2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
SSC TIER II (MATHS) MOCK TEST - 36 (SOLUTION)

1. (C) $\frac{6}{7}=.85, \frac{7}{8}=.87$
$\frac{4}{5}=.8$ and $\frac{9}{11}=.81$
$\therefore \frac{4}{5}$ is the smallest fraction.
2. (A) Required remainder will be the remainder when 113 is divided by 37 .
Now,
$113=37 \times 3+2$
\therefore Required remainder $=2$
3. (C) Let the three numbers be $x, x+10$ and $x+20$
A.T.Q,
$x+x+10+x+20=225$
$\Rightarrow 3 x+30=225$
$\Rightarrow 3 x=195 \Rightarrow x=65$
\therefore Largest number
$=x+20=65+20=85$
4. (B) Let the total number of friends be x.

Then,
$\frac{180}{x-3}-\frac{180}{x}=5$
$\Rightarrow \frac{1}{x-3}-\frac{1}{x}=\frac{1}{36}$
On solving, we get $x=12$
Then, numbers of friends who attended the picnic $=x-3=12-3=9$
5. (C) Let the two numbers be x and y. Then,
$x \times y=12150$
and, $\frac{x}{y}=\frac{3}{2}$
Put $x=3 \mathrm{a}$ and $y=2 \mathrm{a}$ in equation (i)
$\Rightarrow 3 a \times 2 a=12150$
$\Rightarrow a^{2}=2025$
$\Rightarrow a=45$
Now, Difference between two numbers
$=x-y=3 a-2 a=a=45$
6. (B) Let the numbers be x and y.
A.T.Q,
$x^{2}-y^{2}=36$
$\Rightarrow(x+y)(x-y)=36$
Here, $36=1 \times 36,2 \times 18,3 \times 12,4 \times 9$ and 6×6
Only pair $(2,18)$ gives the natural values of x and y.
\therefore Number of possible pairs $=1$
7. (D) A.T.Q,
$57 \times 63+171 \times 27+114 \times 28$
$=57[63+3 \times 27+2 \times 28]$
$=57[63+81+56]$
$=57 \times 200=11400$
8. (C) A.T.Q,
$3^{x}-3^{x-1}=1458$
$\Rightarrow 3^{x}-\frac{3^{x}}{3}=1458$
$\Rightarrow 3^{x}\left(1-\frac{1}{3}\right)=1458$
$\Rightarrow 3^{x} \times \frac{2}{3}=1458$
$\Rightarrow 3^{x}=2187$
$\Rightarrow 3^{x}=3^{7}$
$\Rightarrow x=7$
9. (B) A.T.Q,
$\left.\begin{array}{rl}\mathrm{A}+\mathrm{B} & \rightarrow \\ \mathrm{C} & 3 \\ \mathrm{C} & 12\end{array}\right) 12\left(\begin{array}{l}4 \\ 1\end{array}\right.$
Now,
Capacity of A = Capacity of B and C
On comparing, we get
Capacity of $\mathrm{A}=2.5$
and, capacity of $B=1.5$
Then, time taken by B to do the work alone $=\frac{12}{1.5}=8$ hours
10. (C) A.T.Q,
$\left.\begin{array}{l}A \rightarrow 15 \\ B \rightarrow 20 \\ C \rightarrow-30\end{array}\right) 60\left(\begin{array}{c}4 \\ 3 \\ -2\end{array}\right.$
Work done by A, B and C in 3 hours
$=4+3-2=5$ units
Now, time taken to fill unit water 55
$=3 \times 11=33$ hours
Next 4 units will be filled by A in one hour
and remaining 1 unit will be filled by B
in $\frac{1}{3}$ hours.
\therefore Total time taken
$=33+1+\frac{1}{3}=34 \frac{1}{3}$ hours
11. (B) A.T.Q,
$\left.\begin{array}{l}A \longrightarrow 10 \\ B \longrightarrow 15 \\ C \longrightarrow 20\end{array}\right\rangle 60\left\langle\begin{array}{l}6 \\ 4 \\ 3\end{array}\right.$

Work done by A and C in 2 days
$=(6+3) \times 2=18$ units
Now, total work $=60+18=78$ units
Then, total time taken to finish the work
$=\frac{78}{6+4+3}=6$ days.
12. (C) Let the total profit be $2 x$.

Now the amount which B gets
as allowance $=12 \times 150=₹ 1800$
Now,
The profit shared between A and B
$=\frac{2 x-1800}{2}=x-900$
Now, the amount which B pays to A
$=50,000 \times \frac{10}{100}=₹ 5000$
A.T.Q,
$\frac{x-900+5000}{x-900-5000+1800}=\frac{3}{2}$
$\Rightarrow \frac{x+4100}{x-4100}=\frac{3}{2}$
$\Rightarrow 2 x+2 \times 4100=3 x-3 \times 4100$
$\Rightarrow x=5 \times 4100$
$\Rightarrow x=20500$
Then,
Total profit
$=2 x=2 \times 20500=₹ 41000$
13. (B) Let the height of the shorter building be $x \mathrm{~m}$.

Now, In $\triangle \mathrm{ABC}$,
$\tan \theta=\frac{x}{8}$
and,
In $\triangle C D E$
$\tan (90-\theta)=\frac{2 x}{8}$
$\Rightarrow \cot =\frac{2 x}{8}$
Multiply equation (i) and equation (ii)
$\tan \theta \times \cot \theta=\frac{x}{8} \times \frac{2 x}{8}$
$\Rightarrow \frac{x^{2}}{32}=1 \Rightarrow x=4 \sqrt{2} \mathrm{~m}$
\therefore Height of the shorter building $=4 \sqrt{2} \mathrm{~m}$
14. (B) Let the radius of the third circle by r .

