Campus
KD Campus Pvt. Ltd

SSC TIER II (MATHS) MOCK TEST - 41 (SOLUTION)

1. (C) A.T.Q,
$\frac{2 x+3 y}{2}>70$
$\Rightarrow 2 x+3 y>140$
On putting $x=2 y$, we get
$4 y+3 y>140$
$\Rightarrow y>20$
Now,
$x>2 \times 20$
$\Rightarrow x>40$
\therefore Minimum integer value of x is 41 .
2. (C) A.T.Q,

For a number to be divisible by 11 , the sum of the digits at odd and even places must be either zero or multiple of 11 .
\therefore The middle digit $=6$
3. (C) Consider
$\sqrt{p+q}$ and $\sqrt{p}+\sqrt{q}$
Squaring both sides, we get
$(\sqrt{p+q})^{2}$ and $(\sqrt{p}+\sqrt{q})^{2}$
$\Rightarrow \mathrm{p}+\mathrm{q}$ and $\mathrm{p}+\mathrm{q}+2 \sqrt{p} \cdot \sqrt{q}$
$\therefore \sqrt{p+q}<\sqrt{p}+\sqrt{q}$
4. (C) A.T.Q,
$\frac{4}{2+\sqrt{2}+\sqrt{10}}=\frac{4(2+\sqrt{2}-\sqrt{10})}{(2+\sqrt{2}+\sqrt{10})(2+\sqrt{2}-\sqrt{10})}$
$=\frac{4(2+\sqrt{2}-\sqrt{10})}{(2+\sqrt{2})^{2}-(\sqrt{10})^{2}}$
$=\frac{4(2+\sqrt{2}-\sqrt{10})}{4(\sqrt{2}-1)}$
$=\frac{(2+\sqrt{2}-\sqrt{10})(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$
$=4+3 \sqrt{2}-2 \sqrt{5}-\sqrt{10}$
5. (D) Let the digit in the unit' place be x.

Then, digit in the ten's place $=x+2$
Now, the number is $10(x+2)+x$
$=11 x+20$
and,
The number obtained by reversing the digits $=10 x+x+2=11 x+2$
A.T.Q,
$(11 x+20) 3+\frac{5}{7} \times(11 x+2)=184$
On solving, we get
$x=3$
Then, the sum of the digits of the number $=3+3+2=8$
6. (A) Sum of the two digit natural numbers $=$ (sum of first 99 natural numbers) (sum of first 9 natural numbers)
$=\frac{99 \times 100}{2}-\frac{9 \times 10}{2}=4905$
7. (D) A.T.Q,

Let the numbers be $4 x$ and $4 y$.
Then,
$4 x+4 y=52$
$\Rightarrow x+y=13$
Now,

$$
\begin{equation*}
4 x y=144 \tag{i}
\end{equation*}
$$

$\Rightarrow x y=36$
Then,
the required sum $=\frac{1}{4 x}+\frac{1}{4 y}$
$=\frac{1}{4}\left[\frac{x+y}{x y}\right]=\frac{13}{144}$
8. (B) Let the two numbers be a and b.
A.T.Q,
$a+b=26$
and,
$\Rightarrow \frac{a+b}{2}=\sqrt{a b} \times \frac{13}{12}$
$\Rightarrow \mathrm{ab}=144$
We know that,
$(a+b)^{2}-(a-b)^{2}=4 a b$
On putting respective values, we get
$(a-b)^{2}=26^{2}-4 \times 144$
$\Rightarrow(a-b)^{2}=676-576=100$
$\Rightarrow a-b=10$
\therefore Difference of the numbers $=10$
9. (C) Let the positive number be x.

Then,
$x^{2}-23 x=420$
$\Rightarrow x^{2}-23 x-420=0$
$\Rightarrow x^{2}-35 x+12 x-420=0$
$\Rightarrow x(x-35)+12(x-35)=0$
$\Rightarrow x=35$ or $x=-12$
\therefore Required positive number $=35$

KD Campus Pvt. Ltd

10. (D) A.T.Q,

The fraction is $\frac{(A+1)(A+3)}{(5+A)}$
As $5+\mathrm{A}$ is constant
Let it be.
Now, the fraction becomes $\frac{(B-4)(B-2)}{B}$
$=\frac{\mathrm{B}^{2}-6 B+8}{B}=\frac{(B-3)^{2}-1}{B}$
For the value of the fraction to be minimum, $\mathrm{B}=3$
\therefore Minimum value $=\frac{(3-3)^{2}-1}{3}=\frac{-1}{3}$
11. (C) Akash complete $\frac{11}{18}$ the work
= 22 days
Akash complete total work
$=22 \times \frac{18}{11}=36$ days
12. (C) A.T.Q,
$\begin{aligned} & \mathrm{A} \rightarrow 18 \\ & \mathrm{~B} \rightarrow 27 \\ & \mathrm{C} \rightarrow 20\end{aligned}>540<\begin{aligned} & 30 \\ & 20 \\ & 27\end{aligned}$
Now,
work done by A, B and C in 2 days
$=(30+20)+(30+27)=107$ units
and, work done in 10 days
$=107 \times 5=535$ units
Then,
time taken to do remaining 5 units work
$=\frac{5}{50}=\frac{1}{10}$ days
\therefore Total time taken
$=10+\frac{1}{10}=10 \frac{1}{10}$ days
13. (D) A.T.Q,

\therefore Time taken to fill the tank $=\frac{40}{4+2-1}$
$=8$ minutes
14. (C) Weight of teacher $=42 \mathrm{~kg}+35 \times 800 \mathrm{gm}$ $=42 \mathrm{~kg}+28 \mathrm{~kg}=70 \mathrm{~kg}$
15. (B)

	Rashmi	Rajat
Efficency \rightarrow	5	3
Time taken \rightarrow	3	5
	$\downarrow \times 5$	$\downarrow \times 5$
	15	25

