2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
SSC TIER II (MATHS) MOCK TEST - 35 (SOLUTION)

1. (C) Let the numbers be $85 x$ and $85 y$ Then, LCM of the numbers $=85 x y$ A.T.Q,
$85 x y=2550$
$\Rightarrow x y=30$
Now,
Required pairs $=(1,30),(2,15),(3,10)$ and (5, 6)
\therefore Number of pairs $=4$
2. (B) Let the fraction be $\frac{x}{y}$
A.T.Q,
$\frac{x-4}{y+3}=\frac{4}{9}$
$\Rightarrow 9 x-4 y=48$ \qquad
Now,
$\frac{x-6}{y-6}=\frac{5}{9}$
$\Rightarrow 9 x-5 y=24$ \qquad
On solving equation (i) and (ii), we get $x=16$ and $y=24$
\therefore Required fraction $=\frac{16}{24}$
3. $\quad(\mathrm{B})(4537)^{234}=\left[(4537)^{4}\right]^{58} \times(4537)^{2}$

Now,
Last digit of the number
$=$ last digit of $\left(7^{4}\right)^{58} \times 7^{2}=1 \times 9=9$
4. (D) LCM of $6,7,8$ and $9=504$

Now,
$504=2 \times 2 \times 2 \times 3 \times 3 \times 7$
Then,
the smallest cubic number
$=504 \times 3 \times 7 \times 7=74088$
5. (A) Let the two numbers be $53 x$ and $53 y$.
A.T.Q,

LCM of the numbers $=6519$
$\Rightarrow 53 x y=6519$
$\Rightarrow x y=123$
Now, possible largest numbers are
$=53 \times 123=6519$ or $53 \times 41=2173$
\therefore Required number $=2173$
6. (C)

zinc				
copper				
I	4	5	$=9$	$\times 17 \times 7$
II	3	4	$=7$	$\times 9 \times 17$
III	11	6	$=17$	$\times 9 \times 7$

After making all the quantities equal, now ratio of zinc and copper is-

	zinc	copper
I	476	595
II	459	612
III	693	378
	1628	1585

\therefore Required ratio $=1628: 1585$
7.
(B) $\left(\frac{4}{9}\right)^{-\frac{3}{2}} \times\left(\frac{1}{2}\right)^{-5}-3 \times(27)^{\frac{2}{3}}-\left(\frac{1}{4}\right)^{-2} \times 5^{\circ} \times\left(\frac{16}{9}\right)^{\frac{-1}{2}}$
$=\left(\frac{3}{2}\right)^{3} \times 2^{5}-3 \times 3^{2}-4^{2} \times 1 \times \frac{3}{4}$
$=108-27-12=69$
8. (C) $\frac{105}{43}$
9. (D) A.T.Q,

Sum of the roots $(\alpha+\beta)$
$=5+\sqrt{24}+5-\sqrt{24}=10$
and, Product of the roots $(\alpha \beta)$
$=(5+\sqrt{24}) \times(5-\sqrt{24})=1$
Now,
Required equation $\Rightarrow x^{2}-(\alpha+\beta) x+\alpha=0$
$\Rightarrow x^{2}-10 x+1=0$
10. (A) A.T.Q,
$10^{3}+11^{3}+12^{3}+$ \qquad $+25^{3}$
$=$ (sum of the cube of first 25 natural numbers - (sum of the cube of first 9 natural numbers
$=\left(\frac{25 \times 26}{2}\right)^{2}-\left(\frac{9 \times 10}{2}\right)^{2}$
$=105625-2025=103600$
11. (C) Alchol Water

5	9	$\times 1$
2	5	
$\times 2$		

Now, New ratio is-
Alchol Water
$1\left(\begin{array}{l}5 \\ 4\end{array}\right.$
9
10
Here, mixture to be taken out $=\frac{1}{5}$
Now, $\frac{1}{5}$ units $=5$ litre
Then, total quantity $=1$ unit
$=5 \times 5=25$ litre
12. (A) A.T.Q,

Net rate of interst
$=\frac{46640-40000}{40000 \times 2} \times 100=8.3 \%$
Now, apply alligation

Ratio $=23 \quad: \quad 17$
\therefore Required amount $=₹ 23000$ and $₹ 17000$
13. (B) Let CP of the article be ₹ $100 x$ Then,

SP of the article $=100 x \times \frac{125}{100}=125 x$
Now,
A.T.Q,
$(100 x-50) \times \frac{350}{300}=125 x-100$
$\Rightarrow(100 x-50) \times 7=(125 x-100) \times 6$
On solving, we get
$x=5$
Then, CP of the article $=100 \times 5=₹ 500$
14.
(D) $\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots \ldots \ldots+\frac{1}{240}$
$=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots . .\left(\frac{1}{15}-\frac{1}{16}\right)$
$=1-\frac{1}{16}=\frac{15}{16}$
15. (B) Let A can complete the work in x days Then, B will complete the work in $(x+2)$ days and,
C will complete the work in $(x+5)$ days.
A.T.Q,
$\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{4}$
Using options, we get $x=10$
Then, time taken by B to complete the work $=x+2=12$ days
16. (D) A.T.Q,
$\underset{\mathrm{B} \rightarrow 10}{\mathrm{~A} \rightarrow 8}>40<4$
Time taken by A and B to fill the tank
$=\frac{40}{9}$ hours
Here, total extra time taken
$=2 \frac{2}{9}=\frac{20}{9}$ hours
i.e., $\frac{1}{2}$ cistern (20 litre) is emptied by pipe