Then,
In $\triangle \mathrm{ABC}$
$(14+r)^{2}+(15+r)^{2}=29^{2}$
$\Rightarrow 196+\mathrm{r}^{2}+28 \mathrm{r}+225+\mathrm{r}^{2}+30 \mathrm{r}=841$
$\Rightarrow 2 \mathrm{r}^{2}+58 \mathrm{r}=420$
$\Rightarrow r^{2}+29 r-210=0$
On solving, we get
$\mathrm{r}=6$
\therefore Radius of the third circle $=6 \mathrm{~cm}$
15. (C) A.T.Q,

$$
\left.\begin{array}{llll}
\text { Old Ratio } & 2 & 3 & 5 \\
\text { New Ratio } & 4 & 5 & 7
\end{array}\right) 2
$$

Now, 2 units = 15
Then, total number of students before the increment of students
$=(2+3+5)$ units
$=10$ units $=10 \times \frac{15}{2}=75$
16. (C) Let the original speed of the cyclist be $x \mathrm{~km} / \mathrm{hr}$
Then,
$\frac{18}{x-4}-\frac{18}{x}=\frac{45}{60}$
$\Rightarrow \frac{1}{x-4}-\frac{1}{x}=\frac{1}{24}$
$\Rightarrow x(x-4)=96$
On solving, we get
$x=12 \mathrm{~km} / \mathrm{hr}$.
17. (B) A.T.Q,

Speed of train is 20% more than that of car.
Now,
Let speed of train be $6 x$ and that of car be $5 x$.
Then,
$\frac{240}{5 x}-\frac{240}{6 x}=\frac{40}{60}$
On solving, we get
$x=12$
Then,
Speed of train $=6 x=6 \times 12=72 \mathrm{~km} / \mathrm{h}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
18. (A) A.T.Q,

Cost	Qunatity	
10	4	$\times 45$
10	5	$\times 36$
20	9	$\times 40$

Now, cost price of 360 apples
$=45 \times 10+36 \times 10=₹ 810$
and, selling price of 360 apples
$=20 \times 40=₹ 800$
Then, loss percentage
$=\frac{810-800}{810} \times 100=1 \frac{19}{81} \%$
19. (C) A.T.Q,

A	B	A $+\mathrm{B}+\mathrm{C}$	
3	-	8	$\times 9$
-	2	9	$\times 8$

Now,
New Ratio becomes
A: B:A $+\mathrm{B}+\mathrm{C}=27: 16: 72$
Here,
72 units = ₹ 75600
$\Rightarrow 1$ unit $=₹ 1050$
Then, share of $\mathrm{C}=72-(27+16)$
$=29$ units $=29 \times 1050=₹ 30450$
20. (A) A.T.Q,
$6 \frac{2}{3} \%$ loss $=\frac{1}{15}$
Now,

CP	SP	Articles
15	14	14×5
-	1	3

Here,
$\mathrm{CP}=15 \times 3=₹ 45$
and, New SP $=14 \times 5 \times 1=₹ 70$
Then, profit percentage
$=\frac{70-45}{45} \times 100=55 \frac{5}{9} \%$
21. (D) A.T.Q,

Number of pages typed by A in one hour
$=\frac{48}{3}=16$
and,
Number of pages typed by B in one hour
$=\frac{30}{1.5}=20$
Now, Required time $=\frac{120}{16}+\frac{120}{16+20}$
$=\frac{15}{2}+\frac{10}{3}=10 \frac{5}{6}$ hours
22. (C) A.T.Q,

CP	SP	Profit/loss	
20	23	+3	$\times 17$
20	17	-3	$\times 23$

Now, (23×17) units $=₹ 782$
$\Rightarrow 1$ unit $=₹ 2$
The, total loss $=23 \times 3-17 \times 3$
$=18$ units $=18 \times 2=₹ 36$
23. (C) A.T.Q,
$(\mathrm{V}+\mathrm{P}) \times 24=(\mathrm{V}+\mathrm{P}) \times 8+32 \mathrm{~V}$
$\Rightarrow 16(V+P)=32 V$
$\Rightarrow \mathrm{V}=\mathrm{P}$
Let time taken by Vipin to complete the work be x days
Then,
$\Rightarrow(\mathrm{V}+\mathrm{P}) \times 24=\mathrm{V} \times x$
$\Rightarrow(1+1) \times 24=1 \times x$
$\Rightarrow x=48$ days
\therefore Time taken by Vipin to complete the
work $=48$ days
24. (C) A.T.Q,

Copper

Then,
Required Ratio $=\frac{1}{24}: \frac{3}{56}=7: 9$
25. (D) A.T.Q,

Ratio of three numbers is $6: 3: 1$.
Let the numbers be $6 x$, $3 x$ and x respectively. Now,
$6 x+3 x+x=3 \times 30$
$\Rightarrow x=9$
Then,
Difference between second and third number $=3 x-x=2 x=2 \times 9=18$
26. (B) Required time interval $=\frac{80-60}{80} \times 60$
= 15 minutes
27. (C) A.T.Q,

SP of both the articles $=₹ 5700$
Then, CP of both articles
$=5700 \times \frac{100}{120}=₹ 4750$
Now, CP of chair $=\frac{7}{12} \times \mathrm{CP}$ of table
$\Rightarrow 19$ units $=₹ 4750$
$\Rightarrow 1$ unit $=₹ 250$
Then, CP of chair $=7$ units
$=7 \times 250=₹ 1750$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
28. (A) A.T.Q,

Effective compound interest rate after
paying tax $=10 \%-\left(10 \times \frac{20}{100}\right) \%=8 \%$
Now,
Required amount $=\mathrm{P}\left[1+\frac{\mathrm{r}}{100}\right]^{n}$
$=15625\left[1+\frac{8}{100}\right]^{3}=₹ 19683$
29. (C) Required rate of interest
$=\frac{27225-24750}{24750} \times 100$
$=\frac{2475}{24750} \times 100=10 \%$
30. (C) A.T.Q,