Required time taken
$=\frac{5 \times 15}{5+3}=\frac{75}{8}=9 \frac{3}{8}$ days
16. (B) A.T.Q,

CP	MP	SP
100	156.25	112.5

\therefore Discount percent
$=\frac{156.25-112.5}{156.25} \times 100=28 \%$
17. (D) 40% profit $\rightarrow \frac{2}{5}$
$\begin{array}{lc}\mathrm{CP} & \mathrm{SP} \\ \downarrow & \downarrow \\ 5 & 7 \\ \downarrow & \downarrow \\ \frac{72}{7} \times 5 & 72\end{array}$

Now,
Using alligation,

\therefore Required ratio $=4: 3$
18. (B) A.T.Q,
$\frac{p\left[\frac{r}{100}\right]^{2}\left[3+\frac{r}{100}\right]}{p\left[\frac{r}{100}\right]^{2}}=\frac{25}{8}$
$\Rightarrow \frac{r}{100}=\frac{25}{8}-3=\frac{1}{8}$
$\Rightarrow r=\frac{1}{8} \times 100=12.5 \%$
\therefore Rate of interest $=12.5 \%$
19. (A) A.T.Q,
$25 \%=\frac{25}{100}=\frac{1}{4}$

Now,

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Ist item	12	15
Ind item	20	15
	32	30

$\therefore 15$ units $=₹ 450$
32 units $=\frac{450}{15} \times 32=₹ 960$
\therefore Required loss $\%=\frac{960-900}{960} \times 100$
$=6 \frac{1}{4} \%$
20. (A) A.T.Q,

Milk
I 2
Water
$3 \rightarrow 5 \times 63 \times 3$
II 3
$4 \rightarrow 7 \times 45 \times 2$
III $45 \rightarrow 9 \times 35 \times 1$
Now,
the ratio of milk and water in the three containers becomes

Milk Water
I $378 \quad 567$
II $270 \quad 360$
III $140 \quad 175$
Then,
the ratio of milk and water in the new mixture
$=378+270+140: 567+360+175$
$=788: 1102=394: 551$
21. (B) Let the Original price of sugar $=₹ x / \mathrm{kg}$ $\frac{780}{x}-\frac{7800}{13 x}=6$
$\Rightarrow \frac{10140-7800}{13 x}=6 \Rightarrow x=30$
\therefore Original price of sugar $=₹ 30 / \mathrm{kg}$
22. (C)
S.P. C.P.

I $9 \quad 10 \times 4$
II $9 \quad 8 \times 5$
III 45×8
Here, total S.P. $=9 \times 4+9 \times 5+4 \times 8=113$ and,
total C.P $=10 \times 4+8 \times 5+5 \times 8=120$ Then,
loss percentage $=\frac{120-113}{120} \times 100=5.83 \%$
23. (D) A.T.Q,
S.P. of 80 apples $=240 \times \frac{6}{5}=₹ 288$ and,
Numbers of remaining apples
$=\frac{3}{4} \times 80=60$

Now,
S.P of remaining 60 apples $=₹ 288$

Then,
\therefore Required selling price of each apple
$=\frac{288}{60}=₹ 4.8$
24. (D) A.T.Q,

Now,
$8 \mathrm{~A}+12 \mathrm{~B}+2 \mathrm{C}=30$
$\Rightarrow 8(\mathrm{~A}+\mathrm{B})+4(\mathrm{~B}+\mathrm{C})-2 \mathrm{C}=30$
$\Rightarrow 8 \times 3+4 \times 2-2 \mathrm{C}=30 \Rightarrow \mathrm{C}=1$
Then,
Time taken by C to complete the work
$=\frac{30}{1}=30$ hours
25. (B) A.T.Q,

The candidates passed in both the subjects $=(65+75-80)=60 \%$
Now,
$60 \%=2400 \Rightarrow 1 \%=40$
Then,
total number of candidates $=100 \%$
$=100 \times 4=4000$
26. (B) A.T.Q,

Net decrement in number $=\frac{20 \times 20}{100}=4 \%$
Now, $4 \%=50$
Then,
the original number $=\frac{50}{4} \times 100=1250$
27. (C) A.T.Q,

Interest obtained in $\left(4-\frac{5}{2}\right)=1 \frac{1}{2}$ years
= $986-935$ = ₹51
Now,
interest obtained in $2 \frac{1}{2}$ years
$=\frac{51}{1.5} \times 2.5=₹ 85$
Then,
Principal amount $=935-85=₹ 850$
\therefore Required rate of interest
$=\frac{85 \times 100}{850 \times 2.5}=4 \%$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

28. (A) ATQ,

Final selling price
$=\frac{100000 \times 110 \times 95}{100 \times 100}=104500$
Then, profit for X
$=110000-104500=₹ 5500$
29. (C) Let average score of 20 innings be x.
A.T.Q,
$20 x+83=21(x+3)$
$\Rightarrow 20 x+83=21 x+63 \Rightarrow x=20$
\therefore Average score after 21 th innings
$=20+3=23$
30. (A) Let the speed of the boat be $x \mathrm{~km} / \mathrm{h}$ and, the speed of the stream be $y \mathrm{~km} / \mathrm{h}$ A.T.Q,
$\frac{36}{x-y}+\frac{40}{x+y}=10$
and,
$\frac{15}{x-y}+\frac{35}{x+y}=6$ \qquad
On solving the equations, we get
$x+y=10$
and,
$x-y=6$ \qquad (iv)

Solving (iii) and (iv) $x=8$
\therefore Speed of boat $=8 \mathrm{~km} / \mathrm{hr}$
31. (C) Let the number of boys and girls in the class be $4 x$ and $3 x$ respectively.
$4 x-3=(3 x-16)^{2}$
$\Rightarrow 4 x-3=9 x^{2}+256-96 x$
$\Rightarrow 9 x^{2}-100 x+259=0$
On solving, we get $x=7$
\therefore Total number of students
$=4 x+3 x=7 \times 7=49$
32. (D) Rate of interest $=\frac{108}{1600} \times 100=6.75 \%$