C in $\frac{40}{9}$ hours.
Then, total time taken by pipe C to empty
the tank $=\frac{40}{9} \times 2=\frac{80}{9}=8 \frac{8}{9}$ hours
17. (B) Let the speed of the boat be $x \mathrm{~km} / \mathrm{hr}$ and, the speed of the stream be $y \mathrm{~km} /$ hr
A.T.Q,
$\frac{27}{x+y}+\frac{36}{x-y}=9$
and, $\frac{36}{x+y}+\frac{24}{x-y}=8$
On solving, we get
$x+y=9$
$x-y=6$
Then,
Speed of stream $(y)=\frac{9-6}{2}=1.5 \mathrm{~km} / \mathrm{hr}$
18. (A) We know that,

Amount $=P\left[1+\frac{r}{100}\right]^{n}$
A.T.Q,
$64000\left[1+\frac{\mathrm{r}}{100}\right]^{3}=68921$
$\Rightarrow\left(1+\frac{\mathrm{r}}{100}\right)^{3}=\left(\frac{41}{40}\right)^{3}$
$\Rightarrow 1+\frac{r}{100}=\frac{41}{40}$
$\Rightarrow \mathrm{r}=2.5 \%$
\therefore Rate of interest $=2.5 \%$
19. (C) A.T.Q,
$1 \mathrm{M}=2 \mathrm{C}$
and,
$(4 \mathrm{M}+5 \mathrm{~W}+6 \mathrm{C}) \times 15=(2 \mathrm{M}+3 \mathrm{~W}+2 \mathrm{C}) \times 31$
$\Rightarrow(7 \mathrm{M}+5 \mathrm{~W}) \times 15=(3 \mathrm{M}+3 \mathrm{~W}) \times 31$
On solving, we get
$4 \mathrm{M}=6 \mathrm{~W}$
Then, the ratio of capacity of man, woman and child $=6: 4: 3$

Let 1 man, 1 woman and 1 child can complete the work in x days.

Then,
$(6 \times 4+4 \times 5+6 \times 3) \times 15$
$=(6+4+3) \times x$
$\Rightarrow 62 \times 15=13 x$
$\Rightarrow x=\frac{930}{13}=71 \frac{7}{13}$ days
\therefore Required number of days $=71 \frac{7}{13}$ days
20. (A) A.T.Q,
$\frac{(m+n) x+(a-b)}{(m-n) x+(a+b)}=\frac{(m+n) x+(c-d)}{(m-n) x+(c+d)}$
$\Rightarrow\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right) x+(m+n)(\mathrm{c}+\mathrm{d}) x+(a-b)$
$(m-n) x+(a-b)(c+d)$
$=\left(m^{2}-n^{2}\right) x+(m-n)(c-d) x+(m+n)$
$(a+b) x+(a+b)(c-d)$
$\Rightarrow 2 \mathrm{md} x+2 n c x+2 a d=2 a n x+2 b m x+2 b c$
$\Rightarrow x=\frac{a d-b c}{m(b-d)+n(a-c)}$
21. (A) A.T.Q,

$\frac{\operatorname{ar}(\triangle \mathrm{ABE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{8}$
We know that,
Median divides the triangle into two triangles of equal areas.
Then,
$\frac{\operatorname{ar}(\triangle \mathrm{ABE})}{\operatorname{ar}(\triangle \mathrm{ABD})}=\frac{1}{4}$
Therefore, $\frac{\mathrm{AE}}{\mathrm{AD}}=\frac{1}{4}$
$\therefore \mathrm{AE}=\mathrm{ED}=1: 3$
22. (D) A.T.Q,

$h_{1}: h_{2}: h_{3}=1: 2: 3$
We know that,
$\frac{\mathrm{r}_{1}}{\mathrm{~h}_{1}}=\frac{\mathrm{r}_{2}}{\mathrm{~h}_{2}}=\frac{\mathrm{r}_{3}}{\mathrm{~h}_{3}}$
Then, $r_{1}: r_{2}: r_{3}=1: 2: 3$
\therefore Ratio of volumes of I, II and III
= $1: 7: 19$
Now, volume of the bigger cone (I + II + III)
$=\frac{1}{3} \pi r_{3}^{2} h_{3}$
$\Rightarrow(1+7+19)$ units
$=\frac{1}{3} \times \frac{22}{7} \times 18 \times 18 \times 63=21384 \mathrm{~cm}^{3}$
$\Rightarrow 27$ units $=21384 \mathrm{~cm}^{3}$
Then, area of the larger frustum
$=19$ units $=\frac{21384}{27} \times 19=15048 \mathrm{~cm}^{3}$
23. (C) A.T.Q,

Sum of the roots $(\tan \alpha+\tan \beta)=\frac{-b}{a}$ and,
product of the roots $(\tan \alpha \tan \beta)=\frac{\mathrm{c}}{\mathrm{a}}$
Now, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
Putting the respective values, we get
$\tan (\alpha+\beta)=\frac{\frac{-b}{a}}{1-\frac{c}{a}}=\frac{b}{c-a}$
24. (B) Let the coordinates of A and B be $(x, 0)$ and $(0, y)$ respectively.

Now, using mid point formula, we get,
$\frac{x+0}{2}=4 \Rightarrow x=8$
and, $\frac{y+0}{2}=6 \Rightarrow y=12$
Then, area of $\Delta \mathrm{OAB}=\frac{1}{2} \times x \times y$
$=\frac{1}{2} \times 8 \times 12=48$ sq. units
25. (A) $\frac{\left(\cos 18^{\circ}-\cos 54^{\circ}\right)\left(\sin 84^{\circ}+\sin 36^{\circ}\right)}{\left(\cos 24^{\circ}-\cos 96^{\circ}\right)\left(\sin 42^{\circ}-\sin 6^{\circ}\right)}$
$=\frac{\left(2 \sin 36^{\circ} \sin 18^{\circ}\right)\left(2 \sin 60^{\circ} \cos 24^{\circ}\right)}{\left(2 \sin 60^{\circ} \sin 36^{\circ}\right)\left(2 \cos 24^{\circ} \sin 18^{\circ}\right)}$
= 1
26. (A) A.T.Q,

