}{2}=r$ (In radius)
$\Rightarrow P+B-24=6 \times 2$
$\Rightarrow \mathrm{P}+\mathrm{B}=36 \mathrm{~cm}$
\therefore Required perimeter $=\mathrm{P}+\mathrm{B}+\mathrm{H}$
$=36+24=60 \mathrm{~cm}$
67. (C) A.T.Q,

In $\angle \mathrm{PQS}=180^{\circ}-90^{\circ}-40^{\circ}=50^{\circ}$
and, $\frac{\tan \angle \mathrm{PRQ}}{\tan \angle \mathrm{SQT}}=\frac{\mathrm{PS}}{\mathrm{SR}} \times \frac{\mathrm{QS}}{\mathrm{ST}}=8$
$\Rightarrow \frac{8}{\mathrm{SR}} \times \frac{\mathrm{QS}}{1}=8$
$\Rightarrow \mathrm{QS}=\mathrm{SR}$
Hence, it an isosceles triangle
$\Rightarrow \mathrm{PQ}=\mathrm{PR}$
$\therefore \angle \mathrm{PRQ}=50^{\circ}$
68. (B) A.T.Q,

Let the radius of fourth circle $=r$
In Δ COB
$\mathrm{OC}^{2}=\mathrm{BC}^{2}-\mathrm{OB}^{2}$
$\Rightarrow(\mathrm{OP}-\mathrm{PC})^{2}=(2+\mathrm{r})^{2}-(2)^{2}$
$\Rightarrow r^{2}+16-8 \mathrm{r}=4+\mathrm{r}^{2}+4 \mathrm{r}-4$
$\Rightarrow 12 \mathrm{r}=16$
$\Rightarrow r=\frac{4}{3}$
\therefore Radius of the fourth circle $=\frac{4}{3} \mathrm{~cm}$
69. (D) A.T.Q,

In $\triangle \mathrm{PQS}$
$\frac{\mathrm{QS}}{\sin \theta}=\frac{\mathrm{PS}}{\sin \mathrm{Q}}$
$\Rightarrow \mathrm{PS}=\frac{\sin \mathrm{Q}}{\sin \theta} \cdot \mathrm{QS}$
and, PS $=\frac{\sin R}{\sin \theta} \cdot R S$ \qquad
Solving equation (i) and (ii), we get
$\frac{\sin \mathrm{Q}}{\sin \mathrm{R}}=\frac{\mathrm{RS}}{\mathrm{QS}}$
Now,

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\angle \mathrm{Q}+\angle \mathrm{R}=90^{\circ}$
$\sin \mathrm{R}=\sin \left(90^{\circ}-\mathrm{Q}\right)$
$\Rightarrow \sin R=\cos Q$ \qquad (iv)

From equation (iii) and (iv), we get
$\frac{\mathrm{RS}}{\mathrm{QS}}=\tan \mathrm{Q}$
Now,

$$
\begin{aligned}
& \frac{\mathrm{RS}}{\mathrm{QS}}=\frac{\mathrm{PR}}{\mathrm{PQ}}=\frac{4}{3} \\
& \Rightarrow \frac{\mathrm{RS}}{\mathrm{QS}}+1=\frac{4}{3}+1 \\
& \Rightarrow \frac{\mathrm{QR}}{\mathrm{QS}}=\frac{7}{3} \\
& \Rightarrow \mathrm{QS}=\frac{3}{7} \times 5=2.1 \mathrm{~cm}
\end{aligned}
$$