1 : 3
Now,
$(1+3)$ units $=₹ 1600$
$\Rightarrow 4$ units $=₹ 1600$
$\Rightarrow 1$ units $=₹ 400$
Then, required amount
$=3$ units $=3 \times 400=₹ 1200$
33. (B) We know that,

Distance $=\frac{\text { Product of speeds }}{\text { difference of speeds }} \times$ time
difference
$\Rightarrow \mathrm{D}=\frac{18 \times 24}{24-18} \times \frac{45}{60}$
$\Rightarrow \mathrm{D}=54 \mathrm{~km}$
\therefore Distance between his office and house
$=54 \mathrm{~km}$
34. (D) A.T.Q,

Difference in the temperature of Monday
and Thursday $=(30-27) \times 3=9^{\circ} \mathrm{C}$
Let the temperature of thursday be $\mathrm{T}^{\circ} \mathrm{C}$
Difference $=T-\frac{3 T}{4}=9$
$\Rightarrow \mathrm{T}=36^{\circ} \mathrm{C}$
\therefore Temperature of thursday $=36^{\circ} \mathrm{C}$
35. (A) $\sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}$
$=2 \sin \left(\frac{50^{\circ}+10^{\circ}}{2}\right) \cos \left(\frac{50^{\circ}-10^{\circ}}{2}\right)-\sin 70^{\circ}$
$=2 \sin 30^{\circ} \cos 20^{\circ}-\sin 70^{\circ}$
$=2 \times \frac{1}{2} \times \cos \left(90-70^{\circ}\right)-\sin 70^{\circ}$
$=\sin 70^{\circ}-\sin 70^{\circ}=0$
36. (A) A.T.Q,
$x^{4}+1-x^{2}=0$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=1$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2=3$
$\Rightarrow x+\frac{1}{x}=\sqrt{3}$
On cubing both sides, we get
$x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)=3 \sqrt{3}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=0$
$\Rightarrow x^{6}+1=0$
$\Rightarrow x^{6}=-1$
Now,
$x^{18}+x^{12}+x^{6}+1$
$=(-1)^{3}+(-1)^{2}+(-1)+1=0$
37. (B) If the area of rectangle be $\left(x^{2}+5 x+6\right)$
$=(x+2)(x+3)$
Then,
perimeter of the rectangle
$=2[x+2+x+3]=4 x+10 \mathrm{~cm}$

Campus

KD Campus Pvt. Ltd

38. (C) A.T.Q,

Area of $\triangle \mathrm{ABC}$
$=\operatorname{ar}(\Delta \mathrm{OBC})+\operatorname{ar}(\Delta \mathrm{AOB})$
$=\frac{1}{2} r^{2} \sin \theta+\frac{1}{2} r^{2} \sin (180-\theta)$
$=r^{2} \sin \theta$
$=r^{2} \sin 30^{\circ}=\frac{r^{2}}{2}$ sq. units
39. (B) Let the sides of the triangle be $12 x, 35 x$, and $37 x$,
It is an right angle triangle
Area $=\frac{1}{2} \times 12 x \times 35 x=840$
$\Rightarrow x=2$
Now,
Perimeter $=(12+35+37) \times 2=168 \mathrm{~m}$ and, side of equilateral triangle
$=\frac{168}{3}=56 \mathrm{~m}$
\therefore Required area $=\frac{\sqrt{3}}{4} \times 56 \times 56$
$=784 \sqrt{3} \mathrm{~m}^{2}$
40. (D) Let the numbers be $3 x, 5 x$ and $7 x$.
A.T.Q,
$=(3 x)^{2}+(5 x)^{2}+(7 x)^{2}=6723$
$\Rightarrow x^{2}[9+25+49]=6723$
$\Rightarrow x^{2} \times 83=6723$
$\Rightarrow x^{2}=81 \Rightarrow x=9$
Now, difference between first number and third number
$=7 x-3 x=4 x=4 \times 9=36$
41. (C) Let the number be a and b

Then,
$\Rightarrow \frac{a+b}{2 \sqrt{a b}}=\frac{3}{1}$
Applying componendo and dividedno method,
$\frac{a+b+2 \sqrt{a b}}{a+b-2 \sqrt{a b}}=\frac{3+1}{3-1}$
$\Rightarrow\left(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right)^{2}=2$
$\Rightarrow \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{2}}{1}$
Again, applying compenendo and divideno method
$\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{2}+1}{\sqrt{2}-1}$
Squaring both sides, we get
$\frac{a}{b}=\frac{2+1+2 \sqrt{2}}{2+1-2 \sqrt{2}}$
$\Rightarrow \frac{a}{b}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Required ratio $=3+2 \sqrt{2}: 3-2 \sqrt{2}$
42. (D) A.T.Q,
$\frac{2 x-4000}{5 x-24000}=\frac{3}{4}$
$\Rightarrow 8 x-16000=15 x-72000$
$\Rightarrow 7 x=56000$
$\Rightarrow x=8000$
\therefore Different between income of A and B
$=5 x-2 x=3 x=3 \times 8000=₹ 24000$
43. (C) A.T.Q,
$p_{1}\left[1+\frac{4 \times 15}{100}\right]=p_{2}\left[1+\frac{10 \times 10}{100}\right]$
$=p_{3}\left[1+\frac{15 \times 12}{100}\right]$
$\Rightarrow p_{1} \times 4=p_{2} \times 5=p_{3} \times 7$
Then, the ratio of p_{1}, p_{2} and p_{3}
$=5 \times 7: 4 \times 7: 4 \times 5$
$=35: 28: 20$
44. (A) A.T.Q,
45% marks $=$ pass marks +80
and, 25% marks = pass marks -40
Now, difference of marks
$(45-25) \%=80+40$
$\Rightarrow 20 \%=120$
and, maximum marks $=\frac{120}{20} \times 100=600$
Then, minimum marks required to pass
the exam $=600 \times \frac{25}{100}+40=190$
45. (B) A.T.Q,