$\mathrm{BD}=20 \mathrm{~m}$
Now,
$(\sqrt{3}-1)$ units $=20 \mathrm{~m}$
Then, height of the lamp post
1 unit $=\frac{20}{\sqrt{3}-1} \mathrm{~m}=10(\sqrt{3}+1) \mathrm{m}$
\therefore height of the lamp post $=10(\sqrt{3}+1) \mathrm{m}$
27. (B) We know that,

If $a \sin \theta+b \cos \theta=c$
Let $b \sin \theta-a \cos \theta=x$
Then, $a^{2}+b^{2}=c^{2}+x^{2}$
$\Rightarrow x=\sqrt{a^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}$
$\therefore \mathrm{b} \sin \theta-a \cos \theta=\sqrt{a^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}$
28. (A) A.T.Q,
$\operatorname{cosec} \theta+\cot \theta=P$ \qquad
$\operatorname{cosec} \theta-\cot \theta=\frac{1}{P}$
Then,
Subtracting equation (ii) and from (i), we get
$2 \cot \theta=P-\frac{1}{P}$
$\Rightarrow \tan \theta=\frac{2 \mathrm{P}}{\mathrm{P}^{2}-1}$
Now,
$\sec \theta=\sqrt{1+\tan ^{2} \theta}$
$=\sqrt{1+\left(\frac{2 \mathrm{P}}{\mathrm{P}^{2}-1}\right)^{2}}=\frac{\mathrm{P}^{2}+1}{\mathrm{P}^{2}-1}$
29. (B) A.T.Q,
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan \cdot \tan B}$
$=\frac{a+b+a-b}{1-(a+b)(a-b)}$
$=\frac{2 a}{1-\left(a^{2}-b^{2}\right)}$ \qquad
and, $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}$
$=\frac{(a+b)-(a-b)}{1+(a+b)(a-b)}=\frac{2 b}{1+\left(a^{2}-b^{2}\right)}$
Multiply equation (i) and (ii), we get $\tan (A+B) \cdot \tan (A-B)$
$=\frac{2 a}{1-\left(a^{2}-b^{2}\right)} \times \frac{2 b}{1+\left(a^{2}-b^{2}\right)}$
30. (C) Length of the longest $\operatorname{rod}=\sqrt{l^{2}+b^{2}+h^{2}}$
$=\sqrt{3^{2}+4^{2}+5^{2}}=5 \sqrt{2} \mathrm{~cm}$
31. (C) Total age of couple at the time of marriage $=23 \times 2=46$ years
and, total age of family at the time birth of first child $=16 \times 3=48$ years
and, total age of family at the time of birth of second child $=15 \times 4=60$ years

Here, age of the first child $=\frac{60-48}{3}$
$=4$ years
Now,
total age of family $=20 \times 4=80$ years
then, age of the first child $=4+\frac{80-60}{4}$
$=4+5=9$ years
32. (C)

Valid votes
Now, difference between the votes of winning candidate and losing candidate

Campus
 KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=81 \times \frac{60}{100}-81 \times \frac{40}{100}=\frac{81}{5}$ units
A.T.Q,
$\frac{81}{5}$ units $=3240$
Then, total number of votes $=100$ units
$=\frac{3240 \times 5}{81} \times 100=20000$
33. (D) A.T.Q,

Profit gained by selling 20\% above CP = 20\%
and, profit gained by selling 20% less
quantity $=\frac{20}{80} \times 100=25 \%$
Then, net profit $=20+25+\frac{20 \times 25}{100}$
$=50 \%$
34. (B) A.T,Q

CP of 5 dozen bananas $=\frac{6}{5} \times 60=₹ 72$
and, remaining bananas $=60-6=54$
Now, SP of 54 bananas $=72 \times \frac{125}{100}=₹ 90$
Then, SP of one dozen bananas
$=\frac{90}{54} \times 12=₹ 20$
35. (B) A.T.Q,

Work done by Rahim in 10 days
$=4 \times 10=40$ unit
Then, time taken by Ram to complete
the remaining work $=\frac{60-40}{5}=4$ days
Now, required number of days
= $10-4$ = 6 days
36. (C) Required remainder will be the remainder obtained by dividing 97 by 37 .
Now,
$97=37 \times 2+23$
\therefore Required remainder $=23$
37. (B) A.TQ,

	Old	New
r	100	120
r	100	120
h	100	80

Volume $=100 \times 100 \times 100: 120 \times 120: 80$
= 125: 144
Then, percentage change in volume
$=\frac{144-125}{125} \times 100 \%=15.2 \%$
38. (A) A.T.Q,

Area of the church to be painted
$=$ Area of four walls + C.S.A of hemisphere

+ (area of roof - area of circular part of hemisphere)
$=4 a^{2}+2 \pi r^{2}+a^{2}-\pi r^{2}$
$=5 a^{2}+\pi r^{2}$
Here, $a=28 \mathrm{~cm}$
and, radius of hemisphere $=\frac{a}{2}=14 \mathrm{~cm}$ Then, required area
$=5 \times 28 \times 28+\frac{22}{7} \times 14 \times 14=4536 \mathrm{~m}^{2}$
Now,
cost of white wash $=15 \times 4536=₹ 68040$

