SSC TIER II (MATHS) MOCK TEST - 34 (SOLUTION)

1. (B) A.T.Q

Regular working hours in 8 week
$=6 \times 9 \times 8=432$ hours
Earning in these working hours
$=(6 \times 9 \times 8) \times 60=₹ 25920$
\therefore Additional amount earned
= $27670-25920$ = ₹ 1750
Number of hours he work over time
$=\frac{1750}{70}=25$ hours
\therefore Required number of hours
$=432+25=457$ hours
2. (A) Let the number of persons in building $\mathrm{A}=\mathrm{a}$ and the number of persons in building $B=b$
A.T.Q
$a-10=b+10$
$\Rightarrow a-b=20$
and
$3(b-15)=a+15$
$\Rightarrow 3 \mathrm{~b}-45=\mathrm{a}+15$
$\Rightarrow 3 \mathrm{~b}-\mathrm{a}=60$
Using equation (i), we get
$3(a-20)-a=60$
$\Rightarrow 3 \mathrm{a}-60-\mathrm{a}=60$
$\Rightarrow 2 \mathrm{a}=120$
$\Rightarrow a=60$
3. (C) A.T.Q,

$$
\begin{aligned}
& =1+\frac{1}{5+\frac{1}{5+\frac{5}{26}}}=1+\frac{1}{5+\frac{26}{135}} \\
& =\frac{701+135}{701}=\frac{836}{701}
\end{aligned}
$$

4. (B) A.T.Q,
$\frac{1}{\sqrt{16}-\sqrt{15}}=\frac{\sqrt{16}+\sqrt{15}}{(\sqrt{16}-\sqrt{15})(\sqrt{16}+\sqrt{15})}$
$=\frac{\sqrt{16}+\sqrt{15}}{16-15}=\sqrt{16}+\sqrt{15}$
Similarly other terms can be simplified
$\therefore(\sqrt{16}+\sqrt{15})-(\sqrt{15}+\sqrt{14})+(\sqrt{14}+\sqrt{13})$
$-(\sqrt{13}+\sqrt{12})+(\sqrt{12}+\sqrt{10})-(\sqrt{10}+\sqrt{9})$
$=\sqrt{16}-\sqrt{9}=4-3=1$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
9. (A) A.T.Q
$\frac{(x-\sqrt{48})(10+\sqrt{75})}{10-\sqrt{75}}=1$
$\Rightarrow \frac{(x-4 \sqrt{3})(5 \times 2+5 \sqrt{3})}{(5 \times 2-5 \sqrt{3})}=1$
$\Rightarrow \frac{(x-4 \sqrt{3})(2+\sqrt{3})}{(2-\sqrt{3})}=1$
$\Rightarrow(x-4 \sqrt{3})(2+\sqrt{3})^{2}=1$
$\Rightarrow(x-4 \sqrt{3})(4+3+2 \times 2 \sqrt{3})=1$
$\Rightarrow x-4 \sqrt{3}=7-4 \sqrt{3}=x=7$
\therefore Required value of $x=7$
10. (C) Let the number $=10 x+y$
A.T.Q,
$x y=63$
and,
$10 x+y-18=10 y-x$
$\Rightarrow 9 x-9 y=18$
$\Rightarrow x-y=2$
\therefore Required number $=97$
11. (A) A.T.Q,

A $+B-9$
$\mathrm{B}+\mathrm{C}-\frac{21}{2}$
 252
$\mathrm{C}+\mathrm{A}-12 \quad 21$
\therefore Required number of days
$=\frac{252}{73}=3 \frac{33}{73}$ days
12. (D) A.T.Q,
$12 \mathrm{~W} \times 14=12 \mathrm{C} \times 21$
$\Rightarrow \frac{\mathrm{W}}{\mathrm{C}}=\frac{3}{2}$
\therefore Required number of days
$=\frac{14 \times 3 \times 12}{(6 \times 3+12 \times 2)}=\frac{504}{42}=12$ days
13. (C) A.T.Q,
$3 \mathrm{M}+4 \mathrm{~B}=101$ \qquad
$12 \mathrm{M}+14 \mathrm{~B}=376$
Solving equation (i) and (ii), we get

$$
B=14
$$

and, $\quad \mathrm{M}=15$
\therefore Required number of days
$=\frac{3144}{8 \times 14+10 \times 15}=\frac{3144}{262}=12$ days
14. (A) A.T.Q,

45 men can do rest of work in 8 days
$\therefore 24$ men can do the work $=\frac{45 \times 8}{24}=15$
\therefore Required number of days
$=40+15-50=5$ days
15. (B) A.T.Q,
$\frac{p^{2}}{100}+\frac{q^{2}}{100}=\frac{2 p q}{100}$
$\Rightarrow(p-q)^{2}=0$
$\Rightarrow p=q$
\therefore Required percentage $=100 \%$
16. (B) A.T.Q,