70. (D) A.T.Q,

Let the radius of inscribed circle $=\mathrm{rcm}$ $\Delta \mathrm{POB}$ and $\Delta \mathrm{QOB}$ are isosceles right angled triangle
$\therefore \mathrm{OB}^{2}=\mathrm{r}^{2}+\mathrm{r}^{2}$
$\Rightarrow \mathrm{OB}=\sqrt{2} \mathrm{r} \Rightarrow \mathrm{BR}=2 \mathrm{~cm}$
$\Rightarrow(\mathrm{OB}+\mathrm{OR})=2$
$\Rightarrow \sqrt{2} r+r=2$
$\Rightarrow \mathrm{r}=\frac{2}{\sqrt{2}+1}$
$\Rightarrow \mathrm{r}=2(\sqrt{2}-1) \mathrm{cm}$.
71. (B)

and $r^{2}=3^{2}+(a+2)^{2}$
$\therefore 5^{2}+a^{2}=3^{2}+(a+2)^{2}$
So, $\mathrm{a}=3$
$\Rightarrow \mathrm{r}=\sqrt{5^{2}+3^{2}}=\sqrt{34}$
\Rightarrow diameter $=2 \sqrt{34}$
72. (D) A.T.Q,

$\Delta \mathrm{PAR} \sim \Delta \mathrm{QBR}$
$\therefore \frac{\mathrm{AP}}{\mathrm{BQ}}=\frac{\mathrm{PR}}{\mathrm{QR}}$
$\Rightarrow \frac{8}{4}=\frac{6}{\mathrm{QR}}$
$\Rightarrow \mathrm{QR}=3 \mathrm{~cm}$
In right angle triangle PAR
$\mathrm{AR}^{2}=8^{2}+6^{2}=100$
$\Rightarrow A R=10 \mathrm{~cm}$
Now, In right angle $\angle B Q R$
$\mathrm{BR}^{2}=3^{2}+4^{2}=25$
$\Rightarrow \mathrm{BR}=5 \mathrm{~cm}$
Hence, length of $\mathrm{AB}=10+5=15 \mathrm{~cm}$
73. (C) A.T.Q,

\therefore Coordinates of point D
$\left(\frac{7+2}{2}, \frac{4+3}{2}\right)=\left(\frac{9}{2}, \frac{7}{2}\right)$
Point P divides AD in 2: 1
\therefore Coordinates of point P
$=\left[\frac{2 \times \frac{9}{2}+1 \times 5}{2+1}, \frac{2 \times \frac{7}{2}+1 \times 3}{2+1}\right]=\left(\frac{14}{3}, \frac{10}{3}\right)$
74. (A) A.T.Q,

Total area of floor and roof
$=2[12 \times 8]=192 \mathrm{~m}^{2}$
Total area of four walls $=5 \times 192=960 \mathrm{~m}^{2}$
Now, $2 h(12+8)=960$
$\Rightarrow h=\frac{960}{2 \times 20}$
$\Rightarrow h=24 \mathrm{~m}$
\therefore Volume of the go down
$=12 \times 8 \times 24=2304 \mathrm{~m}^{3}$

Campus

KD Campus Pvt. Ltd

75. (C) A.T.Q,

Length of the diagonal of cube $=42 \sqrt{3} \mathrm{~cm}$
\therefore Side of cube $=\frac{42 \sqrt{3}}{\sqrt{3}}=42 \mathrm{~cm}$
And, Radius of the sphere $=\frac{42}{2}=21 \mathrm{~cm}$
Surface area of sphere $=4 \times \frac{22}{7} \times 21 \times 21$
$=5544 \mathrm{~cm}^{2}$
76. (D) A.T.Q,

Length of paralleopiped = 3 units
Breath of paralleopiped $=8$ units
Height of paralleopiped $=9$ units
Now,
Volume of cube $\left(a^{3}\right)=3 \times 8 \times 9$
$\Rightarrow a^{3}=216$
$\Rightarrow a=6$ units
\therefore Required ratio
$=\frac{2(3 \times 8+8 \times 9+9 \times 3)}{6 \times 6 \times 6}=\frac{246}{216}=\frac{41}{36}$
77. (C) Let rise in water level in $=x$
A.T.Q,
$\therefore l \times b \times h=630$
$\Rightarrow h=\frac{630 \times 100 \times 100}{225 \times 175 \times 1000}$
$\Rightarrow \mathrm{h}=.16 \mathrm{~m}$
\therefore Required rise in water level $=16 \mathrm{~cm}$
78. (D) A.T.Q,