39. (B) A.T.Q,
$\begin{array}{rrr}4000 \times 3 \\ +6000 \times 9 & +4000 \times 6 & \begin{array}{r}5000 \times 8 \\ 66000\end{array}\end{array} \begin{gathered}56000\end{gathered} \frac{15000 \times 4}{100000}$ The, Ratio of profit of A, B and C
= $33: 28: 50$
And,
Total profit = ₹6750
and, the amount which C gets due to his continutiy $=100 \times 12=₹ 1200$
Now, profit to be shared among
A, B and $C=6750-1200=₹ 5550$
Here,
$(33+28+50)$ units $=₹ 5550$
$\Rightarrow 111$ units $=₹ 5550$
$\Rightarrow 1$ unit $=₹ 50$
Then, share of $\mathrm{B}=28$ units
$=28 \times 50=₹ 1400$
40. (B) Let the investments of the person be P_{1}, P_{2} and P_{3}
A.T.Q,
$P_{1}\left[\frac{r_{1} t_{1}}{100}+1\right]=P_{2}\left[\frac{r_{2} t_{2}}{100}+1\right]=P_{3}\left[\frac{r_{3} t_{3}}{100}+1\right]$
$\Rightarrow P_{1}\left[\frac{6 \times 5}{100}+1\right]=P_{2}\left[\frac{8 \times 5}{100}+1\right]=P_{3}\left[\frac{10 \times 6}{100}+1\right]$
$\Rightarrow 13 \mathrm{P}_{1}=14 \mathrm{P}_{2}=16 \mathrm{P}_{3}$
Then,
$P_{1}: P_{2}: P_{3}=14 \times 16: 13 \times 16: 13 \times 14$
= 112: 104: 91
\therefore Required ratio $=112: 104: 91$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
41. (A) A.T.Q,

CP MP SP

4	5		$\times 3$
6		7	$\times 2$

Now, Ratio of CP, MP and SP
= $12: 15: 14$
Then, discount percent
$=\frac{15-14}{15} \times 100 \%$
$=6 \frac{2}{3} \%$
42. (B) Let the speeds of the trains of be $x \mathrm{~m} / \mathrm{s}$ and $y m / s$.
Then, relative speed of the trains when they move in opposite direction $(x+y)$
$=\frac{250+350}{12}=50 \mathrm{~m} / \mathrm{s}$
and, relative speed of the trains when they move in same direction $(x-y)$
$=\frac{250+350}{30}=20 \mathrm{~m} / \mathrm{s}$
Now, speed of the faster train
$=\frac{(x+y)+(x-y)}{2}=\frac{50+20}{2}=35 \mathrm{~m} / \mathrm{s}$
43. (C) Let total number of overs be x.
A.T.Q,
$6(x-3)+42=6.5 x$
$\Rightarrow 6 x-18+42=6.5 x$
$\Rightarrow 0.5 x=24$
$\Rightarrow x=48$
\therefore Total number of overs $=48$
44. (B) A.T.Q,

$$
\begin{equation*}
\mathrm{P}\left[1+\frac{\mathrm{r}}{100}\right]^{3}=10000 \tag{i}
\end{equation*}
$$

and, $\mathrm{P}\left[1+\frac{\mathrm{r}}{100}\right]^{5}=11025$ \qquad
Dividing equation (ii) by (i), we get
$\left(1+\frac{r}{100}\right)^{2}=\frac{11025}{10000}$
$\Rightarrow\left(1+\frac{\mathrm{r}}{100}\right)^{2}=\frac{441}{400}=\left(\frac{21}{20}\right)^{2}$
$\Rightarrow 1+\frac{\mathrm{r}}{100}=\frac{21}{20}$
On solving, we get
$r=5 \%$
\therefore Required rate of interest $=5 \%$
45. (B) Now,
$\begin{aligned} & \mathrm{A} \longrightarrow 12 \\ & \mathrm{~B} \longrightarrow 15 \\ & \mathrm{C} \longrightarrow 20\end{aligned}>60<\begin{aligned} & 5 \\ & 4 \\ & 3\end{aligned}$
Let amount of money which C gets $=x$
Then, amount of money which B gets
$=x+4500$
and, amount of money which A gets
$=15000-(x+x+4500)=10500-2 x$
Now,
$\frac{10500-2 x}{x+4500}=\frac{5}{4}$
On solving, we get
$x=1500$
Then, ratio of amount of A, B and C
$=(10500-2 \times 1500):(1500+4500):$
$1500=5: 4: 1$
Now, $(5+4+1)$ units $=60$
10 units $=60$
Then, amount of work done by A
$=\frac{60}{10} \times 5=30$
\therefore Time taken by A to complete the work
$=\frac{30}{5}=6$ days
46. (D) A.T.Q,
$\frac{\mathrm{P} \times \mathrm{r}_{1} \times 8}{100}=(3-1) \mathrm{P}$
$\Rightarrow \mathrm{r}_{1}=25 \%$
and, $\frac{\mathrm{P} \times \mathrm{r}_{2} \times 10}{100}=(5-1) \mathrm{P}$
$\Rightarrow r_{2}=40 \%$
Then, required difference
= $40 \%-25 \%=15 \%$
47. (B) Let the speed of the cyclist be $x \mathrm{~km} / \mathrm{h}$.
A.T.Q,
$\frac{20}{x-2}-\frac{20}{x}=\frac{30}{60}$
$\Rightarrow \frac{1}{x-2}-\frac{1}{x}=\frac{1}{40}$
On solving, we get $x=10$
\therefore speed of the cylist $=10 \mathrm{~km} / \mathrm{h}$
48. (D) A.T.Q,

	A	B	
Income	8	11	$\times 2$
Expenditure	5	7	$\times 3$

Then, new ratio becomes

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\left.\begin{array}{lcc} & \mathrm{A} & \mathrm{B} \\ \text { Income } & 16 & 22 \\ \text { Expenditure } & 15 & 21\end{array}\right) 1$ unit