	Ethanol	Water
I	3	4
II	1	2
III	6	5

Let quantity taken from third bottle be $11 x$.
Then,
$3 \times 2+1 \times 2+6 x$
$=4 \times 2+2 \times 2+5 x$
$\Rightarrow 6 x+8=5 x+12$
$\Rightarrow x=4$
\therefore Required quantity $=11 x$
$=11 \times 4=44$ litres
31. (B) Let CP of the two articles be x and y respectively.
A.T.Q,
$\left(\frac{11 x}{10}+\frac{13 y}{10}\right)-\left(\frac{13 x}{10}+\frac{11 y}{10}\right)=10$
$\Rightarrow \frac{2 y}{10}-\frac{2 x}{10}=10$
$\Rightarrow y-x=50$
\therefore Difference between the CP of the articles $=₹ 50$
32. (A) A.T.Q,
tin lead zinc copper

I	3	2	1		$\times 3$
II		2	3	4	$\times 2$

New Ratio becomes
tin lead zinc copper

9	6	3	
	4	6	8
9	10	9	8

Then, weight of zinc per $\mathrm{kg}=9 \mathrm{gm}$.
$=\frac{9}{9+10+9+8} \times 1000=250 \mathrm{gm}$
33. (C) A.T.Q,

Total CP of the mobile
$=7200 \times \frac{85}{100} \times \frac{90}{100}+392$
= ₹5900
and, SP of the mobile $=₹ 6000$
Then, Profit earned by Rohan
$=6000-5900=₹ 100$
34. (B) A.T.Q,

Now, 1 unit = 5 wickets
Then,
Total number of wickets before his last match $=21$ units

$$
=21 \times 5=105
$$

35.

(C) A.T.Q,

Total number of digits
$=1 \times 9+2 \times 90+3 \times 351$
$=1242$
36. (B) A.T.Q,

Principal $=\frac{9.15 \times 100 \times 100 \times 100}{5 \times 5 \times(300+5)}$
\Rightarrow Principal $=₹ 1200$
37. (D) A.T.Q,

Now,
Work done by A and B and B and C in 2 days $=(15+10)+(15-6)$

$$
=34 \text { units }
$$

Then,
Work done in 12 days $=34 \times 6=204$ units and, time taken to complete remaining 6 units work
$=\frac{6}{25}$ days
\therefore Total time taken
$=12+\frac{6}{25}=12 \frac{6}{25}$ days

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
38. (D) A.T.Q,

Time taken by A and B to fill the cistern
$=\frac{20}{4+1}=4$ hours
and, total time taken to fill the cistern
$=4+1=5$ hours
Now, quantity of water leaked through pipe $C=5 \times 5-20=5$ units
Then, time taken by C to empty the cistern $=\frac{5}{5} \times 20=20$ hours
39. (C) A.T.Q,
$2^{x-1}+2^{x+1}=640$
$\Rightarrow 2^{x-1}\left[1+2^{2}\right]=640$
$\Rightarrow 2^{x-1}=128=2^{7}$
On comparing, we get
$x-1=7$
$\Rightarrow x=8$
40. (A) A.T.Q,

Then,
Speed of man in still water $=\frac{1+3}{2}=2$ units and, speed of current $=\frac{3-1}{2}=1$ unit

Now, speed of man (2 units) $=\frac{23}{3} \mathrm{kmph}$
Then, speed of current (1 unit)
$=\frac{23}{3} \times \frac{1}{2}=\frac{23}{6}=3 \frac{5}{6} \mathrm{kmph}$
41. (B) A.T.Q,

Here,
Compound interest for 2 years
$=16+16+3=35$ units
and, simple interest $=16+16=32$ units
Now,

35 units = ₹595
Then, 32 units $=\frac{595}{35} \times 32=₹ 544$
\therefore Simple interest for 2 years $=₹ 544$
42. (C) Let capacity of Vivek and Vipul of doing the work be A and B respectively.
Then,

$$
\begin{aligned}
& \frac{A \times 20}{\frac{60}{100}}=\frac{(A+B) \times 10}{\frac{40}{100}} \\
& \Rightarrow 4 A=3 A+3 B \\
& \Rightarrow A=3 B \\
& \Rightarrow \frac{A}{B}=\frac{3}{1}
\end{aligned}
$$

Now,
Let time taken by Vipul to complete the work be x days.
Now,
$B \times x=\frac{\mathrm{A} \times 20}{\frac{60}{100}}$
$\Rightarrow 1 \times x=\frac{3 \times 20 \times 100}{60}$
$\Rightarrow x=100$ days
\therefore Time taken by Vipul to complete the work $=100$ days.
43. (C) Let the three digit number be x.

Then,
$625=x \times \mathrm{P}+\mathrm{R}$ \qquad
and, $2406=x \times \mathrm{Q}+\mathrm{R}$
From equation (i) and (ii), we get
$x(\mathrm{Q}-\mathrm{P})=2406-625$
$\Rightarrow x(\mathrm{Q}-\mathrm{P})=1781$
$\Rightarrow x(\mathrm{Q}-\mathrm{P})=13 \times 137$
Here, $x=137$
\therefore Sum of the digits of the number
$=1+3+7=11$
44. (B) A.T.Q,
$\left.\left.\begin{array}{rl}\mathrm{A}+\mathrm{B} \rightarrow 2 \\ \mathrm{C} \rightarrow 1\end{array} \right\rvert\, \times 4 \Rightarrow \begin{array}{l}8 \\ 4\end{array}\right) 12$
and,
$\left.\left.\begin{array}{r}A+C \rightarrow 3 \\ B \rightarrow 1\end{array} \right\rvert\, \times 3 \Rightarrow \begin{array}{l}9 \\ 3\end{array}\right) 12$
Now,
Capacity of A, B and C becomes 5 units, 3 units and 4 units respectively.
Then,
Time taken by A to complete the work
$=\frac{12 \times 12}{5}=28 \frac{4}{5}$ days