Capacity αD^{2}
Ratio of their diameters $=\frac{1}{2}: \frac{3}{2}: 2$
$=1: 3: 4$
\therefore Total capicity of cistern $=39 \times 16=624$
\therefore Required time $=\frac{624}{1+9+16}=24$ minutes
17. (B)

Team A Team B
No. of question 400360
Time $x \quad x+2$
A.T.Q,
$\frac{400}{x}-\frac{360}{x+2}=5$
$\Rightarrow x^{2}-6 \mathrm{x}-160=0$
$\Rightarrow x^{2}-16 x+10 x-160=0$
$\Rightarrow x(x-16)+10(x-16)=0$
$\Rightarrow x=16,-10$
\therefore Required number of questions

$$
=\frac{360}{16+2}=20
$$

18. (D) A.T.Q

Required amount of mater in container
$\mathrm{A}=60-\frac{2}{3} \times 30-\frac{40}{2}=20$ litre
19. (D) A.T.Q,

Present age of Sachin $=9+5=14$ years
Rohit uncle's age after 12 years
$=(14+12) 2+16=68$ years
\therefore Rohit's present age $=\frac{3(68-12)}{4}$
$=42 \mathrm{years}$
20. (D) A.T.Q

Weight of new person $=(11 \times 3.2)+62.8$
$=35.2+62.8=98 \mathrm{~kg}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
21. (C) Let the average age of the cricket team $=x$
A.T.Q,
$11 x-25-28=(x-1) 9$
$\Rightarrow 11 x-53=9 x-9$
$\Rightarrow 2 x=44$
$\Rightarrow x=22$
22. (A) A.T.Q,

Total quantity of rice shopkeeper buys
$=\left(\frac{3600}{7.2}+\frac{3600}{7.5}+\frac{3600}{8}+\frac{3600}{9}\right)$
$=(500+480+450+400)=1830 \mathrm{~kg}$
\therefore Required cost price $=\frac{3600 \times 4}{1830}=₹ 7.8$
23. (A) A.T.Q

Cost price of the mixture $=\frac{75 \times 100}{137.5}=\frac{600}{11}$
\therefore Pure milk $=\frac{600}{11 \times 60}=\frac{10}{11}$
\therefore Required ratio $=1: 10$
24. (C) Let man purchased number of oranges be a and number of apples be b and let cost of a orange is x and a apple is y.
A.T.Q,

$$
\begin{aligned}
& a+b=27 \\
& a x+b y=18
\end{aligned}
$$

and

$$
\frac{b x+a y=15}{(a+b)(x+y)=33}
$$

$\Rightarrow x+y=\frac{33}{27}=\frac{11}{9}=₹ 1.22$
25. (B) Let the cost price of 1 litre milk $=$ ₹ 1
A.T.Q,

SP of 16 litre mixture $=16 \times 2=₹ 32$
Required profit $\%=\frac{32-12}{12} \times 100$
$=166.66 \%$
26. (A) Let cost price of a article $=x$
A.T.Q,

Total cost price $=200 x+50$
Total selling price
$=(120 \times 13.50)+\left(\frac{80 \times 13.50 \times 75}{100}\right)$
$=1620+810=2430$
Now,
$2430-200 x-50=\left(\frac{200 x+50}{100}\right) \times 40$
$\Rightarrow x=₹ 8.4$
27. (D) A.T.Q,

\therefore Initial cost price $=\frac{63}{3.15} \times 100=₹ 2000$
28. (A) A.T.Q.,
$25 \%=\frac{25}{100}=\frac{1}{4}$
Initial Now
Price 4
Consumption 15 x
Expenditure $605 x$
\therefore Now expenditure $=\frac{60 \times 110}{100}=66$
$\therefore x \times 5=66$
$\Rightarrow x=\frac{66}{5}$
\therefore New consumption $=13.2 \mathrm{~kg}$
29. (D) A.T.Q

Ratio of their income of present year
$=5 \times \frac{4}{3}: 7 \times \frac{5}{4}=16: 21$
\therefore Present income of Sandeep $\frac{4625}{37} \times 16=₹ 2000$
30. (C) A.T.Q,

Ratio of their investment
$=17500: 13500=35: 27$
$\therefore\left(\frac{30 \times 35}{62}-\frac{30 \times 27}{62}\right)$ units $=480$
$\Rightarrow 2.4$ units $=480$
\therefore Total profit $=\frac{480}{2.4} \times 62=₹ 12400$
31. (D) A.T.Q,
$15 \% \Rightarrow 20-17$
$20 \% \Rightarrow 5-4$
$25 \% \Rightarrow 4-3$

$$
\overline{400-204}
$$

\therefore Required discount $=\frac{196}{400} \times 100=49 \%$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
32. (B) Let the initial cost price of apple $=x$ A.T.Q.,
$\frac{120}{x}-\frac{120 \times 4}{5 x}=4 \Rightarrow \frac{120}{5 x}=4$
$\Rightarrow x=6$
\therefore Increased price of apple
$=\frac{6 \times 125}{100}=₹ 7.5$
33. (D) Let cost price of each article $=100$
A.T.Q
$\begin{array}{lccc} & & \text { CP } & \text { SP } \\ \text { Ist article } & - & 100 & 137.5 \\ \text { 2nd article } & - & 100 & x \\ \text { Both article } & - & 200 & 250\end{array}$
SP of 2nd article $=250-137.5=112.5$
Cost price of each article
$=\frac{2500}{25} \times 100=₹ 10000$
34. (A) A.T.Q.