Distance travel in one round
$=\frac{1500}{60} \times 9=225 \mathrm{~m}$
$\therefore 2(7 x+8 x)=225$
$\Rightarrow x=\frac{225}{30}=7.5$
\therefore length of field $=7.5 \times 7=52.5 \mathrm{~m}$
Breath of field $=7.5 \times 8=60 \mathrm{~m}$
\therefore Area of the field $=52.5 \times 60=3150 \mathrm{~m}^{2}$
79. (A) A.T.Q,

Required number of cubes
$=4(l+b+h-6)=4(4+6+8-6]=48$
80. (C) A.T.Q,

$\mathrm{MN}=\frac{\mathrm{AB}+\mathrm{CD}}{2}$
$\Rightarrow 20=\frac{16+\mathrm{CD}}{2}$
$\Rightarrow \mathrm{CD}=40-16=24 \mathrm{~cm}$
81. (C) Let the width of path $=x \mathrm{~m}$
A.T.Q,
$(36-2 x)(30-2 x)=(36 \times 30)-920$
$\Rightarrow 1080-60 x-72 x+4 x^{2}=1080-920$
$\Rightarrow 4 x^{2}-132 x+920=0$
$\Rightarrow x^{2}-33 x+130=0$
$\Rightarrow(x-10)+(x-23)=0$
$\Rightarrow x=10$ and $x=23$
\therefore Width of the path $=10 \mathrm{~m}$
82. (B) A.T.Q,

In $\triangle \mathrm{ABC}$
$\frac{\mathrm{BC}}{\mathrm{AC}}=\cos 30^{\circ}$
$\Rightarrow \mathrm{BC}=6 \sqrt{3} \mathrm{~cm}$
and, $\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 30^{\circ}$
$\Rightarrow \mathrm{AB}=6 \mathrm{~cm}$
\therefore Area of triangle
$=\frac{1}{2} \times 6 \times 6 \sqrt{3}=18 \sqrt{3} \mathrm{~cm}^{2}$
83. (D) A.T.Q,

Distance covered in 45 sec
$=\frac{36 \times 45}{60}=27 \mathrm{~m}$
Now,
$\pi \mathrm{r}-2 \mathrm{r}=27$
$\Rightarrow \mathrm{r}(\pi-2)=27$
$\Rightarrow \mathrm{r}=\frac{27}{8} \times 7$
$\Rightarrow \mathrm{r}=23.625 \mathrm{~m}$
\therefore Radius of the circular path $=23.625 \mathrm{~m}$
84. (D) A.T.Q,
$4 \%=\frac{4}{100}=\frac{1}{25}$
Principal 1000
First year 40
second year $40+1.6$
Third year $\quad 40+1.6+1.6+0.064$
Difference $=1.6+1.6+1.6+0.064$
$\therefore 4.864$ units $=₹ 14.592$
\therefore Required sum $=\frac{14.592}{4.864} \times 1000$
$=₹ 3000$

Campus

KD Campus Pvt. Ltd

85. (C) A.T.Q,

Amount after 1 year on ₹3200 deposited
on Ist January $=P\left(1+\frac{\mathrm{R} / 2}{100}\right)^{2 \mathrm{~T}}$
$=3200\left(1+\frac{15 / 2}{100}\right)^{2}=3200\left(\frac{43}{40}\right)^{2}$
Amount after 1/2 year ₹3200 deposited
On Ist July $=3200\left(1+\frac{3}{40}\right)^{1}$
$=3200\left(\frac{43}{40}\right)^{1}$
Total amount after 1 year
$=3200\left(\frac{43}{40}\right)^{2}+3200\left(\frac{43}{40}\right)$
$=3200 \times \frac{43}{40} \times \frac{83}{40}=₹ 7138$
86. (D) A.T.Q,