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
45. (B) A.T.Q,

$$
\begin{aligned}
&(\sqrt{3}+\sqrt{2})^{-3}+(\sqrt{3}-\sqrt{2})^{-3} \\
&= \frac{1}{(\sqrt{3}+\sqrt{2})^{3}}+\frac{1}{(\sqrt{3}-\sqrt{2})^{3}} \\
&=(\sqrt{3}-\sqrt{2})^{3}+(\sqrt{3}+\sqrt{2})^{3} \\
&= 2\left[(\sqrt{3})^{3}+3 \times \sqrt{3} \times(\sqrt{2})^{2}\right] \\
&= 2[3 \sqrt{3}+6 \sqrt{3}]=18 \sqrt{3}
\end{aligned}
$$

46. (A) A.T.Q,

Ratio of share of A, B and C
$=\frac{1}{3} \times 60: \frac{1}{4} \times 60: \frac{1}{5} \times 60$
= $20: 15: 12$
Now,
$(20+15+12)$ units $=₹ 1410$
$\Rightarrow 47$ units $=1410$
Then, Share of B $=\frac{1410}{47} \times 15=₹ 450$
47. (B) A.T.Q,

	Red	Yellow	
Total	5	4	$\times 10$
Upper half	3	2	$\times 9$

New Ratio becomes

	Red	Yellow
Total	50	40
Upper half	27	18
lower half	23	22

Then,
Required ratio $=23: 22$
48. (A) Required percentage $=\frac{1.55-1.5}{1.5} \times 100$ $=\frac{0.05}{1.5} \times 100=3 \frac{1}{3} \%$
49. (D) A.T.Q,

Total CP of watch $=800+800 \times \frac{15}{100}=₹ 920$ and,
SP of the watch $=920 \times \frac{125}{100}=₹ 1150$
Now,
Discount $=16 \frac{2}{3} \%=\frac{1}{6}$
Then,
MP of the watch $=₹ 1150 \times \frac{6}{5}=₹ 1380$
50. (C) Let the number be 300.

After increment of $33 \frac{1}{3} \%$,
number $=300+300 \times 33 \frac{1}{3} \%=400$
Now,
Required decrement
$=\frac{400-300}{400} \times 100=25 \%$
51. (C) A.T.Q,

Total length of the rope $=105 \times 2 \pi r$
$=105 \times 14 \times 2 \pi$
It has to be circled around another cylinder.
Let number of rounds be n.
Then,
$n \times 2 \pi \times 49=105 \times 14 \times 2 \pi$
On solving, we get
$\mathrm{n}=30$
Number of rounds $=30$
52. (B) Let the number of spherical bullets be n. Now,
Total volume of spherical balls must be equal to volume of rectangular block.

Then, $n \times \frac{4}{3} \times \frac{22}{7} \times(7)^{3}$
$=110 \mathrm{~cm} \times 50 \mathrm{~cm} \times 98 \mathrm{~cm}$
On solving, we get
$n=375$
\therefore Number of spherical balls $=375$
53. (A) We Know that,

Volume of frustum $=\frac{\pi h}{3}\left(\mathrm{R}^{2}+r^{2}+\mathrm{R} r\right)$
$=\frac{22}{7} \times \frac{14}{3}\left[15^{2}+12^{2}+15 \times 12\right]=8052 \mathrm{~cm}^{3}$
54. (D) A.T.Q,
$\frac{\text { C.S.A }}{\text { T.S.A }}=\frac{2}{3}$
$\Rightarrow \frac{2 \pi r h}{2 \pi r(h+r)}=\frac{2}{3}$
$\Rightarrow \frac{h}{h+r}=\frac{2}{3}$
$\Rightarrow h \Rightarrow 2 \mathrm{r}$
Now,
T.S.A of the cylinder $=231$
$\Rightarrow 2 \pi \mathrm{r} \times 3 \mathrm{r}=231$
On solving, we get

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\mathrm{r}=\frac{7}{2} \mathrm{~cm}$
and, $\mathrm{h}=2 \mathrm{r}=7 \mathrm{~cm}$
Then, volume of the cylinder $=\pi r^{2} h$
$=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 7=269.5 \mathrm{~cm}^{3}$
55. (B) A.T.Q,

Distance travelled in $33 \frac{3}{5}$ minutes at the speed of $5 \mathrm{~km} / \mathrm{h}$
$=\frac{168}{5} \times \frac{5000}{60}=2800 \mathrm{~m}$
Let length and breadth of the rectangle be $4 x$ and $3 x$.
Then,
$2(4 x+3 x)=2800$
$\Rightarrow x=200$
Now,
length of the field $=4 \times 200=800 \mathrm{~m}$ and, breath of the field $=3 \times 200=600 \mathrm{~m}$
Then, area of the field $=800 \times 600$
$=480000 \mathrm{~m}^{2}=48$ hectare
56. (C) A.T.Q,

$\mathrm{AP}: P D=1: 3$
Then, length of $\mathrm{PQ}=\frac{\mathrm{AP} \times \mathrm{DC}+\mathrm{PD} \times \mathrm{AB}}{\mathrm{AP}+\mathrm{PD}}$
$=\frac{1 \times 20+3 \times 12}{1+3}=14 \mathrm{~cm}$
57. (A) We know that,

Area of the minor sector
$=\frac{1}{2} \times$ length of $\operatorname{arc} \times$ radius $=\frac{1}{2} \times 28 \times 7$
$=98 \mathrm{~cm}^{2}$
58. (B) When a sphere is cut into eight equal parts, then surface area of one part
$=\frac{1}{8} \times($ surface area of sphere $)+2 \times($ area of semicircle)
$=\frac{1}{8} \times 4 \pi \mathrm{r}^{2}+2 \times \frac{\pi \mathrm{r}^{2}}{2}=\frac{3 \pi \mathrm{r}^{2}}{2}$
Then,

Ratio of surface area of one part to that of whole sphere
$=\frac{\frac{3 \pi r^{2}}{2}}{4 \pi r^{2}}=\frac{3}{8}$
\therefore Required ratio $=3: 8$
59. (A) Here,

ABC is an equilateral triangle of sides 2 r units each.
and, centre of the circle is the centroid of $\triangle \mathrm{ABC}$.
Then,
$\mathrm{AO}=\left(\frac{\sqrt{3}}{2} \times 2 \mathrm{r}\right) \times \frac{2}{3}=\frac{2 \sqrt{3}}{3} \mathrm{r}$ units
Now, radius of the smaller circle
$=\frac{2 \sqrt{3}}{3} \mathrm{r}-\mathrm{r}=r\left(\frac{2}{\sqrt{3}}-1\right)$ units
60. (C) A.T.Q,

Volume of the cube $=512 \mathrm{~m}^{3}$
Then,
each side of the cube $=\sqrt[3]{512}=8 \mathrm{~m}$
Now,
Total surface area of the cuboid
$=2[\mathrm{lb}+\mathrm{bh}+\mathrm{hl}]$
$=2[24 \times 8+8 \times 8+8 \times 24]=896 \mathrm{~m}^{2}$
61. (A) Let the radius is the circle be r.