Book Pen
12\% $p \quad 19 \% p-x$ \qquad
$19 \% p \quad 12 \% p-x+140$. \qquad
Solving equation (i) and (ii), we get
$-7 \%(B-P)=-140$

$$
B-P=2000
$$

and, $\frac{B+P=21000}{2 B=23000}$
$\Rightarrow \quad B=11500$
and $\quad \mathrm{P}=9500$
\therefore Cost price of Book and Pen are ₹ 11500 and ₹9500 respectively.
35. (D) A.T.Q,
$\left[\begin{array}{l}1-3 \\ 1-5 \\ 3-8\end{array}\right] \times 24 \times 15 \longrightarrow 120$
Now
40-120
24-120
45-120
Cost price of 240 articles $=$ ₹ 64
Selling price of 240 articles $=₹ 90$
If loss is 26 , then number of articles is 240 .
Hence, Total number of articles
$=\frac{240}{26} \times 78=720$
36. (B)

CP	MRP	SP
100	150	120
	$\downarrow \times 2$	\downarrow
	300	200

Required percentage
$=\frac{200-120}{120} \times 100=66 \frac{2}{3} \%$
37. (B) A.T.Q,
$26 \mathrm{CP}-26 \mathrm{SP}=8 \mathrm{CP}$
$\Rightarrow 18 \mathrm{CP}=26 \mathrm{SP}$
$\Rightarrow \frac{\mathrm{CP}}{\mathrm{SP}}=\frac{26}{18}$
\therefore Profit $\%=\frac{8}{26} \times 100=30 \frac{10}{13} \%$
38. (D) A.T.Q,
$2006-2007=\frac{50-35}{50} \times 100$
$=30 \%$ decrease
$2007-2008=\frac{35-25}{35} \times 100$
$=28.57$ decrease
$2008-2009=\frac{40-25}{25} \times 100$
= 60\% increase
\therefore Required year $=2009$
39. (D) A.T.Q,

Required ratio $=\left(\frac{40+45+30+55}{4}\right):$
$\left(\frac{50+35+25+40}{4}\right)=17: 15$
40. (B) A.T.Q,

Average production of company A
$=\frac{40+45+30+55}{4}=42.5$ lakhs
Average production of company B
$=\frac{50+35+25+40}{4}=37.5$ lakhs
Average production of company C
$=\frac{30+40+35+30}{4}=33.75$ lakhs
41. (B) For year 2007, company C has maximum production (40 lakhs)
42. (C) A.T.Q,

Required percentage $=\frac{55-30}{30} \times 100$
$=83 \frac{1}{3} \%$
43. (C) A.T.Q
$\tan \theta=\sqrt{12-\sqrt{12-\sqrt{12-\ldots \ldots \ldots \infty}}}$
Here, $12=4 \times 3$
$\therefore \tan \theta=3$
$\therefore \operatorname{cosec}^{2} \theta=\left(\frac{\sqrt{10}}{3}\right)^{2}=\frac{10}{9}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
44. (A) A.T.Q
$\tan \theta+\cot =\theta=p$ and $\sec \theta-\cos \theta=q$
$\Rightarrow \frac{1+\cot ^{2} \theta}{\cot \theta}=p$ and $\frac{1-\cos ^{2} \theta}{\cos \theta}=q$
$\Rightarrow \frac{\operatorname{cosec}^{2} \theta}{\cot \theta}=p$ and $\frac{\sin ^{2} \theta}{\cos \theta}=q$
$\Rightarrow \frac{1}{\sin \theta \cos \theta}=p$ and $\frac{\sin ^{2} \theta}{\cos \theta}=q$
$\therefore\left(p^{2} q\right)^{2 / 3}-\left(p q^{2}\right)^{2 / 3}$
$=\left(\frac{1}{\sin \theta^{2} \cos ^{2} \theta} \times \frac{\sin ^{2} \theta}{\cos \theta}\right)^{2 / 3}-\left(\frac{1}{\cos \theta \sin \theta} \times \frac{\sin ^{4} \theta}{\cos ^{2} \theta}\right)^{2 / 3}$
$=\frac{1}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$=\sec ^{2}-\tan ^{2} \theta=1$
Hence, $\left(p^{2} q\right)^{2 / 3}-\left(\mathrm{pq}^{2}\right)^{2 / 3}=1$
45. (A) A.T.Q.,

$$
\begin{aligned}
& \frac{\sin 35^{\circ}}{\cos 55^{\circ}}+\frac{\tan 78^{\circ}}{\cot 12^{\circ}}+\frac{\sin 135^{\circ}}{\cos 45^{\circ}}+\frac{\cos 150^{\circ}}{\sec 30^{\circ}}-1 \\
& =1+1+1-\left(\frac{\sqrt{3}}{2}\right)^{2}-1=\frac{5}{4}
\end{aligned}
$$