$$
\begin{aligned}
& \frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1} \\
& \left.\left.=\frac{[\sin \rho-(\cos -1)]\left[\begin{array}{ll}
\sin & -(\varphi \operatorname{sos} \\
\sin & -1
\end{array}\right)}{[\sin \rho+(\cos -1}-1\right]\left[\begin{array}{lll}
\sin & -(\varphi \operatorname{sos} & -1
\end{array}\right)\right]
\end{aligned}
$$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=\frac{\sin ^{2} \theta+(\cos \theta-1)^{2}-2 \sin \theta(\cos \theta-1)}{\sin ^{2} \theta-(\cos \theta-1)^{2}}$
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta+1-2 \cos \theta-2 \sin \theta(\cos \theta-1)}{\sin ^{2} \theta-\cos ^{2} \theta-1+2 \cos \theta}$
$=\frac{2(1-\cos \theta)+2 \sin \theta(1-\cos \theta)}{2 \cos \theta(1-\cos \theta)}$
$=\frac{1+\sin \theta}{\cos \theta}=\sec \theta+\tan \theta$
46. (D) A.T.Q,

Total amount paid under installment
$=48000-12000=₹ 36000$
We know that,
Amount $=x \times$ each instalment + $\frac{\text { each instalment } \times \text { rate }(1+2+\ldots(\mathrm{n}-1))}{100}$
$\Rightarrow 36000=4500 \times 5+\frac{4500 \times r[1+2+3+4]}{100}$
$\Rightarrow 36000=22500+450 r$
$\Rightarrow r=30 \%$
\therefore rate of interest $=30 \%$
47. (B) Required percentage
$=10+10+\frac{10 \times 10}{100}=21 \%$
48. (A) Let the time taken to cover the distance be t hours.
A.T.Q,
$80 t-60 t=72$
$\Rightarrow 20 \mathrm{t}=72$
$\Rightarrow t=3.6$ hours
Then, distance between P and Q
$=(80+60) \times \mathrm{t}$
$=140 \times 3.6=504 \mathrm{~km}$
49. (C)

\therefore Required quantity $=40$ litre
50. (B) A.T.Q,

A	B	C
1000	920	920
1000	1000	850
1000×1000	$: 920 \times 1000:$	920×850
Now,		

Distance travelled by C when A travels
$1000 \mathrm{~m}=\frac{920 \times 850}{1000}=782 \mathrm{~m}$
Then, distance by which A and beat C
$=1000-782=218 \mathrm{~m}$
51. (A)

	Inital	Final
Radius	5	4
Radius	5	4
length	$\mathbf{1 6}$	$\mathbf{2 5}$
Volume	16×25	16×25

Then,
Percentage increase in length
$=\frac{25-16}{16} \times 100=56.25 \%$
52. (A) We know that, surface area of a regalar tetrahedron $\left(\sqrt{3} a^{2}\right)=144 \sqrt{3} \mathrm{~cm}^{2}$
$\Rightarrow a=12 \mathrm{~cm}$
Now,
volume of tetrahedraon $=\frac{a^{3}}{6 \sqrt{2}}$
$=\frac{12^{3}}{6 \sqrt{2}}=144 \sqrt{2} \mathrm{~cm}^{3}$
53. (C) A.T.Q
$\sqrt{\frac{x}{\mathrm{y}}}=\frac{24}{5}+\sqrt{\frac{y}{x}} \Rightarrow \sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}=\frac{24}{5}$
$=\frac{x-y}{\sqrt{x y}}=\frac{24}{5}$
Squaring both sides, we get
$\frac{(x-y)^{2}}{x y}=\frac{576}{25}$
$\Rightarrow \frac{(x+y)^{2}-4 x y}{x y}=\frac{576}{25}$
$\Rightarrow \frac{26^{2}}{x y}=\frac{576}{25}+4$
$\Rightarrow x y=25$
54. (B) A.T.Q
$\frac{\sin \rho \sin \beta}{1+\cos \theta+\cos 2 \rho}$
$=\frac{\sin \rho 3 \operatorname{sip} \mathrm{cqs}}{1+\cos \theta+2 \cos ^{2} \rho-1}=\tan \theta$
55. (D) A.T.O
$8-4 \sin x-\cos ^{2} x$
$=\sin ^{2} x-4 \sin x+7$
$=(\sin x-2)^{2}+3$
The function will be maximum at $\sin x$
$=-1$
\therefore Maximum value
$=(-1-2)^{2}+3=9+3=12$

Campus

KD Campus Pvt. Ltd

56. (B) A.T.Q,

$\angle \mathrm{DAP}=\frac{1}{2} \angle \mathrm{BAC}=30^{\circ}$
Then,
$\mathrm{AD}=\mathrm{DP} \cot 30^{\circ}=1 \times \sqrt{3}=\sqrt{3}$ units
$\mathrm{DE}=\mathrm{PQ}=2$ units
and,
$\mathrm{BE}=\mathrm{AD}=\sqrt{3}$ units
Now, Side of equilateral traingle
$=2+\sqrt{3}+\sqrt{3}=2(1+\sqrt{3})$ units
\therefore Area of the triangle $=\frac{\sqrt{3}}{4}(\text { side })^{2}$
$=\frac{\sqrt{3}}{4} \times 4 \times(\sqrt{3}+1)^{2}=(6+4 \sqrt{3})$ unit 2
57. (D) A.T.Q

Area of triangle
$=\frac{1}{2} \times 2 x \times 2 x \times \sin 120^{\circ}$
$=\sqrt{3} x^{2}$
(i)