Then, QSTU is a square of side r units Now, QV = QT + TV
$2=\sqrt{2} r+r$
$\Rightarrow r=\frac{2}{\sqrt{2}+1}=2(\sqrt{2}-1)$ units
\therefore Radius of the circle $=2(\sqrt{2}-1)$ units
62. (B) Let AM be a metre.

Then, $\mathrm{OM}=(6-a) \mathrm{m}$
Now, using pythagoras
$6^{2}-(6-a)^{2}=4^{2}-a^{2}$
$\Rightarrow 36-36-a^{2}+12 \mathrm{a}=16-a^{2}$
$\Rightarrow a=\frac{4}{3} \mathrm{~m}$
Then,
length of $C D=A B-2 a$
$=12-2 \times \frac{4}{3}=\frac{28}{3}=9 \frac{1}{3} \mathrm{~m}$
63. (B) Let length, breadth and height of the cuboid be $4 x, 2 x$ and x respectively.
Then, volume of the cuboid
$=4 x \times 2 x \times x=8 x^{3}$
After changes, the dimensions of the
cuboid becomes $2 x, 4 x$ and $\frac{x}{2}$ respectively.
Then,
Volume of the cuboid $=2 x \times 4 x \times \frac{x}{2}=4 x^{3}$
\therefore Required percentage change
$=\frac{8 x^{3}-4 x^{3}}{8 x^{3}} \times 100 \%=50 \%$
64. (A) A.T.Q,

Required angle $=\frac{180^{\circ}-(\angle \mathrm{E}+\angle \mathrm{F})}{2}$
$=\frac{180^{\circ}-\left(50^{\circ}+60^{\circ}\right)}{2}=35^{\circ}$
65. (D) A.T.Q,
$x^{2}-\sqrt{3} x-1=0$
$\Rightarrow x-\frac{1}{x}=\sqrt{3}$
We know that,
$\left(x+\frac{1}{x}\right)^{2}-\left(x-\frac{1}{x}\right)^{2}=4$
Then,
$x+\frac{1}{x}=\sqrt{7}$ \qquad
Multiply equation (i) and (ii), we get
$x^{2}-\frac{1}{x^{2}}=\sqrt{21}$
Taking cube both sides, we get
$x^{6}-\frac{1}{x^{6}}-3\left(x^{2}-\frac{1}{x^{2}}\right)=21 \sqrt{21}$
$\Rightarrow x^{6}-\frac{1}{x^{6}}=24 \sqrt{21}$
66. (C) Given expression is the square of $x^{2}+2 x+5$ Now,
$\left(x^{2}+2 x+5\right)^{2}=x^{4}+4 x^{2}+25+4 x^{3}+20 x$
$+10 x^{2}$
$=x^{4}+4 x^{3}+14 x^{2}+20 x+25$
On comparing, we get
$a=14$ and $b=20$
Then, $a+b=14+20=34$
67. (A) A.T.Q,
$\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=5$
Applying Componendo and Dividendo method,
$\frac{\sin \theta}{\cos \theta}=\frac{5+1}{5-1}$
$\Rightarrow \tan \theta=\frac{3}{2}$
Now,
$\sin ^{4} \theta-\cos ^{4} \theta$
$=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)=-\cos 2 \theta$
$=\frac{\tan ^{2} \theta-1}{\tan ^{2} \theta+1}=\frac{5}{13}$
68. (B) A.T.Q,
$2 \tan ^{2} \mathrm{~A}+\tan ^{4} \mathrm{~A}=1$
$\Rightarrow \tan ^{2} \mathrm{~A}\left(2+\tan ^{2} \mathrm{~A}\right)=1$
$\Rightarrow\left(\sec ^{2} A-1\right)\left(\sec ^{2} A+1\right)=1$
$\Rightarrow \sec ^{4} \mathrm{~A}-1=1$
$\Rightarrow \sec ^{4} A=2$
69. (A) A.T.Q,
$\sec \theta+\tan \theta=P$ \qquad
Then, $\sec \theta-\tan \theta=\frac{1}{P}$
Solving equation (i) and (ii), we get
$2 \sec \theta=P+\frac{1}{P}$
and, $2 \tan \theta=\mathrm{P}-\frac{1}{\mathrm{P}}$
Now,
$\sin \theta=\frac{2 \tan \theta}{2 \sec \theta}=\frac{\mathrm{P}^{2}-1}{\mathrm{P}^{2}+1}$
and, $\cos \theta=\frac{1}{\sec \theta}=\frac{2 \mathrm{P}}{\mathrm{P}^{2}+1}$
Then, $\sin \theta+\cos \theta=\frac{\mathrm{P}^{2}-1+2 \mathrm{P}}{\mathrm{P}^{2}+1}$
70. (B) A.T.Q,
$3 \sin ^{2} \theta \cdot \operatorname{cosec} \theta-10+3 \operatorname{cosec} \theta=0$
$\Rightarrow 3 \sin \theta-10+\frac{3}{\sin \theta}=0$
$\Rightarrow 3 \sin ^{2} \theta-10 \sin \theta+3=0$
$\Rightarrow 3 \sin ^{2} \theta-9 \sin \theta-\sin \theta+3=0$
$\Rightarrow 3 \sin \theta(\sin \theta-3)-1(\sin \theta-3)=0$
$\Rightarrow \sin \theta=3$ or $\sin \theta=\frac{1}{3}$
As $\sin \theta=3$ is not possible, so $\sin \theta=\frac{1}{3}$
$\Rightarrow \operatorname{cosec} \theta=3$
Now, $\cot \theta=\sqrt{\operatorname{cosec}^{2} \theta-1}=2 \sqrt{2}$
71. (B) A.T.Q,
$\sqrt{\frac{x-y}{x+y}}+\sqrt{\frac{x+y}{x-y}}=\frac{x-y+x+y}{\sqrt{x^{2}-y^{2}}}$
$=\frac{2 x}{\sqrt{x^{2}-y^{2}}}=\frac{2}{\sqrt{1-\left(\frac{y}{x}\right)^{2}}}=\frac{2}{\sqrt{1-\cos ^{2} \theta}}$
$=2 \operatorname{cosec} \theta$
72. (B) A.T.Q,