46. (A) A.T.Q,
$\sin \theta=\frac{20}{29}$

$\therefore \frac{3 \tan \theta+2 \cot \theta}{3 \tan \theta-2 \cot \theta}=\frac{3 \times \frac{20}{21}+2 \times \frac{21}{20}}{3 \times \frac{20}{21}-2 \times \frac{21}{20}}$
$=\frac{347}{53}$
47. (A) A.T.Q,
$\cot 18^{\circ}\left(\cot 72^{\circ} \cdot \cos ^{2} 22^{\circ}+\frac{1}{\tan 72^{\circ} \cdot \sec ^{2} \cdot 68^{\circ}}\right)$
$=\cot 18^{\circ} \cdot \cot 72^{\circ}\left(\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}\right)$
$=1 \times\left(\sin ^{2} 68^{\circ}+\cos ^{2} 68^{\circ}\right)=1$
48. (A) A.T.Q,
$\sin ^{2} \theta+\cos ^{2} \theta+\sec ^{2} \theta+\operatorname{cosec}^{2}+\tan ^{2} \theta+\cot ^{2} \theta$
$=1+1+\tan ^{2} \theta+1+\cot ^{2} \theta+\tan ^{2} \theta+\cot ^{2} \theta$
$=3+2 \tan ^{2} \theta+2 \cot ^{2} \theta$
\therefore Minimum value $=3+2 \times 2 \sqrt{1 \times 1}$
$=3+4=7$
49. (B) A.T.Q.,

If $\theta_{1}+\theta_{2}=90^{\circ}$, then $y=\sqrt{h_{1} \times h_{2}}$
$\therefore y=\sqrt{36 \times 25}=30 \mathrm{~m}$
50. (A) A.T.Q.,

In $\triangle \mathrm{ADC}$,
$\angle \mathrm{DCA}=\angle \mathrm{DAC}=30^{\circ}$
$\therefore \mathrm{AD}=\mathrm{DC}=54 \mathrm{~cm}$
(opp. sides of equal angles)
In $\triangle \mathrm{ABD}$,
$\therefore \tan 60^{\circ}=\sqrt{3}$
$\mathrm{AB} \quad \mathrm{BD} \quad \mathrm{AD}$
$\begin{array}{lll}\sqrt{3} & 1 & 2\end{array}$
$\therefore \mathrm{BD}=\frac{54}{2}=27 \mathrm{~cm}$
51. (B) A.T.Q.
$x+\frac{1}{x+8}=0$
Putting value $\mathrm{a}=x+8$
$\therefore a-8+\frac{1}{a}=0 \Rightarrow \mathrm{a}+\frac{1}{a}=8$
Now,
$\left(a+\frac{1}{a}\right)^{2}=(8)^{2} \Rightarrow a^{2}+\frac{1}{a^{2}}=62$
$\Rightarrow\left(a-\frac{1}{a}\right)^{2}+2=62 \Rightarrow a-\frac{1}{a}$
$=\sqrt{60}=2 \sqrt{15}$
and,
$a=x+8$
$\therefore x+8-\frac{1}{x+8}=2 \sqrt{15}$
$\Rightarrow x-\frac{1}{x+8}=2 \sqrt{15}-8$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
52. (A) A.T.Q,
$x^{2}+4 x=4$
We have to find the value of
$(x+5)^{2}+\frac{1}{(x+5)^{2}}$
$=\left(x+5+\frac{1}{x+5}\right)^{2}-2$
$=\left(\frac{x^{2}+25+10 x+1}{x+5}\right)^{2}-2$
$=\left(\frac{x^{2}+4 x+6 x+26}{x+5}\right)^{2}-2$
$=\left(\frac{6 x+30}{x+5}\right)^{2}-2$
$=36-2=34$
53. (C) A.T.Q.,
$5 x+7=3 x+19$
$\Rightarrow 2 x=12$
$\Rightarrow x=6$
$\therefore(x+3)^{3}=(6+3)^{3}=729$
54. (D) A.T.Q.,
$a+b=p$ \qquad
$a b=q^{2}$
$a^{3}+b^{3}-a^{2} b-b^{2} a$
$=(a+b)^{3}-3 a b(a+b)-a^{2} b-b^{2} a$
$=(a+b)^{3}-4 a^{2} \mathrm{~b}-4 a b^{2}$
$=(a+b)^{3}-4 a b(a+b)$
$=(p)^{3}-4 q^{2}(p)$
$=p^{3}-4 p q^{2}$
$\therefore a^{3}+b^{3}-a^{2} b-b^{2} a=\left(p^{2}-4 q^{2}\right) p$
55. (C) A.T.Q
$x+y+z=2$ \qquad
and
$x^{2}+y^{2}+z^{2}=50$ \qquad
putting the value of $x=3, y=4$ and $z=-5$
$\therefore x y+z(x+y)=12+(-5)(7)=12-35$ $=-23$
56. (A) A.T.Q.,