Rate $=\frac{25 \times 100}{1000}=2.5 \%$
Total population after 3 years
$=64000\left(1-\frac{5}{200}\right)^{3}$
$=64000 \times \frac{39}{40} \times \frac{39}{40} \times \frac{39}{40}=59319$
87. (A) A.T.Q,

Simple interest for 2 year
$=\frac{3600}{3} \times 2=2400$
\therefore Difference between compound interest and simple interest for 2 years
$=2550-2400=₹ 150$
and,
SI for 1 year = ₹ 1200
\therefore Rate $\%=\frac{150}{1200} \times 100=\frac{25}{2} \%$
Now, $\frac{25}{2} \%$ of sum $=₹ 1200$
\therefore Required sum $=\frac{1200}{25} \times 2 \times 100$
= ₹9600
88. (B) ATQ,
$\frac{8}{2}(6+7 d)=\frac{2 \times 5}{2}(6+4 d)$
$\Rightarrow 24+28 d=30+20 d$
$\Rightarrow d=\frac{30-24}{28-20}=\frac{6}{8}=\frac{3}{4}$
Hence,
Required difference $=3 / 4$
89. (D) Let the speed of second train $=x \mathrm{~m} / \mathrm{s}$ Speed of first train $=\frac{210}{35}=6 \mathrm{~m} / \mathrm{s}$
A.T.Q,
$\frac{2 \times 210}{x+6}=15$
$\Rightarrow 420=15 x+90$
$\Rightarrow 15 x=330$
$\Rightarrow x=22 \mathrm{~m} / \mathrm{sec}$
Required speed $=22 \times \frac{18}{5}$

$$
=79.2 \mathrm{~km} / \mathrm{h}
$$

90. (C)

Let the distance $P Q=300 \mathrm{~km}$,
Distance $P R=\frac{300 \times 30}{100}=90 \mathrm{~km}$,
Distance $\mathrm{SQ}=300 \times \frac{70}{300}=70 \mathrm{~km}$
So, $\mathrm{RS}=300-160=140 \mathrm{~km}$
First time Car A and B meets at R and second time they meet at S .
So, the ratio of speed

$$
\begin{aligned}
& \frac{\mathrm{S}_{\mathrm{A}}}{\mathrm{~S}_{\mathrm{B}}}=\frac{140}{140+70+70} \\
& \Rightarrow \mathrm{~S}_{\mathrm{A}}: \mathrm{S}_{\mathrm{B}}=1: 2
\end{aligned}
$$

So, speed of both the Cars are x and $2 x$. A.T.Q,

$$
\frac{90}{x}-\frac{90}{2 x}=1 \Rightarrow \frac{90 \times 1}{2 x}=1
$$

$\Rightarrow x=45 \mathrm{~km} / \mathrm{h}$
Now, the speed of second Car (S_{B})
$=2 \times 45=90 \mathrm{~km} / \mathrm{h}$
time taken by Car B to cover PQ
$=\frac{300}{90}=3 \frac{1}{3}$ hour