OA is the radius of circumscribed circle and OP is the radius of inscribed circle. Then,
$\mathrm{OA}=12 \mathrm{~cm}$
and, $\mathrm{OP}=12 \times \frac{\sqrt{3}}{2}=6 \sqrt{3} \mathrm{~cm}$
Now,
Required difference of areas
$=\pi\left(\mathrm{OA}^{2}-\mathrm{OP}^{2}\right)=\pi\left(12^{2}-(6 \sqrt{3})^{2}\right)$
$=36 \pi \mathrm{~cm}^{2}$
73. (B) Let the height of the cliff $\mathrm{b} h \mathrm{~m}$.

Now,
In $\triangle \mathrm{ABC}$,
$B C=(a+h) \cot \alpha$
and,
In $\triangle \mathrm{DBC}$
$\mathrm{BC}=h \cot \beta$
From equation (i) and (ii), we get
$(a+h) \cot \alpha=h \cot \beta$
$\Rightarrow \mathrm{h}=\frac{a \cot \alpha}{\cot \beta-\cot \alpha}$
\therefore Height of the cliff $=\frac{a \cot \alpha}{\cot \beta-\cot \alpha}$
74. (D) Let the rise in the level of water in the tank be $h \mathrm{~m}$.
Then,
$\frac{22}{7} \times\left(\frac{21}{2}\right)^{2} \times h=\left(\frac{60}{100 \times 100}\right) \times 11000 \times 7$
On solving, we get
$h=\frac{4}{3} m$
75. (B) A.T.Q,

Each side of the rectangle with maximum
area $=\frac{b h}{b+h}$
$=\frac{15 \times 21}{15+21}=\frac{35}{4} \mathrm{~cm}$
Then, area of the rectangle $=\left(\frac{35}{4}\right)^{2}$
$=76.5625$ sq. cm
76. (D) A.T.Q,
$x=5+2 \sqrt{6}$
Then,
$\frac{1}{x}=5-2 \sqrt{6}$
From equation (i) and (ii), we get
$x-\frac{1}{x}=4 \sqrt{6}$
Cubing Both sides, we get
$x^{3}-\frac{1}{x^{3}}-3\left(x-\frac{1}{x}\right)=384 \sqrt{6}$
$\Rightarrow x^{3}-\frac{1}{x^{3}}=384 \sqrt{6}+12 \sqrt{6}=396 \sqrt{6}$
77. (C) A.T.Q,
$\frac{1}{1+a^{a-b}}+\frac{1}{1+a^{b-a}}$
$=\frac{1}{1+\frac{a^{a}}{\mathrm{a}^{\mathrm{b}}}}+\frac{1}{1+\frac{a^{b}}{a^{a}}}$
$=\frac{a^{b}}{a^{b}+a^{a}}+\frac{a^{a}}{a^{a}+a^{b}}=\frac{a^{b}+a^{a}}{a^{b}+a^{a}}=1$
78. (C) A.T.Q,
$x+y=2 \sqrt{2}$
and,
$x y=(\sqrt{2})^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{3}{2}$
Now,
$x^{2}+y^{2}+4 x y=(x+y)^{2}+2 x y$
$=(2 \sqrt{2})^{2}+2 \times \frac{3}{2}=8+3=11$
79. (C) A.T.Q,

In \triangle PRS,
$\tan 30^{\circ}=\frac{\mathrm{PR}}{\mathrm{RS}}$
$\Rightarrow \mathrm{PR}=\frac{50}{\sqrt{3}} \mathrm{~m}$
and, In $\Delta \mathrm{QTS}$,
$\tan 60^{\circ}=\frac{\mathrm{QT}}{\mathrm{TS}}$
$\Rightarrow \sqrt{3}=\frac{\frac{50}{\sqrt{3}}+r}{50-r}$
$\Rightarrow \sqrt{3}(50-r)=\frac{50+\sqrt{3} r}{\sqrt{3}}$
$\Rightarrow(150-3 r)=50+\sqrt{3} r$
$\Rightarrow \mathrm{r}=\frac{100}{3+\sqrt{3}}=50\left(1-\frac{1}{\sqrt{3}}\right) \mathrm{m}$
\therefore Radius of the sphere $=50\left(1-\frac{1}{\sqrt{3}}\right) \mathrm{m}$
$1+\tan A \cdot \tan \frac{A}{2}$
$=1+\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}} \cdot \tan \frac{A}{2}$
$=\frac{1-\tan ^{2} \frac{\mathrm{~A}}{2}+2 \tan ^{2} \frac{\mathrm{~A}}{2}}{1-\tan ^{2} \frac{\mathrm{~A}}{2}}$
$=\frac{1+\tan ^{2} \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}}=\frac{1}{\cos \mathrm{~A}}=\sec \mathrm{A}$
81. (D) A.T.Q,
$x^{4}-x^{2}+1=0$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=1$
Cubing both sides, we get
$x^{6}+\frac{1}{x^{6}}+3 \times x^{2} \times \frac{1}{x^{2}}\left(x^{2}+\frac{1}{x^{2}}\right)=1$
$\Rightarrow x^{6}+\frac{1}{x^{6}}=1-3$
$\Rightarrow x^{6}+\frac{1}{x^{6}}=-2$
Here, $x^{6}=-1$
Now,
$x^{24}-x^{18}+x^{12}-x^{6}+1$
$=\left(x^{6}\right)^{4}-\left(x^{6}\right)^{3}+\left(x^{6}\right)^{2}+x^{6}+1$
$=1-(-1)+1-(-1)+1=5$
82. (A) A.T.Q,