Time taken by person A to travel from Q to $\mathrm{P}=\frac{50}{12.5}=4$ hours
Time taken by person B to travel from Q to $\mathrm{P}=\frac{50}{10}=5$ hours
\therefore Required answer $=\frac{60}{30}=2$ times
57. (B) A.T.Q,
$=x=\frac{\sqrt{3}+1}{2}$
$\Rightarrow 2 x-1=\sqrt{3}$
$\Rightarrow 4 x^{2}+1-4 x=3$
$\Rightarrow 4 x^{2}-4 x-2=0$
$\Rightarrow 2 x^{2}-2 x-1=0$
and
$4 x^{3}+2 x^{2}-8 x+7$
$=\left(2 x^{2}-2 x-1\right)(2 x+3)+10$
$\therefore 4 x^{3}+2 x^{3}-8 x+7=10$
58. (D) A.T.Q,
$\frac{1}{1000^{2}-1000}+\frac{1}{1001^{2}-1001}+$ \qquad
$\frac{1}{999999^{2}-999999}$
$=\frac{1}{999}-\frac{1}{1000}+\frac{1}{1000}-\frac{1}{1001}$.
$\frac{1}{999998}-\frac{1}{999999}$
$=\frac{1}{999}-\frac{1}{999999}$
$=\frac{1001-1}{999999}=\frac{1000}{999999}$
59. (B) A.T.Q,
$\frac{b}{a}-\frac{a}{b}=2$
Let $\frac{b}{a}=x$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=6$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}-2=6$
$\Rightarrow x+\frac{1}{x}=2 \sqrt{2}$
and, $x^{2}+\frac{1}{x^{2}}-1=5$
Now
$x^{3}+\frac{1}{x^{3}}=\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=2 \sqrt{2} \times 5=10 \sqrt{2}$
$\therefore \frac{b^{3}}{a^{3}}+\frac{a^{3}}{b^{3}}=10 \sqrt{2}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
60. (B) A.T.Q,
$\left(1+\frac{1}{x}\right)\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right) . .\left(1+\frac{1}{x+33}\right)$
$=\left(\frac{x+1}{x}\right)\left(\frac{x+2}{x+1}\right)\left(\frac{x+3}{x+2}\right) \ldots \ldots\left(\frac{x+34}{x+33}\right)$
$=\frac{x+34}{x}$
61. (C) In PQR

$\angle \mathrm{QPR}=180^{\circ}-80^{\circ}-50^{\circ}=50^{\circ}$
$\therefore \mathrm{AD}$ is the angle bisector
$\therefore \angle \mathrm{QPS}=\frac{1}{2} \times 50^{\circ}=25^{\circ}$
62. (D)

$\mathrm{BE} \times \mathrm{AB}=\mathrm{BC}^{2}$
$\Rightarrow 2 \times 8=\mathrm{BC}^{2}$
$\Rightarrow \mathrm{BC}=4 \mathrm{~cm}$
and
$\mathrm{AD}^{2}=\mathrm{DF} \times \mathrm{DC}$
$\Rightarrow 16=x \times(15+x)$
$\Rightarrow 0=x^{2}+15 x-16$
$\Rightarrow(x+16)(x-1)=0$
$\Rightarrow x=1$
\therefore Length of $\mathrm{DF}=1 \mathrm{~cm}$
63. (C)

In $\triangle \mathrm{AOE}$,
$r^{2}=36+x^{2}$
and,
In $\triangle \mathrm{DOF}$,
$r^{2}=16+(x+2)^{2}$ \qquad
Solving equation (i) and (ii)
$x=4$
$\therefore r^{2}=36+16$
$\Rightarrow r=\sqrt{52}=2 \sqrt{13} \mathrm{~cm}$
\therefore Length of radius $=2 \sqrt{13} \mathrm{~cm}$
64. (A) A.T.Q,

$\angle \mathrm{DCE}=90^{\circ}+60^{\circ}=150^{\circ}$
$\because \mathrm{DC}=\mathrm{CE}$
$\therefore \angle \mathrm{DEC}=\mathrm{EDC}$
$\therefore \angle \mathrm{DEC}=\frac{180^{\circ}-150^{\circ}}{2}=15^{\circ}$
65. (B) A.T.Q,

In $\Delta \mathrm{BGC}$ and $\Delta \mathrm{EGF}$
$\frac{\mathrm{BG}}{\mathrm{GE}}=\frac{\mathrm{GN}}{\mathrm{GO}}$
$\Rightarrow \frac{6}{3}=\frac{4}{\mathrm{GO}} \Rightarrow \mathrm{GO}=2 \mathrm{~cm}$
\therefore Required ratio $=(8-2): 2=6: 2=3: 1$
66. (A) A.T.Q,