We know that
Area of triangle $=r \times s$
$\left.=\sqrt{3} \times \frac{2 x+2 x+2 \sqrt{3} x}{2} \right\rvert\,$
$=\sqrt{3}[2+\sqrt{3}] x$
From equation (i) and (ii), we get
$\sqrt{3} x^{2}=\sqrt{3}[2+\sqrt{3}] x$
$\Rightarrow x=2+\sqrt{3}$
\therefore Area of triangle $=\sqrt{3} x^{2}$
$=\sqrt{3}[2+\sqrt{3}]^{2}=\sqrt{3}[7+4 \sqrt{3}]$
$=12+7 \sqrt{3}$ unit 2
then,
$\frac{1}{x}=2-\sqrt{3}$ \qquad
$\stackrel{x}{\text { Adding equation (i) and (ii), we get }}$
$x+\frac{1}{x}=4$
$\Rightarrow x^{2}+1=4 x$
multiply x both sides
Addding equation (i) and (ii) we get
$x^{2}+\frac{1}{x^{2}}+x^{3}+\frac{1}{x^{3}}=66$
$\Rightarrow\left(x^{2}+\frac{1}{x^{3}}\right)+\left(x^{3}+\frac{1}{x^{2}}\right)=66$
$\Rightarrow 34+x^{3}+\frac{1}{x^{2}}=66$
$\Rightarrow x^{3}+\frac{1}{x^{2}}=32$
60. (A) A.T.O
$x^{2}-3=0$
$\Rightarrow x^{2}=3 \Rightarrow x=\sqrt{3}$
Now,
$\Rightarrow(x+2)^{2}+\frac{1}{(x+2)^{2}}$
$\Rightarrow(\sqrt{3}+2)^{2}+\frac{1}{(\sqrt{3}+2)^{2}}$
$=7+4 \sqrt{3}+\frac{1}{7+4 \sqrt{3}}$
$=7+4 \sqrt{3}+7-4 \sqrt{3}=14$
61. (A) A.T.Q,
$x=2+\sqrt{3}$

Campus

KD Campus Pvt. Ltd

$x^{3}+x=4 x^{2}$
........................(iv)
On subtracting the twice of equation (iii)
from equation (iv), we get
$x^{3}+x-2 x^{2}-2=4 x^{2}-8 x$
$=x^{3}-6 x^{2}+9 x-2=0$
Then,
$x^{3}-6 x^{2}+9 x+3=5$
62. (C) A.T.Q,

Ratio of sides $=\frac{1}{3}: \frac{1}{5}: \frac{1}{7}$
$=\frac{1}{3} \times 105: \frac{1}{5} \times 105: \frac{1}{7} \times 105$
= $35: 21: 15$
Now, $(35+21+15)$ units $=213 \mathrm{~cm}$
$\Rightarrow 71$ units $=213 \mathrm{~cm}$
$\Rightarrow 1$ units $=3 \mathrm{~cm}$
\therefore Lenth of the smallest side
$=15 \times 3=45 \mathrm{~cm}$
63. (C) In triangle ABC,

$|\mathrm{AB}-\mathrm{AC}|<|\mathrm{BC}|<|\mathrm{AB}+\mathrm{AC}|$
$=170<\mathrm{BC}<1480$
Then, the number of possible number of triangles $=1480-170-1=1309$
64. (B) Let the number of sides be n.
A.T.Q
$\frac{(n-2) 180^{\circ}}{n}-\frac{360^{\circ}}{n}=150$
$\Rightarrow 180 n-360^{\circ}-360^{\circ}=150 n$
$\Rightarrow 30 n=720$
$\Rightarrow n=24$
Hence, required number of sides $=24$.
65. (A) Let the number of reuolutions made by wheel during the jonrenay be n.

Then, $\mathrm{n} \times 2 \pi \mathrm{r}=\frac{900000}{60} \times 44$
$\Rightarrow n \times \frac{22}{7} \times 28=\frac{900000 \times 44}{60}$
$\Rightarrow n=\frac{900000 \times 44 \times 7}{60 \times 22 \times 28}$
$\Rightarrow n=7500$
66. (D)

Circumradius of $\triangle \mathrm{ABC}=\frac{\mathrm{abc}}{4 \Delta}$
Where,

$$
\begin{aligned}
& \mathrm{b}=\mathrm{AC}=9 \mathrm{~cm} \\
& \mathrm{c}=\mathrm{AB}=12 \mathrm{~cm} \\
& \mathrm{a}=\mathrm{BC}
\end{aligned}
$$

and
$\mathrm{AD}=7.2 \mathrm{~cm}$
Now,
Circumradius (R)
$=\frac{\mathrm{BC} \times 9 \times 12}{4 \times \frac{1}{2} \propto \mathrm{BC} \times \mathrm{AD}}=\frac{9 \times 12}{4 \times \frac{1}{2} \propto 7.2}=7.5 \mathrm{~cm}$
Then, $\mathrm{AE}=2 \times 7.5=15 \mathrm{~cm}$
67. (D) A.T.Q,
$\sin (\alpha-\beta)=\frac{4}{5} \Rightarrow \tan (\alpha-\beta)=\frac{4}{3}$
and, $\cos (\alpha+\beta)=\frac{24}{25} \Rightarrow \tan (\alpha+\beta)=\frac{7}{24}$
Now, $\tan 2 \alpha=\frac{\tan (\alpha-\beta)+\tan (\alpha+\beta)}{1-\tan (\alpha+\beta) \cdot \tan (\alpha-\beta)}$
$=\frac{\frac{4}{3}+\frac{7}{24}}{1-\frac{4}{3} \times \frac{7}{24}}=\frac{117}{44}$
68. (D) In a parallelogram,

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2} \\
& \Rightarrow 2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}\right)=\mathrm{AC}^{2}+\mathrm{BD}^{2} \\
& \Rightarrow 2\left[7^{2}+9^{2}\right]=8^{2}+\mathrm{BD}^{2} \\
& \Rightarrow \mathrm{BD}^{2}=196 \\
& \Rightarrow \mathrm{BD}=14 \mathrm{~cm}
\end{aligned}
$$