OA and OC are the radius of the circle Now,
$\mathrm{OQ}^{2}=17^{2}-12^{2}=145$
and,
$\mathrm{OP}^{2}=17^{2}-15^{2}=64$
Then,
$\mathrm{OR}=\sqrt{\mathrm{OP}^{2}+\mathrm{OQ}^{2}}$
$=\sqrt{145+64}$
$=\sqrt{209} \mathrm{~cm}$
\therefore Required distance $=\sqrt{209} \mathrm{~cm}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
83. (B) Let length of side AB be $3 x \mathrm{~cm}$ and that of AD be $2 y \mathrm{~cm}$

Then,
Area of $\mathrm{AQCP}=\operatorname{ar}(\mathrm{ABCD})-[\operatorname{ar}(\mathrm{QBC})+\operatorname{ar}(\mathrm{PDC})$
$\Rightarrow 25=3 x \times 2 y-\left[\frac{1}{2} \times 2 x \times 2 y+\frac{1}{2} \times y \times 3 x\right]$
$\Rightarrow 25=6 x y-\frac{7 x y}{2}$
On solving, we get $x y=10$
Now,
area of $\mathrm{ABCD}=3 x \times 2 y$
$=6 x y=6 \times 10=60 \mathrm{~cm}^{2}$
84. (B) A.T.Q,

$\mathrm{PB}=\mathrm{PX}$
and $\mathrm{QC}=\mathrm{QX}$
Now,
Perimeter of $\Delta \mathrm{APQ}$
$=A P+P Q+A Q$
$=A P+P X+Q X+A Q$
$=A P+P B+Q C+A Q$
$=A B+A C$
$=10+10=20 \mathrm{~cm}$
85. (C) A.T.Q,

QC is perpendicular to AB .
and,
We know that radius of the circle makes right angle with tangent.
$\therefore \mathrm{PB} \perp \mathrm{AB}$
Now,
$\Delta \mathrm{ABP} \sim \Delta \mathrm{ACQ}$
Then,
$\frac{\mathrm{PB}}{\mathrm{QC}}=\frac{\mathrm{AP}}{\mathrm{QA}}=\frac{3 \mathrm{r}}{\mathrm{r}}=\frac{3}{1}$
\therefore Required ratio $=3: 1$
86. (C) $(1+\cot \mathrm{A}-\operatorname{cosec} \mathrm{A})(1+\tan \mathrm{A}+\sec \mathrm{A})$

Put $\theta=45^{\circ}$
$=\left(1+\cot 45^{\circ}-\operatorname{cosec} 45^{\circ}\right)\left(1+\tan 45^{\circ}+\sec 45^{\circ}\right)$
$=(1+1-\sqrt{2})(1+1+\sqrt{2})$
$=(2-\sqrt{2})(2+\sqrt{2})=2$
87. (A) Let AB be x units

Then, length of $\mathrm{AC}=(x+2)$ units
Now,
Using pythagoras
$(x+2)^{2}-x^{2}=(2 \sqrt{5})^{2}$
$\Rightarrow(x+2+x)(x+2-x)=20$
$\Rightarrow(2 x+2)=10$
$\Rightarrow x=4$ units
Then,
$\sec C+\tan C=\frac{A C}{B C}+\frac{A B}{B C}$
$=\frac{2 x+2}{2 \sqrt{5}}=\frac{10}{2 \sqrt{5}}=\sqrt{5}$ units
88. (D) We know that,

Circumradius of a right angle triangle is equal to half of its hypotenuse.
Then,
$\mathrm{c}=52 \times 2=104 \mathrm{~cm}$
Now,
perimeter of $\mathrm{ABC}=112 \times 2$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=224 \mathrm{~cm}$
$\Rightarrow \mathrm{a}+\mathrm{b}=120 \mathrm{~cm}$
and,
$(\mathrm{a}+\mathrm{b})^{2}=120^{2}$
$\Rightarrow a^{2}+b^{2}+2 \mathrm{ab}=120^{2}$
$\Rightarrow 2 a b=120^{2}-c^{2}$
$\Rightarrow 2 \mathrm{ab}=120^{2}-104^{2}$
$\Rightarrow 2 \mathrm{ab}=16 \times 224$
Then,
Area of $\mathrm{ABC}=\frac{1}{2} a b$

$$
=\frac{16 \times 224}{4}=896 \mathrm{~cm}^{2}
$$

$K>$
 Campus
 KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
89. (D) We know that,

Angle made at the centre of the circle is always double the angle made at the circumference.