Area of $\Delta \mathrm{PMR}=\frac{1}{2}$ area $(\Delta \mathrm{PQR})$
MS \|QT
and $\Delta \mathrm{QRT} \sim \Delta \mathrm{MRS}$
$\therefore \mathrm{M}$ is the midpoint of QR
$\because \mathrm{TS}=\mathrm{SR}$ \qquad
In Δ PMS and Δ PNT
$\because \mathrm{N}$ is the mid-point of PM
$\Rightarrow \mathrm{PT}=\mathrm{TS}$ \qquad (ii)
and, $\frac{\operatorname{ar} \Delta \mathrm{PNT}}{\operatorname{ar} \triangle \mathrm{PMS}}=\frac{\mathrm{PT}^{2}}{\mathrm{PS}^{2}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

From equation (i) and (ii)
$\mathrm{PT}=\mathrm{TS}=\mathrm{SR}$
\Rightarrow MS bisect PR is $2: 1$
\Rightarrow Area of PMS $=\frac{12}{3} \times 2=8 \mathrm{~cm}^{2}$
From equation (iii)
Area of PNT $=\frac{8}{4}=2 \mathrm{~cm}^{2}$
67. (D) A.T.Q,

$4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$
$\Rightarrow 4(3)^{2}+4 \mathrm{CM}^{2}=5(4)^{2}$
$\Rightarrow 4 \mathrm{CM}^{2}=80-36$
$\Rightarrow \mathrm{CM}=\sqrt{11} \mathrm{~cm}$
68. (D) A.T.Q,

In $\triangle \mathrm{PAB}$,
$\mathrm{PB}=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$
$\Delta \mathrm{PAB} \sim \Delta \mathrm{BCQ}$
$\frac{\mathrm{BC}}{\mathrm{QC}}=\frac{\mathrm{AB}}{\mathrm{AP}}$
$\Rightarrow \mathrm{BC}=\frac{12 \times 2.5}{5}=6 \mathrm{~cm}$
Now, In $\triangle B C Q$,
$\mathrm{BQ}=\sqrt{(2.5)^{2}+6^{2}}=\sqrt{42.25}=6.5 \mathrm{~cm}$
\therefore Length of $\mathrm{PQ}=13+6.5=19.5 \mathrm{~cm}$
69. (B) A.T.Q,

Diagonal of the square $=\sqrt{2} \cdot \sqrt{\text { area }}$
$=\sqrt{2 \times 33800}=260 \mathrm{~m}$
\therefore Required time $=\frac{260 \times 60}{5.2 \times 1000}=3 \mathrm{~min}$.
70. (B) Side of square $=\frac{120}{4}=30 \mathrm{~m}$

\therefore Radius of inner circle $=\frac{30}{\sqrt{2}} \mathrm{~m}$ and,
radius of outer circle $=\frac{30}{\sqrt{2}}+4 \sqrt{2}=\frac{38}{\sqrt{2}} \mathrm{~m}$
\therefore Area of circular field
$=\frac{22}{7}\left[\left(\frac{38}{\sqrt{2}}\right)^{2}-\left(\frac{30}{\sqrt{2}}\right)^{2}\right]=\frac{5984}{7} \mathrm{~m}^{2}$
\therefore Required cost $=\frac{5984}{2 \times 7} \times 70=₹ 29920$
71. (D) Let the radius of first cone and second cone are r_{1} and r_{2} respectively and radius of cylinder is R
A.T.Q,
$\pi R^{2} h: \frac{1}{3} \pi r_{1}^{2} h: \frac{1}{3} \pi r_{2}^{2} h=7: 3: 4$
$\Rightarrow R^{2}: r_{1}^{2}: r_{2}^{2}=7: 9: 12$
$\Rightarrow \mathrm{R}^{2}=7 \mathrm{k}, \mathrm{r}_{1}^{2}=9 \mathrm{k}$ and $\mathrm{r}_{2}^{2}=12 \mathrm{k}$
Now,
Ratio of the area of base of cylinder to area of base of two cones
$=2 \pi R^{2}:\left(\pi r_{1}^{2}+\pi r_{2}^{2}\right)$
$=2 R^{2}:\left(r_{1}^{2}+r_{1}^{2}\right)$
$\therefore 2 \mathrm{R}^{2}:\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}\right)=2(7 \mathrm{k}):(9 \mathrm{k}+12 \mathrm{k})$
$\Rightarrow 14 \mathrm{k}: 21 \mathrm{k}$
\therefore Required percentage $=\frac{7}{14} \times 100=50 \%$
72. (D) A.T.Q,

$112=\frac{1}{2}(12+16) \times$ height
\Rightarrow Height $=8 \mathrm{~cm}$
$\mathrm{ED}=\mathrm{AD}-\mathrm{AE}=16-12=4 \mathrm{~cm}$
In \triangle CED,
$\mathrm{CD}^{2}=\sqrt{8^{2}+4^{2}}=\sqrt{80}=4 \sqrt{5} \mathrm{~cm}$

KD Campus Pvt. Ltd
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
73. (C) A.T.Q