69. (A) A.T.Q,

Inradius $(\mathrm{r})=\frac{a}{2 \sqrt{3}}=16 \sqrt{3}$
$\Rightarrow a=96 \mathrm{~cm}$
\therefore Perimeter of triangle $=96 \times 3=288 \mathrm{~cm}$

Campus

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
70. (B) A.T.Q,

$\mathrm{BD}=(\sqrt{3}-1)$ unit $=60 \mathrm{~m}$
\therefore height of the tower
$=\mathrm{AC}=1$ unit $=\frac{60}{\sqrt{3-1}} \mathrm{~m}$
$=30(\sqrt{3}+1) \mathrm{m}$
71. (C) Let the height of the embankment be h. A.T.Q,

Volume of soil of embankment
= volume of soil taken out from well
$\Rightarrow \pi\left(\mathrm{R}^{2}-r^{2}\right) h=\pi \mathrm{r}^{2} \mathrm{H}$
$\Rightarrow \pi\left(21^{2}-14^{2}\right) \times h=\pi \times 14 \times 14 \times 28$
$\Rightarrow h \times 7 \times 35=14 \times 14 \times 28$
$\Rightarrow h=\frac{14 \times 14 \times 28}{7 \times 35}=22.4 \mathrm{~m}$
72. (A) During the reflection about y-axis, \sin of x-coordinate gets change
\therefore reflection of $(2,5)=(-2,5)$
73. (A)

Volume of the box
$=(12-4) \times(8-4) \times 2=64 \mathrm{~cm}^{3}$
74. (C) Volume of the prism
$=$ area of the base \times height
$=\left(\frac{\sqrt{3}}{4} \times 9 \times 9\right) \times 6 \times 12$
$=1458 \sqrt{3} \mathrm{~cm}^{3}$
75. (B)

A.T.Q,
$\mathrm{AB}=\sqrt{3}$ units $=30 \mathrm{~m}$
$\Rightarrow 1$ unit $=10 \sqrt{3} \mathrm{~m}$
Then, the total height of the tree
$=\mathrm{AC}+\mathrm{BC}=(2+1)=3$ units
$=3 \times 10 \sqrt{3}=30 \sqrt{3} \mathrm{~m}$
76. (B) A.T.Q,
$\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}=78$
$\Rightarrow \frac{\left(x+\sqrt{x^{2}-1}\right)^{2}+\left(x-\sqrt{x^{2}-1}\right)^{2}}{x^{2}-\left(x^{2}-1\right)}=78$
$\Rightarrow 2\left(x^{2}+x^{2}-1\right)=78$
$\Rightarrow 2 x^{2}-1=39$
$\Rightarrow 2 x^{2}=40$
$\Rightarrow x=2 \sqrt{5}$
77. (B) Let the time taken for the rise in the water level $=t \mathrm{hr}$
A.T.Q,
$\pi \mathrm{r}^{2} v \times \mathrm{t}=l \times b \times h$
$\Rightarrow \frac{22}{7} \times \frac{14}{100} \times \frac{14}{100} \times 6000 \times \mathrm{t}=55 \times 42 \times \frac{12}{100}$
On solving, we get
$t=0.75$ hours
\therefore Required time $=0.75 \times 60=45 \mathrm{~min}$.
78. (D) Put $x=45^{\circ}$
$3\left(\sin 45^{\circ}-\cos 45^{\circ}\right)^{4}+6\left(\sin 45^{\circ}+\cos 45^{\circ}\right)^{2}+$
$4\left(\sin ^{6} 45^{\circ}+\cos ^{6} 45^{\circ}\right)$
$=0+6(\sqrt{2})^{2}+4\left(\frac{1}{8}+\frac{1}{8}\right)=12+1=13$

Campus

KD Campus Pvt. Ltd
79. (C)

Area of the intersecting region
$=\left[2 \times \frac{\pi r^{2} \theta}{360^{\circ}}-\frac{\sqrt{3}}{4} r^{2}\right] \times 2$
$=\left[\frac{2 \times \pi \times 6 \times 6 \times 60^{\circ}}{360^{\circ}}-\frac{\sqrt{3}}{4} \times 6 \times 6\right] \times 2$
$=24 \pi-18 \sqrt{3} \mathrm{~cm}^{2}$
80. (B) A.T.Q,
co-ordinates of $\mathrm{P}(-1,5)$
$=\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right]$
$=\left[\frac{3 a+8}{7}, \frac{3 b+8}{7}\right]$
Now, $\frac{3 a+8}{7}=-1$
$\Rightarrow a=-5$
and
$3 b+8=35$
$\Rightarrow b=9$
$\therefore(a, b)=(-5,9)$
81. (C) A.T.Q,
$\tan (\alpha+\beta)=1$
$\Rightarrow \alpha+\beta=45^{\circ}$
and, $\sqrt{3} \sec (\alpha-\beta)=2$
$\Rightarrow \sec (\alpha-\beta)=\frac{2}{\sqrt{3}}$
$\Rightarrow \alpha-\beta=30^{\circ}$
From equation (i) and (ii), we get
$2 \alpha=45^{\circ}+30^{\circ}$
Now,
$\tan 2 \alpha=\tan \left(45^{\circ}+30^{\circ}\right)$
$=\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \tan 30^{\circ}}$
$=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}=2+\sqrt{3}$
82. (B) A.T.Q,