Then, $\angle \mathrm{QOR}=75^{\circ} \times 2=150^{\circ}$
and $\angle \mathrm{ORQ}=\frac{180^{\circ}-150^{\circ}}{2}=15^{\circ}$
Now, $\angle \mathrm{PRO}=80^{\circ}-15^{\circ}=65^{\circ}$
and, $\angle \mathrm{PRO}=\angle \mathrm{OPR}$
$\therefore \angle \mathrm{OPR}=65^{\circ}$
90. (B) A.T.Q,
$4 x+\frac{12}{x}=19$
$\Rightarrow 4 x^{2}-19 x+12=0$
$\Rightarrow 4 x^{2}-16 x-3 x+12=0$
$\Rightarrow 4 x(x-4)-3(x-4)=0$
$\Rightarrow x=4$ and $x=\frac{3}{4}$
Now,
$x^{2}+\frac{1}{x^{2}}=4^{2}+\frac{1}{4^{2}}=\frac{257}{16}$
and, $x^{2}+\frac{1}{x^{2}}=\left(\frac{3}{4}\right)^{2}+\left(\frac{4}{3}\right)^{2}$
$=\frac{9}{16}+\frac{16}{9}=\frac{337}{144}$
\therefore Minimum value of $x^{2}+\frac{1}{x^{2}}=\frac{337}{144}$
91. (B) A.T.Q,
$2\left[2016^{2}-2015^{2}+2014^{2}-2013^{2}\right.$
$\left.+\ldots \ldots . .+2^{2}-1^{2}\right]$
$=2[(2016+2015)(2016-2015)+(2014$
$+2013)(2014-2013) \ldots . .(2+1)(2-1)$
$=2[2016+2015+2014+2013+\ldots \ldots .+1]$
$=2 \times \frac{2016 \times 2017}{2}=2016 \times 2017$
Now, $2016 \times 2017=2016^{2}+2016$
\therefore The number which must be subtracted to make it a perfect square $=2016$
92. (A) Let the length of side BC be $2 x \mathrm{~cm}$.

Then,
Length of AC and AB $=2 x \times \frac{5}{8}=\frac{5 x}{4}$
Perimeter of the triangle $=54 \mathrm{~cm}$
$\Rightarrow 2 x+\frac{5 x}{4}+\frac{5 x}{4}=54$
On solving, we get
$x=12$
Now, length of side $A C=\frac{5 x}{4}=15 \mathrm{~cm}$ and, $\mathrm{AD}=\sqrt{15^{2}-12^{2}}=9 \mathrm{~cm}$

Then, Area of $\mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}$
$=\frac{1}{2} \times 2 \times 12 \times 9=108 \mathrm{~cm}^{2}$
(B) Let the length of AP be x.

Then, $\mathrm{QB}=11-(\mathrm{AP}+\mathrm{PQ})$
$=11-(x+6)=5-x$
Now,
$3^{2}-x^{2}=4^{2}-\left(5-x^{2}\right)$
$\Rightarrow 9-x^{2}=16-25-x^{2}+10 x$
$\Rightarrow 10 x=18$
$\Rightarrow x=1.8$
Then,
Distance between AB and $\mathrm{CD}=\sqrt{3^{2}-x^{2}}$
$=\sqrt{3^{2}-1.8^{2}}=2.4 \mathrm{~cm}$
94. (D) A.T.Q,

Radii of the two circles are 10 cm and 17 cm respectively and $\mathrm{CP}=\frac{16}{2}=8 \mathrm{~cm}$

Now,

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Using pythagoras, we get
$\mathrm{AP}=\sqrt{10^{2}-8^{2}}=6 \mathrm{~cm}$
and $\mathrm{PB}=\sqrt{17^{2}-8^{2}}=15$
Then, Distance between the centres (AB) $=6+15=21 \mathrm{~cm}$
95. (C) We know that,
length of the traverse common tangent
(l) $=\sqrt{d^{2}-\left(r_{1}+r_{2}\right)^{2}}$

Now,
$17=\sqrt{d^{2}-(5+12)^{2}}$
$\Rightarrow d^{2}=17^{2}+17^{2}$
$\Rightarrow d=17 \sqrt{2}$
Then,
Distance between the centres of the circles $=17 \sqrt{2} \mathrm{~cm}$
96. (A) Number of students studying Science from institute D
$=17 \times \frac{5400}{100}=918$
and, Number of students studying Commerce from institute B
$=16 \times \frac{4500}{100}=720$
Then,
Required ratio $=918: 720=51: 40$
97. (A) Number of students studying Science from instititue E
$=\frac{5400}{100} \times 9=486$
and, Number of students studying Commerce from institute D
$=\frac{4500}{100} \times 21=945$
Then,
Total students $=486+945=1431$
98. (D) Number of students studying Science from instititue B
$=\frac{5400}{100} \times 11=594$
Then, Number of students studying Commerce from institute B
$=\frac{4500}{100} \times 16=720$
Then,
Total students $=594+720=1314$
99. (D) Required ratio $=\frac{5400}{100} \times 15: \frac{4500}{100} \times 7$
$=18: 7$
100. (B) Total number of students studying Commerce from institute B and D
$=\frac{4500}{100} \times(16+21)=1665$

SSC TIER II (MATHS) MOCK TEST - 36 (ANSWER KEY)

1. (C)	11. (B)	21. (D)	31. (B)	41. (B)	51. (C)	61. (A)	71. (B)	81. (D)	91. (B)
2. (A)	12. (C)	22. (C)	32. (A)	42. (C)	52. (B)	62. (B)	72. (B)	82. (A)	92. (A)
3. (C)	13. (B)	23. (C)	33. (C)	43. (C)	53. (A)	63. (B)	73. (B)	83. (B)	93. (B)
4. (B)	14. (B)	24. (C)	34. (B)	44. (B)	54. (D)	64. (A)	74. (D)	84. (B)	94. (D)
5. (C)	15. (C)	25. (D)	35. (C)	45. (B)	55. (B)	65. (D)	75. (B)	85. (C)	95. (C)
6. (B)	16. (C)	26. (B)	36. (B)	46. (A)	56. (C)	66. (C)	76. (D)	86. (C)	96. (A)
7. (D)	17. (B)	27. (C)	37. (D)	47. (B)	57. (A)	67. (A)	77. (C)	87. (A)	97. (A)
8. (C)	18. (A)	28. (A)	38. (D)	48. (A)	58. (B)	68. (B)	78. (C)	88. (D)	98. (D)
9. (B)	19. (C)	29. (C)	39. (C)	49. (D)	59. (A)	69. (A)	79. (C)	89. (D)	99. (D)
10. (C)	20. (A)	30. (C)	40. (A)	50. (C)	60. (C)	70. (B)	80. (B)	90. (B)	100.(B)

[^0]Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts, also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

[^0]: Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