Required area $\left[(80)^{2}-4\left(\frac{\pi}{4}(40)^{2}\right)\right]$
$=1371.42 \mathrm{~cm}^{2}$
74. (B) A.T.Q,

Required length of rod
$=\sqrt{32^{2}+24^{2}+20^{2}}=\sqrt{2000}=20 \sqrt{5} \mathrm{~cm}$
75. (C) A.T.Q,

Volume of sphere $=\frac{4}{3} \pi\left(\frac{\mathrm{P}}{2}\right)^{3}=\frac{\pi}{6} p^{3}$
Side of cube $=\frac{p}{\sqrt{3}}$
Volume of cube $=\frac{p^{3}}{3 \sqrt{3}}$
\therefore Remaining volume
$=\frac{\pi p^{3}}{6}-\frac{p^{3}}{3 \sqrt{3}}$
$=\frac{p^{3}}{3}\left(\frac{\pi}{2}-\frac{1}{\sqrt{3}}\right)$ unit
76. (C) A.T.Q,
$\pi(10+x)^{2} \times 4=\pi(10)^{2} \times(4+x)$
$\Rightarrow 100+x^{2}+20 x=100+25 x$
$\Rightarrow x^{2}-5 x=0$
$\Rightarrow x(x-5)=0$
$\Rightarrow x=5 \mathrm{~cm}$
\therefore Required increment $=5 \mathrm{~cm}$
77. (D) A.T.Q,

Whole surface area of the remaining solid
$=\pi r l+2 \pi r h+\pi r^{2}$
$l=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$
$\therefore=\pi r[l+2 h+r]$
$=\frac{22}{7} \times 5[13+2 \times 12+5]$
$=660 \mathrm{~cm}^{2}$
78. (C) A.T.Q,

$$
\begin{aligned}
& \frac{343 \sqrt{3}}{5}=\frac{\sqrt{3}}{4}(7)^{2} \times \text { height } \\
& \Rightarrow \text { Height }=\frac{343 \sqrt{3} \times 4}{5 \times \sqrt{3} \times 49}=5.6 \mathrm{~cm}
\end{aligned}
$$

79. (A) A.T.Q,

Area of $\square \mathrm{AOBR}=\frac{1}{4} \times 48=16 \mathrm{~cm}^{2}$
\therefore Area of $\triangle \mathrm{ABR}=\frac{1}{2} \times 16=8 \mathrm{~cm}^{2}$
Area of $\square \mathrm{PMBS}=\frac{1}{2} \times 48=24 \mathrm{~cm}^{2}$
Area of $\Delta \mathrm{PBS}=\frac{1}{2} \times 24=12 \mathrm{~cm}^{2}$
and, Area of $\triangle \mathrm{PAQ}=\frac{1}{2} \times 24=12 \mathrm{~cm}^{2}$
$\operatorname{ar}(\mathrm{ABR})+\operatorname{ar}(\mathrm{PBS})+\operatorname{ar}(\mathrm{PAQ})$
$=8+12+12=32 \mathrm{~cm}^{2}$
Hence, $\operatorname{ar}(\mathrm{PAB})=48-32=16 \mathrm{~cm}^{2}$
80. (C) A.T.Q,

Area of corridor $=150 \times 4=600 \mathrm{~m}^{2}$
Length of carpet $=\frac{600 \times 100}{75}=800 \mathrm{~cm}$
\therefore Required expenditure $=21 \times 800$
= ₹ 16800
81. (C) A.T.Q,

$\frac{\mathrm{AB}}{\mathrm{BC}}=\sin 75^{\circ}$
$\Rightarrow \mathrm{AB}=2 \sin 75^{\circ}$
and, $\frac{\mathrm{BC}}{\mathrm{AC}}=\sin 15^{\circ}$
$\Rightarrow \mathrm{BC}=2 \sin 15^{\circ}$ \qquad
Area of triangle $=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}$
$=\frac{1}{2} \times 2 \sin 75^{\circ} .2 \sin 15^{\circ}$
$=\frac{1}{2} \times 2 \sin 15^{\circ} .2 \cos 15^{\circ}=\sin 30^{\circ}$
$=\frac{1}{2} \mathrm{~m}^{2}=5000 \mathrm{~cm}^{2}$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
82. (A) A.T.Q

Time taken to meet first time $=\frac{600}{15+60}$
$=8 \mathrm{sec}$
Time taken to meet second time
$=\frac{600}{30+30}=10 \mathrm{sec}$
Time taken to meet third time
$=\frac{600}{60+15}=8 \mathrm{sec}$
\therefore Total time $=(8+10+8)=26$ seconds
83. (B) A.T.Q,

Time taken $=4$ hours and 3.5 hours
Ratio of their speed $=7: 8$
\therefore Required time $=8.30+\frac{28-3.5}{15}$
$=8.30+98$ minutes $=10: 08 \mathrm{pm}$
84. (B) A.T.Q,

Principal Amount Interest

9×8	$11 \times 9 \longrightarrow$	3
72x 9	$13 \times 8 \longrightarrow$	4
72	$99 \longrightarrow$	27
72	$104 \longrightarrow$	32