Now,
1 unit = ₹ 2500
Then, difference between their monthy income $=(22-16)$ units $=6$ units
$=6 \times 2500=₹ 15000$
49. (B) Let the population of the village be x. Then,
$x \times \frac{320}{300} \times \frac{365}{400}=4380$
On solving, we get
$x=4500$
50. (D) A.T.Q,
employee 9 : 5
salary 10 : 27
Total salary $=90: 135=2: 3$
Required change $=2: 3$
51. (C) Using pythagoras, we get

$\mathrm{BC}=\sqrt{37^{2}-35^{2}}=12 \mathrm{~cm}$
Now, circumradius of the triangle
$=\frac{37}{2}=18.5 \mathrm{~cm}$
and, inradius of the triangle
$=\frac{\mathrm{AB}+\mathrm{BC}-\mathrm{AC}}{2}$
$=\frac{35+12-37}{2}=5 \mathrm{~cm}$
Then, required difference
= $18.5-5=13.5 \mathrm{~cm}$
52. (C) A.T.Q,

Distance travelled by B in 10 seconds
$=200 \mathrm{~m}$
Then, speed of $B=\frac{200}{10}=20 \mathrm{~m} / \mathrm{s}$
and, time taken by B to cover 800 m
$=\frac{800}{20}=40 \mathrm{sec}$
Now, time taken by A to cover 1000 m $=40 \mathrm{sec}$
and, time taken by B to cover 1000 m

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
57. (B) Slant height of the pyramid
61. (A) A.T.Q,
$=\sqrt{10^{2}+7.5^{2}}=12.5 \mathrm{~m}$
Now, total surface area of the pyramid
$=$ area of base $+4 \times$ area of slant surface
$=20 \times 20+4 \times\left(\frac{1}{2} \times 20 \times 12.5\right)=900 \mathrm{~m}^{2}$
58. (A) A.T.Q,
$x=\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}$
$\Rightarrow x=\frac{3+\sqrt{5}}{2}$
Now,
$\frac{1}{x}=\frac{2}{3+\sqrt{5}}=\frac{3-\sqrt{5}}{2}$
Adding equation (i) and (ii), we get
$x+\frac{1}{x}=\frac{3+\sqrt{5}}{2}+\frac{3-\sqrt{5}}{2}$
$\Rightarrow x+\frac{1}{x}=3$
$\Rightarrow x^{2}+1=3 x$
$\Rightarrow x^{2}-3 x+1=0$
59. (D) Let $\mathrm{AC}=x$ unit

Then, $\mathrm{BC}=x-2$ unit
Using pythagoras, we get

$$
\begin{aligned}
& x^{2}-(x-2)^{2}=(4 \sqrt{2})^{2} \\
& \Rightarrow(x-x+2)(x+x-2)=32 \\
& \Rightarrow x=9 \\
& \text { Now, } \\
& \sec A+\tan A=\frac{A C}{A B}+\frac{B C}{A B}=\frac{9+7}{4 \sqrt{2}}=2 \sqrt{2}
\end{aligned}
$$

60. (A) A.T.Q,
$\frac{\text { C.S.A }}{\text { T.S.A }}=\frac{3}{4}$
$\Rightarrow \frac{2 \pi \mathrm{rh}}{2 \pi \mathrm{r}(h+r)}=\frac{3}{4}$
$\Rightarrow h=3 r$
Now, T.S.A of the cylinder $=1232 \mathrm{~cm}^{2}$
$\Rightarrow 2 \pi \mathrm{r}(h+r)=1232$
On putting $h=3 \mathrm{r}$ and solving, we get
$r=7 \mathrm{~cm}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\tan \theta \times \cot \theta=\frac{24}{\mathrm{AD}} \times \frac{6}{\mathrm{AD}}$
$\Rightarrow \mathrm{AD}^{2}=144$
$\Rightarrow \mathrm{AD}=12$
\therefore Distance between the person and the building = 12 feet
64. (A) A.T.Q,
$x=\sqrt[3]{a+\sqrt{a^{2}+b^{3}}}+\sqrt[3]{a-\sqrt{a^{2}+b^{3}}}$
On cubing both sides, we get
$x^{3}=a+\sqrt{a^{2}+b^{3}}+a-\sqrt{a^{2}+b^{3}}+$
$3\left(a^{2}-\left(a^{2}+b^{3}\right)\right)^{\frac{1}{3}} x$
$\Rightarrow x^{3}=2 a-3 b x$
$\Rightarrow x^{3}+3 \mathrm{~b} x=2 a$
65. (B) A.T.Q,

Area of the triangular field
$=\frac{1}{2} \times 80 \times 60=2400 \mathrm{~m}^{2}$
and, area of the field which is grazed by
horses $=\pi r^{2} \times \frac{180^{\circ}}{360^{\circ}}$
$=\frac{22}{7} \times 14 \times 14 \times \frac{1}{2}=308 \mathrm{~m}^{2}$
Then, the area which is left ungrazed $=2400-308=2092 \mathrm{~m}^{2}$
66. (B) Here, D, E and F are the midpoints of side $A C, A B$ and $B C$ respectively.
$\therefore \mathrm{BD}$ is the median of $\triangle \mathrm{ABC}$.
67. (D) A.T.Q,

Now, 80% pulp of dry fruit $=48 \mathrm{~kg}$.
Then, total quantity of dry fruits $=100 \%$
$=\frac{48}{80} \times 100=60 \mathrm{~kg}$
68. (A) A.T.Q,
$\frac{1}{x}: \frac{1}{y}: \frac{1}{z}=3: 4: 5$
$x: y: z=\frac{1}{3}: \frac{1}{4}: \frac{1}{5}$