$\mathrm{AB}^{2}+\mathrm{BC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$
$\Rightarrow 4^{2}+6^{2}=2\left(4^{2}+\mathrm{BD}^{2}\right)$
$\Rightarrow 52=2\left(16+\mathrm{BD}^{2}\right)$
$\Rightarrow \mathrm{BD}^{2}=10$
\therefore Area of the required square $=10 \mathrm{~cm}^{2}$
83. (D) A.T.Q,
$h=2 r$
Now, volume of cylinder $=\pi r^{2} h$
$=\pi \times r^{2} \times 2 \mathrm{r}=2 \pi \mathrm{r}^{3}$
and, volume of sphere $=\frac{4}{3} \pi r^{3}$
Then, required fraction $=\frac{\frac{4}{3} \pi r^{3}}{2 \pi r^{3}}=\frac{2}{3}$
84. (C) A.T.Q,
$(6.3)^{a}=10^{4}$
$\Rightarrow 6.3=10^{\frac{4}{a}}$
and, $(0.063)^{b}=10^{4}$
$\Rightarrow 0.063=10^{\frac{4}{b}}$ \qquad
Divide equation (i) by (ii), we get
$\frac{6.3}{0.063}=10^{4\left(\frac{1}{a}-\frac{1}{b}\right)}$
$\Rightarrow 10^{2}=10^{4\left(\frac{1}{a}-\frac{1}{b}\right)}$
$\Rightarrow \frac{1}{a}-\frac{1}{b}=\frac{1}{2}$
85. (B) Difference between 48 and 33, 60 and 45 and 84 and 69 is same. Which is equal to 15 .
Now,
required number $=\operatorname{LCM}$ of $(48,60$ and 84-15)
= $1680-15=1665$
Then, sum of the digits $=1+6+6+5=18$
86. (C) A.T.Q,

KD Campus Pvt. Ltd

$\mathrm{AO}: \mathrm{OC}=\mathrm{BO}: \mathrm{OD}$
$\therefore \mathrm{ABCD}$ is a trapezium
Now, area of trapezium $=\frac{1}{2}(\mathrm{AB}+\mathrm{CD}) \times \mathrm{AE}$
$\Rightarrow \frac{1}{2} \times(15+20) \times \mathrm{AE}=350$
$\Rightarrow \mathrm{AE}=20 \mathrm{~cm}$
Then, $\mathrm{BE}=\sqrt{\mathrm{AB}^{2}+\mathrm{AE}^{2}}$
$=\sqrt{15^{2}+20^{2}}=25 \mathrm{~cm}$
87. (B) A.T.Q,
$3 x+4 y=12$
$\Rightarrow \frac{x}{4}+\frac{y}{3}=1$
Now, coordinates of the triangle are $(0$,
$0)(4,0)$ and $(0,3)$
Then, the area of triangle $=\frac{1}{2} \times 4 \times 3$
$=6$ sq. units
88. (A) Put $P=2, q=2$ and $r=-1$, we get
$\frac{1}{p^{2}-q r}+\frac{1}{p^{2}-p r}+\frac{1}{r^{2}-p q}$
$=\frac{1}{(2)^{2}-2(-1)}+\frac{1}{2^{2}-2(-1)}+\frac{1}{(-1)^{2}-2 \times 2}$
$=\frac{1}{6}+\frac{1}{6}-\frac{1}{3}=0$
89. (B) A.T.Q,

Lateral surface area of the prism
$=$ perimeter of base \times height
$\Rightarrow 3 a \times h=96$
$\Rightarrow a h=32$
and, volume of the prism
$=$ area of the base \times height
$\Rightarrow \frac{\sqrt{3}}{4} a^{2} \times h=48 \sqrt{3}$
$\Rightarrow a^{2} h=192$ \qquad
Divide equation (ii) by (i), we get
$\frac{a^{2} h}{a h}=\frac{192}{32}$
$\Rightarrow a=6 \mathrm{~cm}$
90. (B) A.T.Q,
$(p+q+r)^{2}=p^{2}+q^{2}+r^{2}+2 p q+2 q r+2 p r$
$\Rightarrow(p+q+r)^{2}=(p+q+r)^{2}+2(p q+q r+p r)$
$\Rightarrow \mathrm{pq}+\mathrm{qr}+\mathrm{pr}=0$
Divide both side by pqr, we get
$\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=0$
91. (C) We know that
radius $(\mathrm{r})=\frac{\text { length of } \operatorname{arc}(l)}{\text { angle in radian }(\theta)}$
$\Rightarrow r=\frac{55}{25^{\circ} \times\left(\frac{\pi}{180}\right)}$
$\Rightarrow r=\frac{55 \times 180 \times 7}{25 \times 22}$
$\Rightarrow r=126 \mathrm{~m}$
92. (B)

Let the coordinates of D be (x, y).
Now,
O is the mid point of $A C$
Then, coordinates of $\mathrm{O}=\left(\frac{1+3}{2}, \frac{0+2}{2}\right)$

$$
=(2,1)
$$

Since, O is also the mid point of BD then,

$$
(2,1)=\left(\frac{x+2}{2}, \frac{y+3}{2}\right)
$$

On solving, we get
$x=2$ and $y=-1$
\therefore coordinates of $\mathrm{D}=(2,-1)$
93. (B) Let the line $y=x-\sqrt{2}$ intersects the axis at A and B .

Then, coordinates of A and B are $(0,-\sqrt{2})$ and ($\sqrt{2}, 0$)
Here, we get
$\angle \mathrm{OAB}=45^{\circ}$ and $\mathrm{OA}=\sqrt{2}$ units
Now, $\sin 45^{\circ}=\frac{\mathrm{GC}}{\mathrm{AG}} \Rightarrow \frac{1}{\sqrt{2}}=\frac{r}{r+\sqrt{2}}$
$\Rightarrow r=\frac{\sqrt{2}}{\sqrt{2}-1}=2+\sqrt{2}$ units

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
94. (D) A.T.Q,
$1 \mathrm{~b}=48$ \qquad
$\mathrm{bh}=80$ \qquad
and, $\mathrm{hl}=60$
Multiplying equation (i), (ii) and (iii), we get
$l^{2} b^{2} h^{2}=48 \times 80 \times 60$
$\Rightarrow l \mathrm{bh}=480$
\therefore Volume of the cuboid $=480 \mathrm{~cm}^{3}$
95. (A) A.T.Q,
$\cos A+\cos B+\cos C=\sqrt{3} \sin \frac{\pi}{3}$
$\Rightarrow \cos A+\cos B+\cos C=\sqrt{3} \times \frac{\sqrt{3}}{2}=\frac{3}{2}$
It is satisfied at $A=B=C=60^{\circ}$
Now, $\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}=\left(\sin 30^{\circ}\right)^{3}$
$=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
96. (B) A.T.Q,