Campus

KD Campus Pvt. Ltd

91. (A) Let the speed of boat be $x \mathrm{~km} / \mathrm{h}$ and speed of the stream by $y \mathrm{~km} / \mathrm{h}$
A.T.Q,
$\frac{54}{x+y}+\frac{72}{x-y}=9$
And,
$\frac{90}{x+y}+\frac{84}{x-y}=12$
On solving equation (i) and (ii) we get,
$x+y=18$ and $x-y=12$
So,
$x=\frac{18+12}{2}=15 \mathrm{~km} / \mathrm{h}$
$y=\frac{18-2}{2}=3 \mathrm{~km} / \mathrm{h}$
92. (D) Let the speed of the train $=x \mathrm{~km} / \mathrm{h}$
A.T.Q,
$\frac{75}{x}-\frac{75}{x+5}=\frac{10}{60}$
$\Rightarrow \frac{75 \times 5}{x(x+5)}=\frac{1}{6}$
$\Rightarrow x(x+5)=2250$
$\Rightarrow x^{2}+5 \mathrm{x}-2250=0$
$\Rightarrow x=45$
So, the original speed of train $=45 \mathrm{~km} / \mathrm{h}$
93. (C) Consider $\left(47^{5}+58^{5}+29^{5}+53^{5}\right)$
$=\left(47^{5}+29^{5}\right)+\left(58^{5}+53^{5}\right)$
We have, $\left(x^{h}+y^{h}\right)$ is always divided by $(x+y)$ if h is an odd numbers.
So, $\left(47^{5}+29^{5}\right)$ is divided by 76 and $\left(58^{5}+53^{5}\right)$ is divided by 111 .
That's why, it will be divisible by 37 .
\therefore Remainder $=0$
94. (B) Required average $=86-16 \times 3=38$
95. (B) Let original no. of cows $=x$

According to the question,
$x \times \frac{94}{100} \times \frac{90}{100}=1692$
$\Rightarrow x=2000$
96. (C) Total number of males in Haryana, Punjab and Himachal
$=2160000 \times\left(\frac{12}{100} \times \frac{3}{8}+\frac{20}{100} \times \frac{3}{4}+\frac{15}{100} \times \frac{3}{5}\right)$
$=2160000 \times \frac{1140}{4000}=615600$
Required percentage
$=\frac{615600}{2160000} \times 100=28.5 \%$
97. (B) Required number
$=\left(2160000 \times \frac{25}{100} \times \frac{3}{8}\right)+\left(2160000 \times \frac{20}{100} \times \frac{1}{4}\right)$
$=202500+108000=310500$
98. (A) Required ratio

$$
=\frac{2160000 \times \frac{11}{100} \times \frac{3}{7}}{2160000 \times \frac{8}{100} \times \frac{2}{3}}=\frac{11 \times 3 \times 3}{7 \times 8 \times 2}=\frac{99}{112}
$$

99. (C) Required number $=2160000 \times \frac{12}{100} \times \frac{3}{8}$ = 97,200
100. (D) Required ratio

$$
=\frac{2160000 \times \frac{9}{100} \times \frac{100}{110}}{2160000 \times \frac{20}{100} \times \frac{100}{121}}=\frac{9 \times 121}{20 \times 110}=99: 200
$$

SSC TIER II (MATHS) MOCK TEST - 42 (ANSWER KEY)

1. (C)	11. (C)	21. (B)	31. (C)	41. (A)	51. (B)	61. (B)	71. (B)	81. (C)	91. (A)
2. (B)	12. (D)	22. (C)	32. (C)	42. (D)	52. (B)	62. (C)	72. (D)	82. (B)	92. (D)
3. (D)	13. (C)	23. (D)	33. (C)	43. (A)	53. (D)	63. (B)	73. (C)	83. (D)	93. (C)
4. (C)	14. (B)	24. (C)	34. (C)	44. (D)	54. (A)	64. (D)	74. (A)	84. (D)	94. (B)
5. (D)	15. (D)	25. (B)	35. (A)	45. (A)	55. (B)	65. (C)	75. (C)	85. (C)	95. (B)
6. (B)	16. (A)	26. (A)	36. (B)	46. (D)	56. (C)	66. (B)	76. (D)	86. (D)	96. (C)
7. (C)	17. (A)	27. (A)	37. (D)	47. (C)	57. (D)	67. (C)	77. (C)	87. (A)	97. (B)
8. (D)	18. (B)	28. (D)	38. (B)	48. (D)	58. (A)	68. (B)	78. (D)	88. (B)	98. (A)
9. (A)	19. (C)	29. (C)	39. (B)	49. (C)	59. (C)	69. (D)	79. (A)	89. (D)	99. (C)
10. (B)	20. (A)	30. (D)	40. (C)	50. (C)	60. (A)	70. (D)	80. (C)	90. (C)	100.(D)