Now, multiply all the ratios by the LCM of 3,4 and 5
Then,
$x: y: z=\frac{1}{3} \times 60: \frac{1}{4} \times 60: \frac{1}{5} \times 60$
$=20: 15: 12$
69. (D) A.T.Q,
$p^{2}-q^{2}=(\tan \theta+\sin \theta)^{2}-(\tan \theta-\sin \theta)^{2}$
$=4 \tan \theta \sin \theta$ \qquad
and,
$p q=(\tan \theta+\sin \theta)(\tan \theta-\sin \theta)$
$=\tan ^{2} \theta-\sin ^{2} \theta$
$=\sin ^{2} \theta\left(\frac{1}{\cos ^{2} \theta}-1\right)$
$=\sin ^{2} \theta \times \frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$=\tan ^{2} \theta \sin ^{2} \theta$
Then, $\sqrt{p q}=\tan \theta \cdot \sin \theta$
Divide equation (i) by equation (ii), we get
$\frac{p^{2}-q^{2}}{\sqrt{p q}}=4$
$\Rightarrow p^{2}-q^{2}=4 \sqrt{p q}$
70. (B) A.T.Q,

area of $\triangle \mathrm{OED}=\frac{1}{3} \times$ area of $\Delta \mathrm{DEF}$
and, area of $\triangle \mathrm{DEF}=\frac{1}{4} \times$ area of $\triangle \mathrm{ABC}$ Then, area of $\Delta \mathrm{OED}=\frac{1}{12} \times$ area of $\triangle \mathrm{ABC}$
$=\frac{1}{12} \times 48=4 \mathrm{~cm}^{2}$
71. (C) Let the width of the road be $x \mathrm{~m}$.

Then, area of the road

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$=64 \times x+48 \times x-x^{2}=112 x-x^{2}$
Now, $112 x-x^{2}=\frac{8560}{16}$
$\Rightarrow 112 x-x^{2}=535$
On solving, we get
$x=5 \mathrm{~m}$
\therefore width of the road $=5 \mathrm{~m}$
72. (B) A.T.Q,

Distance travelled by A, B and C is 1000 m , 970 m and 873 m respectively.
Now, when B travels a distance of 1000 m, then distance travelled by C
$=\frac{1000}{970} \times 873=900 \mathrm{~m}$
Then, start given by B to $C=1000-900$ $=100 \mathrm{~m}$
73. (C) A.T.Q,
$x=\sqrt{3}+\sqrt{4}+\sqrt{5}$
$\Rightarrow x-2=\sqrt{3}+\sqrt{5}$
Squaring both sides, we get
$x^{2}+4-4 x=3+5+2 \sqrt{15}$
$\Rightarrow x^{2}-4-4 x=2 \sqrt{15}$
Again squaring both sides, we get
$x^{4}+16 x^{2}+16-8 x^{3}+32 x-8 x^{2}=60$
$\Rightarrow x^{4}-8 x^{3}+8 x^{2}+32 x=44$
Multiply both sides by 3
$3 x^{4}-24 x^{3}+24 x^{2}+96 x=132$
Now,
$3 x^{4}-24 x^{3}+28 x^{2}+80 x-148$
$=132+4 x^{2}-16 x-148$
$=132+4[4+2 \sqrt{15}]-148=8 \sqrt{15}$
74. (C) A.T.Q,
$\left(1+\sec 40^{\circ}+\cot 50^{\circ}\right)\left(1-\operatorname{cosec} 40^{\circ}+\tan 50^{\circ}\right)$
$=\left(1+\sec 40^{\circ}+\tan 40^{\circ}\right)\left(1-\operatorname{cosec} 40^{\circ}+\cot 40^{\circ}\right)$
$=\left(1+\frac{1}{\cos 40^{\circ}}+\frac{\sin 40^{\circ}}{\cos 40^{\circ}}\right)\left(1-\frac{1}{\sin 40^{\circ}}+\frac{\cos 40^{\circ}}{\sin 40^{\circ}}\right)$
$=\frac{\left(1+\cos 40^{\circ}+\sin 40^{\circ}\right)\left(\sin 40^{\circ}-1+\cos 40^{\circ}\right)}{\cos 40^{\circ} \cdot \sin 40^{\circ}}$
$=\frac{\left(\cos 40^{\circ}+\sin 40^{\circ}\right)^{2}-1}{\cos 40^{\circ} \cdot \sin 40^{\circ}}$
$=\frac{1+2 \cos 40^{\circ} \sin 40^{\circ}-1}{\cos 40^{\circ} \sin 40^{\circ}}=2$
\therefore Required value $=2$
75. (C) We know that
$\tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$
Putting the value of tanA, we get
$\tan 2 A=\frac{2\left(\frac{1-\cos B}{\sin B}\right)}{1-\left(\frac{1-\cos B}{\sin B}\right)^{2}}$
$=\frac{2(1-\cos \mathrm{B}) \sin \mathrm{B}}{\sin ^{2} \mathrm{~B}-(1-\cos \mathrm{B})^{2}}$
$=\frac{2(1-\cos B) \sin B}{\sin ^{2} B-1-\cos ^{2} B+2 \cos B}$
$=\frac{2(1-\cos B) \sin B}{2 \cos B(1-\cos B)}=\tan B$
76. (B) A.T.Q,