In 2002, the profit to company A was 50\% Then,
$\frac{\text { Income }}{\text { Expenditure }}-1=\frac{50}{100}$
$\Rightarrow \frac{\text { Income }}{\text { Expenditure }}=\frac{3}{2}$
\Rightarrow Income of $\mathrm{A}=\frac{3}{2} \times 15 \mathrm{lac}=₹ 22.5 \mathrm{lac}$
Now, the profit of company B was 35%
Then,
$\frac{\text { Income }}{\text { Expenditure }}-1=\frac{35}{100}$
$\Rightarrow \frac{\text { Income }}{\text { Expenditure }}=\frac{27}{20}$
\Rightarrow Income of $\mathrm{B}=\frac{27}{20} \times 20=₹ 27 \mathrm{lac}$
\therefore Required difference
$=27-22.5=₹ 4.5$ lac
97. (D) A.T.Q,
$\frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{E}_{\mathrm{A}}}=\frac{40}{100}+1=\frac{140}{100}$
and,
$\frac{\mathrm{I}_{\mathrm{B}}}{\mathrm{E}_{\mathrm{B}}}=\frac{30}{100}+1=\frac{130}{100}$
Dividing equation (i) and (ii), we get
$\frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{E}_{\mathrm{A}}} \times \frac{\mathrm{E}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{B}}}=\frac{14}{13}$
$\Rightarrow \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=\frac{14}{13} \times\left(\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{E}_{\mathrm{B}}}\right)$
$\Rightarrow \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=\frac{14}{13} \times \frac{3}{4}=\frac{21}{26}$
\therefore Required ratio $=21: 26$
98. (C) A.T.Q,
$\frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{E}_{\mathrm{A}}}=\frac{45}{100}+1=\frac{145}{100}$
and,
$\frac{\mathrm{I}_{\mathrm{B}}}{\mathrm{E}_{\mathrm{B}}}=\frac{50}{100}+1=\frac{150}{100}$
Then,
$\Rightarrow \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=\frac{145}{150}=\frac{29}{30}$
Now, $(29+30)$ units $=₹ 5.9$ lac
Then, income of $\mathrm{A}=29$ units $=₹ 2.9$ lac and, income of $\mathrm{B}=30$ units $=₹ 3 \mathrm{lac}$
On putting the value of equation (i) and equation (ii), we get
$\mathrm{E}_{\mathrm{A}}=₹ 2 \mathrm{lac}$ and $\mathrm{E}_{\mathrm{B}}=₹ 2 \mathrm{lac}$
Total expenditure of company A and B
$=\mathrm{E}_{\mathrm{A}}+\mathrm{E}_{\mathrm{B}}=2+2=₹ 4 \mathrm{lac}$
99. (B) A.T.Q,

In 2003,
$\frac{\mathrm{I}_{1}}{\mathrm{E}_{1}}=\frac{50}{100}+1=\frac{3}{2}$
and, In 2005,
$\frac{\mathrm{I}_{2}}{\mathrm{E}_{2}}=\frac{35}{100}+1=\frac{27}{20}$
On dividing equation (i) and (ii), we get
$\frac{\frac{\mathrm{I}_{1}}{\mathrm{E}_{1}}}{\frac{\mathrm{I}_{2}}{\mathrm{E}_{2}}}=\frac{\frac{3}{2}}{\frac{27}{20}}$
$\Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} \times \frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}=\frac{20 \times 3}{27 \times 2}$
$\Rightarrow \frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}=\frac{20 \times 3}{2 \times 27} \times \frac{2}{3}=20: 27$
Then, required ratio $\left(\mathrm{E}_{1}: \mathrm{E}_{2}\right)=27: 20$
100. (B) A.T.Q,

Profit of company A in 2000 was 40\% Then,
$\Rightarrow \frac{\text { Income }}{\text { Expenditure }}-1=\frac{40}{100}$
\Rightarrow Expenditure $=\frac{5}{7} \times 28=20$ ₹lac
\therefore Required expenditure $=$ ₹20 lac

Campus

KD Campus Pvt. Ltd

SSC TIER II (MATHS) MOCK TEST - 41 (ANSWER KEY)

1. (C)	11. (C)	21. (B)	31. (C)	41. (C)	51. (A)	61. (A)	71. (C)	81. (C)	91. (C)
2. (C)	12. (C)	22. (C)	32. (D)	42. (D)	52. (A)	62. (C)	72. (A)	82. (B)	92. (B)
3. (C)	13. (D)	23. (D)	33. (B)	43. (C)	53. (C)	63. (C)	73. (A)	83. (D)	93. (B)
4. (C)	14. (C)	24. (D)	34. (D)	44. (A)	54. (B)	64. (B)	74. (C)	84. (C)	94. (D)
5. (D)	15. (B)	25. (B)	35. (A)	45. (B)	55. (D)	65. (A)	75. (B)	85. (B)	95. (A)
6. (A)	16. (B)	26. (B)	36. (A)	46. (D)	56. (B)	66. (D)	76. (B)	86. (C)	96. (B)
7. (D)	17. (D)	27. (C)	37. (B)	47. (B)	57. (D)	67. (D)	77. (B)	87. (B)	97. (D)
8. (B)	18. (B)	28. (A)	38. (C)	48. (A)	58. (B)	68. (D)	78. (D)	88. (A)	98. (C)
9. (C)	19. (A)	29. (C)	39. (B)	49. (C)	59. (D)	69. (A)	79. (C)	89. (B)	99. (B)
10. (D)	20. (A)	30. (A)	40. (D)	50. (B)	60. (A)	70. (B)	80. (B)	90. (B)	100.(B)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

