Ph: 09555108888, 09555208888

K)	
Campus K D Campus Pvt. Ltd	
2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009	
SSC TIER II (MATHS) MOCK TEST - 32 (ANSWER KEY)	
1.(C)11.(A)21.(A)31.(B)41.(B)2.(B)12.(C)22.(D)32.(A)42.(A)3.(B)13.(C)23.(A)33.(C)43.(A)4.(A)14.(B)24.(C)34.(D)44.(C)5.(B)15.(A)25.(B)35.(A)45.(B)6.(D)16.(C)26.(B)36.(C)46.(C)7.(B)17.(B)27.(C)37.(B)47.(A)8.(D)18.(D)28.(B)38.(A)48.(B)9.(C)19.(C)29.(D)39.(A)49.(A)10.(D20.(D)30.(B)40.(D50.(A)	51. (A) 61. (A) 71. (C) 81. (B) 91. (C) 52. (A) 62. (C) 72. (B) 82. (C) 92. (A) 53. (A) 63. (D) 73. (C) 83. (A) 93. (C) 54. (D) 64. (A) 74. (B) 84. (B) 94. (C) 55. (D) 65. (B) 75. (D) 85. (C) 95. (C) 56. (C) 66. (D) 76. (B) 86. (D) 96. (A) 57. (A) 67. (B) 77. (A) 87. (B) 97. (D) 58. (B) 68. (A) 78. (B) 88. (B) 98. (B) 59. (A) 69. (B) 79. (B) 89. (B) 99. (A) 60. (B 70. (C) 80. (D) 90. (A) 100.(C)
SSC TIER II (MATHS) MOCK TEST - 32 (SOLUTION)	
1. (C) A.T.Q,	$\Rightarrow x^2 \sin^2 \phi + y^2 \cos^2 \phi + 2xy \cos \phi \sin \phi = 0$
$x^{2} - x - 1 = \frac{\sqrt{17} + 1}{\sqrt{17} - 1} - \sqrt{\frac{\sqrt{17} + 1}{\sqrt{17} - 1}} - 1$	$\Rightarrow (x \sin \phi + y \cos \phi)^2 = 0$ $\Rightarrow x \sin \phi = -y \cos \phi$
$= \frac{\sqrt{17} + 1 - \sqrt{(\sqrt{17} + 1)(\sqrt{17} - 1)} - \sqrt{17} + 1}{\sqrt{17} - 1}$	$\Rightarrow \tan^2 \phi = \frac{y^2}{x^2}$
$=\frac{2-\sqrt{17-1}}{\sqrt{17}-1}$	$\Rightarrow \tan^2 \phi + 1 = \frac{y^2 + x^2}{x^2}$
$= \frac{-2}{\sqrt{17} - 1} \times \frac{\sqrt{17} + 1}{\sqrt{17} + 1}$	$\Rightarrow \sec^2 \phi = \frac{y^2 + x^2}{x^2}$
$= \frac{-2(\sqrt{17}+1)}{16}$	$\therefore \cos^2 \phi = \frac{x^2}{y^2 + x^2}$
$= -\frac{\sqrt{17} + 1}{8}$	and, $\sin^2\phi = \frac{y^2}{y^2 + x^2}$
2. (B) Let the second expression = M	Now, $v^2 = u^2 = 1$
A.T.Q, $\therefore (x^2 + 3x + 2) \times M$	$\frac{x^2}{(y^2+x^2)p^2} + \frac{y^2}{(y^2+x^2)q^2} = \frac{1}{x^2+y^2}$
$= (x^{2} + 6x + 8) (x + 1) (x + 1)$ $\Rightarrow [(x + 2)(x + 1)] \times M$	$\therefore \frac{x^2}{p^2} + \frac{y^2}{q^2} = 1$
= (x + 4) (x + 2) (x + 1) (x + 1) $\Rightarrow M = (x + 4) (x + 1)$	5. (B) Let $x^{12} = P$
$\therefore \text{ Required expression} = x^2 + 5x + 4$ 3. (B) A.T.Q,	A.T.Q, P ² + 1 _
$5500 \times \frac{40}{100} \times \frac{33}{100} \times \frac{6}{11} = 396$	$\frac{P^2 + 1}{P} = 7$
4. (A) A.T.Q,	\Rightarrow P + $\frac{1}{P}$ = 7
$x \cos \phi - y \sin \phi = \sqrt{x^2 + y^2}$ Squaring on both sides, we get,	$\therefore \frac{x^{72} + 1}{x^{36}} = \frac{P^6 + 1}{P^3}$
$x^{2}\cos^{2}\phi + y^{2}\sin^{2}\phi - 2xy\cos\phi\sin\phi$ $= x^{2} + y^{2}$	
$\Rightarrow x^2(1-\sin^2\phi) + y^2(1-\cos^2\phi) - 2xy$	$\Rightarrow P^3 + \frac{1}{P^3}$
$\cos\phi\sin\phi = x^2 + y^2$	