Point C divides the line AB in the ratio of 1:2
Now,
$4=\frac{1 \times b+2 \times 5}{1+2}$
$\Rightarrow \mathrm{b}+10=12$
$\Rightarrow b=2$
77. (C) A.T.Q,
$\sin \mathrm{A} \cdot \sin \mathrm{B} \cdot \sin \mathrm{C}=\frac{2-\sqrt{2}}{4}$
and, $\cos \mathrm{A} \cdot \cos \mathrm{B} \cdot \cos \mathrm{C}=\frac{\sqrt{2}+1}{4}$
Divide equation (i) by (ii), we get
$\tan A \cdot \tan B \cdot \tan C=\frac{\frac{(2-\sqrt{2})}{4}}{\frac{\sqrt{2}+1}{4}}=\frac{\sqrt{2}(\sqrt{2}-1)}{(\sqrt{2}+1)}$
$=\sqrt{2}(3-2 \sqrt{2})=3 \sqrt{2}-4$
Now, In $\triangle \mathrm{ABC}$
$\tan (\mathrm{A}+\mathrm{B})=-\tan \mathrm{C}$
$\Rightarrow \frac{\tan A+\tan B}{1-\tan A \cdot \tan B}=-\tan C$
$\Rightarrow \tan A+\tan B=-\tan C+\tan A \cdot \tan B \cdot \tan C$
$\Rightarrow \tan A+\tan B+\tan C=\tan A \cdot \tan B \cdot \tan C$
$=3 \sqrt{2}-4$
78. (C) A.T.Q,
$1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+$ \qquad $\infty=x$
$\Rightarrow\left(1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots \infty\right)+\left(\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}} \ldots \ldots . \infty\right)=\mathcal{X}$
$\Rightarrow\left(1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . \infty\right)+\frac{1}{2^{2}}\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots . \infty\right)=x$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow\left(1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \infty\right)+\frac{x}{4}=x$
$\Rightarrow\left(1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \infty\right)=\frac{3 x}{4}$
79. (D) We know that

radius $(\mathrm{r})=\frac{\text { length } \operatorname{of} \operatorname{are}(l)}{\operatorname{angle} \text { in } \operatorname{radian}(\theta)}$
A.T.Q,
$l=11 \mathrm{~cm}$
and, $\theta=45 \times \frac{1}{60} \times \frac{\pi}{180}=\left(\frac{11}{840}\right)^{c}$
Now, $r=\frac{11}{\frac{11}{840}} \Rightarrow r=840 \mathrm{~cm}$
\therefore Required distance $=840 \mathrm{~cm}$
80. (A) A.T.Q,

Equation of line AB is $3 x+y-3=0 \ldots$. (i)
Then, slope of line $A B=-3$
and, slope of line $P Q=\frac{1}{3}$
$(\because \mathrm{PQ} \perp \mathrm{AB})$
Now, equation of line $P Q$ is
$\frac{y-4}{x-3}=\frac{1}{3}$
$\Rightarrow 3 y-12=x-3$
$\Rightarrow x-3 y+9=0$
Solving equation (i) and (ii). we get
$x=0$ and $y=3$
We know that
$\mathrm{O}(0,3)$ is the mid point of PQ
Then, $0=\frac{a+3}{2} \Rightarrow-3$
and, $3=\frac{b+4}{2} \Rightarrow \mathrm{~b}=2$
\therefore Required point $=(-3,2)$
81. (B) Let time taken for the rise in water level
= thours
A.T.Q,
$\pi \mathrm{r}^{2} \times v \times \mathrm{t}=1 \times \mathrm{b} \times \mathrm{h}$
$\Rightarrow \frac{22}{7} \times \frac{21}{200} \times \frac{21}{200} \times 8000 \times t=66 \times 48 \times \frac{7}{100}$
On solving, we get
$\mathrm{t}=0.8$ hours
\therefore Required time $=0.8 \times 60=48$ minutes
82. (C) A.T.Q,
$\mathrm{P}\left[1+\frac{\mathrm{r}}{100}\right]^{3}=2^{3} \mathrm{P}$ \qquad
Now,
For the amount to be 16 times
$\mathrm{P}\left(1+\frac{\mathrm{r}}{100}\right)^{n}=2^{4} \mathrm{P}$ \qquad
From (i) and (ii), we get
$n=4$
\therefore Required time $=4$ years
83. (B) Let the annual payment be ₹ x.

Then,
$14040=x+\left(x+\frac{x \times r}{100}\right)+\left(x+\frac{x \times 2 \times r}{100}\right)+\ldots$
$\Rightarrow 14040=5 x+\frac{x}{100} \times 4(1+2+3+4)$
$\Rightarrow 14040=\frac{27 x}{5}$
$\Rightarrow x=2600$
\therefore Required annual payment $=₹ 2600$
84. (D) A.T.Q,

Distance travelled by bus in 3 minutes Distance travelled by man in 12 minutes Then, ratio of their speeds $=4: 1$
\therefore Speed of man $=\frac{40}{4} \times 1=10 \mathrm{~km} / \mathrm{h}$
85. (A) A.T.Q,

Numbers divisible by $10=100$,
Numbers divisible by $15=66$,
Numbers divisible by $25=40$
Now,
Number divisible by LCM of 10 and $15=33$
Number divisible by LCM of 15 and $25=13$,
Number divisible by LCM of 25 and $10=20$,
And,
Numbers divisible by LCM of 10, 15 and $25=6$
Then,

Required numbers
$=(100+33+40)-(33+13+20)+6=146$
Now, numbers which are not divisible by all these numbers $=1000-146=854$
86. (A) Given sequence is in the form of $n^{2}-1$ Then, 11 th term of the sequence $=11^{2}-1=120$
87. (B) A.T.Q,
$\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=\mathrm{b}$
Rationalizing the denominator, we get
$\frac{a+x+a-x+2 \sqrt{a^{2}-x^{2}}}{(a+x)-(\mathrm{a}-x)}=\mathrm{b}$
$\Rightarrow 2 a+2 \sqrt{a^{2}-x^{2}}=2 \mathrm{~b} x$
$\Rightarrow \sqrt{a^{2}-x^{2}}=b x-a$
Squaring both sides, we get
$a^{2}-x^{2}=b^{2} x^{2}+a^{2}-2 a b x$
$\Rightarrow 2 \mathrm{ab} x=\left(b^{2}+1\right) x^{2}$
$\Rightarrow x=\frac{2 \mathrm{ab}}{b^{2}+1}$
88. (c) A.T.Q,