\therefore Required rate $=\frac{5 \times 100}{3 \times 72}=2.31 \%$
85. (B) A.T.Q,

Principal
Amount
P 3P
\therefore Required rate $=\frac{2 \mathrm{P} \times 100}{\mathrm{P} \times 16}=12.5 \%$
86. (D) A.T.Q,
$480=\frac{\mathrm{P} \times \mathrm{R} \times 3}{100}$
$\mathrm{PR}=16000$
and,
$376.20=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100}\right)^{2}-1\right]$
$\Rightarrow 376.20=\mathrm{P}\left[\left(\frac{\mathrm{R}^{2}}{(100)^{2}}\right)+\frac{2 \mathrm{R}}{100}\right]$
$\Rightarrow 376.20=\left[\mathrm{PR} \times \frac{\mathrm{R}}{(100)^{2}}+\frac{2 \mathrm{PR}}{100}\right]$
$\Rightarrow 376.20=1.6 \times \mathrm{R}+320$

Campus

KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
91. (B) A.T.Q,

Let speed of second train $=x \mathrm{~m} / \mathrm{s}$
Speed of first train $=\frac{225}{45}=5 \mathrm{~m} / \mathrm{s}$
$\therefore \frac{450}{x+5}=20$
$\Rightarrow x=17.5 \mathrm{~m} / \mathrm{s}$
\therefore Required speed $=\frac{17.5 \times 18}{5}=63 \mathrm{~km} / \mathrm{hr}$
92. (C) A.T.Q,
$x \cos 45^{\circ}=y \sec 30^{\circ}$
$\frac{x}{y}=\frac{2 \sqrt{2}}{\sqrt{3}}$
$\frac{x^{4}}{y^{4}}=\frac{16 \times 4}{3 \times 3}=\frac{2^{6}}{3^{2}}$
93. (D) Let speed of swimmer $=x \mathrm{~km} / \mathrm{hr}$ Speed of current $=y \mathrm{~km} / \mathrm{hr}$.
A.T.Q.,
$\frac{7}{60}(x+y)-\frac{7}{60}(x-y)=\frac{140}{1000} \mathrm{~km}$
$\Rightarrow \frac{7}{60}[x+y-x+y]=\frac{140}{1000} \mathrm{~km}$
$\Rightarrow \frac{7}{60} \times 2 y=\frac{140}{1000}$
\therefore Speed of current $=0.6 \mathrm{~km} / \mathrm{hr}$.
94. (B) Let the speed of stream $=y \mathrm{~km} / \mathrm{hr}$ A.T.Q,

Relative speed $=16+y+20-y=36 \mathrm{~km} / \mathrm{hr}$
\therefore Required time $=\frac{144}{36}=4$ hours
95. (D) A.T.Q,

Increase in age in three years
$=5 \times 3=15$ years
\therefore Required difference $=15$ years
96. (C) Maximum difference was in 2003
$=450-325=125$
97. (A) Required percentage
$=\frac{600}{(325+300+575)} \times 100$
$=\frac{600}{1200} \times 100=50 \%$
98. (C) In 2002, increase percentage is maximum which was
$=\frac{250-120}{120} \times 100$
$=\frac{1300}{120} \%=108 \%$ (approx)
99. (C) Required difference $=\frac{1}{6}[200+300+450$ $+350+600+300-120-250-325-300-$ $575-450]=30$ lakh
100. (C) In 2003, maximum profit was earn $=450-325=125$ lakh

1. (B)	11. (A)	21. (12.)	51. (B)	()	71. (D)	81. (C)	(B)
(A)	12. (D)	22. (A)	32. (B)	42. (C)	52. (A)	62. (D)	72. (D)	82. (A)	92. (C)
3. (C)	13. (C)	23. (A)	33. (D)	43. (C)	53. (C)	63. (C)	73. (C)	83. (B)	93. (D)
4. (B)	14. (A)	24. (C)	34. (A)	44. (A)	54. (D)	64. (A)	74. (B)	84. (B)	94. (B)
5. (D)	15. (B)	25. (B)	35. (D)	45. (A)	55. (C)	65. (B)	75. (C)	85. (B)	95. (D)
6. (A)	16. (B)	26. (A)	36. (B)	46. (A)	56. (A)	66. (A)	76. (C)	86. (D)	96. (C)
7. (D)	17. (B)	27. (D)	37. (B)	47. (A)	57. (B)	67. (D)	77. (D)	87. (C)	97. (A)
8. (B)	18. (D)	28. (A)	38. (D)	48. (A)	58. (D)	68. (D)	78. (C)	88. (A)	98. (C)
9. (A)	19. (D)	29. (D)	39. (D)	49. (B)	59. (B)	69. (B)	79. (A)	89. (B)	99. (C)
10. (C)	20. (D)	30. (C)	40. (B)	50. (A)	60. (B)	70. (B)	80. (C)	90. (B)	100. (C)

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please