$4 \sin \theta+5 \cos ^{2} \theta=5$
$\Rightarrow \sin \theta+5-5 \sin ^{2} \theta=5$
$\Rightarrow \sin \theta=\frac{4}{5}$
Using pythagoras, we get
$\cos \theta=\frac{3}{5}$
Then, $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{4}{3}$
89. (B) Let the price of the article be ₹100 Then,

CP of the article $=100 \times \frac{80}{100}=₹ 80$ and,
SP of the article $=150 \times \frac{70}{100}=₹ 105$
Then, profit percentage $=\frac{105-80}{80} \times 100$
$=31 \frac{1}{4} \%$
90. (B) A.T.Q,

Initially, ratio of X, Y and Z in the mixture
$=6: 4: 5 \Rightarrow 24: 16: 20$
Now,
Ratio of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ when 50% mixture is taken out and replaced by liquid X
$=12+30: 8: 10=42: 8: 10$
and, Ratio of X, Y and Z when 50% mixture is taken out and replaced by liquid $\mathrm{Y}=21: 4+30: 5$
= $21: 34: 5$
Then, percentage of Y in the final mixture
$=\frac{5}{21+34+5} \times 100 \%=8 \frac{1}{3} \%$
91. (C) Let the age of B is x years

Then, age of $A=\frac{3 x}{4}$ years
and, age of $\mathrm{C}=\frac{3 x}{4}+6$
Now,
$\frac{x+11}{\frac{3 x}{4}+6}=\frac{3}{2}$
On solving, we get
$x=16$
\therefore Present age of $\mathrm{B}=16$ years
92. (A) A.T.Q,

Ratio of males and females = 15:13
Now, $(15+13)$ units $=1,26,000$
$\Rightarrow 1$ unit $=4500$
Then, number of males in the town
$=15$ units $=4500 \times 15=67500$
and, number of females $=13$ units
$\Rightarrow 13 \times 4500=58500$
Now, number of illiterate persons in the town
$=67500 \times \frac{24}{100}+58500 \times \frac{36}{100}$
$=16200+21060=37260$
93. (D) Let the distance between A and B be D. Then,
$\frac{\mathrm{D}}{8.5-4.5}+\frac{\mathrm{D}}{8.5+4.5}=17$
$\frac{\mathrm{D}}{4}+\frac{\mathrm{D}}{13}=17$
On solving, we get
D $=52 \mathrm{~km}$
\therefore Distance between A and B $=52 \mathrm{~km}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
94. (A) Let the shares of the three persons be $5 x+37,9 x+58$ and $11 x+45$ respectively. A.T.Q,
$5 x+37+9 x+58+11 x+45=5765$
$\Rightarrow 25 x+140=5765$
$\Rightarrow x=225$
Then, share of the third person
$=11 x+45=2520$
95. (B) We know that, sum of an infinite AGP
$=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}$
Then, $S=\frac{1}{1-\frac{9}{10}}+\frac{1 \times \frac{9}{10}}{\left(1-\frac{9}{10}\right)^{2}}$
$=10+90=100$
96. (C) Total candidates appeared in states B and C together $=45000 \times \frac{19}{100}=8550$ and, total candidates qualified from states B and C
$=9000 \times \frac{23}{100}=2070$
Then, required perentage
$=\frac{2070}{8550} \times 100=24.21 \%$
97. (B) Difference between the number of candidates qualified from C and F

$$
=9000 \times \frac{11-7}{100}=9000 \times \frac{4}{100}=360
$$

98. (D) Required ratio $=(15+8):(17+22)$

$$
=23: 39
$$

99. (D)

State	Appeared	Qualified	percentage
A	6750	1620	24%
B	4950	1440	29.09%
C	3600	630	17.5%
D	7650	1890	24.7%
E	4050	1260	31.1%
F	8100	990	12.22%
G	9900	1170	11.81%

\therefore State G has minimum percentage of qulified candidates.
100. (B) Total number of candidates failed in states
$B=4950-1440=3510$
$D=7650-1890=5760$
$C=3600-630=2970$
$\mathrm{F}=8100-990=7110$
Then, Required ratio
$=(3510+5760):(2970+7110)$
$=9270: 10080=103: 112$

SSC TIER II (MATHS) MOCK TEST - 35 (ANSWER

1. (C)	11. (C)	21. (A)	31. (C)	41. (A)	51. (C)	61. (A)	71. (C)	81. (B)	91. (C)
2. (B)	12. (A)	22. (D)	32. (C)	42. (B)	52. (C)	62. (C)	72. (B)	82. (C)	92. (A)
3. (B)	13. (B)	23. (C)	33. (D)	43. (C)	53. (B)	63. (B)	73. (C)	83. (B)	93. (D)
4. (D)	14. (D)	24. (B)	34. (B)	44. (B)	54. (C)	64. (A)	74. (C)	84. (D)	94. (A)
5. (A)	15. (B)	25. (A)	35. (B)	45. (B)	55. (C)	65. (B)	75. (C)	85. (A)	95. (B)
6. (C)	16. (D)	26. (A)	36. (C)	46. (D)	56. (C)	66. (B)	76. (B)	86. (A)	96. (C)
7. (B)	17. (B)	27. (B)	37. (B)	47. (B)	57. (B)	67. (D)	77. (C)	87. (B)	97. (B)
8. (C)	18. (A)	28. (A)	38. (A)	48. (D)	58. (A)	68. (A)	78. (C)	88. (c)	98. (D)
9. (D)	19. (C)	29. (B)	39. (B)	49. (B)	59. (D)	69. (D)	79. (D)	89. (B)	99. (D)
10. (A)	20. (A)	30. (C)	40. (B)	50. (D)	60. (A)	70. (B)	80. (A)	90. (B)	100.(B)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

