SSC TIER II (MATHS) MOCK TEST - 32 (ANSWER KEY)

1. (C)	11. (A)		31. (B)		51. (A)				
2. (B)	12. (C)	22. (D)	32. (A)	.	52. (A)	62. (C)	72.	82. (C)	92. (A)
3. (B)	13. (C)	23. (A)	33. (C)	43. (A)	53. (A)	63. (D)	73.	83.	93. (C)
4. (A)	14. (B)	24. (C)	34. (D)	4. (C)	54. (D)	64. (A)	74. (B)	84.	94. (C)
5. (B)	15. (A)	25. (B)	35. (A)	45. (B)	55. (D)	65. (B)	75. (D)	85. (C)	95. (C)
6. (D)	16. (C)	26. (B)	36. (C)	6. (56. (66. (D)	76. (B)	86.	96. (A)
7. (B)	17. (B)	27. (C)	37. (B)	7. (A)	57. (A)	67. (B)	77. (A)	87.	97. (D)
8. (D)	18. (D)	28. (B)	38. (A)	48. (B)	58. (B)	68. (A)	78. (B)	88.	98. (B)
9. (C)	19. (C)	29. (D)	39. (A)	49. (A)	59. (A)	69. (B)	79. (B)	89. (B)	99. (A)
10. (D	20. (D)	30. (B)	40. (D	50. (A)	60. (B	70. (C)	80. (D)	90. (A)	100.(C)

SSC TIER II (MATHS) MOCK TEST - 32 (SOLUTION)

1. (C) A.T.Q,
$x^{2}-x-1=\frac{\sqrt{17}+1}{\sqrt{17}-1}-\sqrt{\frac{\sqrt{17}+1}{\sqrt{17}-1}}-1$
$=\frac{\sqrt{17}+1-\sqrt{(\sqrt{17}+1)(\sqrt{17}-1)}-\sqrt{17}+1}{\sqrt{17}-1}$
$=\frac{2-\sqrt{17-1}}{\sqrt{17}-1}$
$=\frac{-2}{\sqrt{17}-1} \times \frac{\sqrt{17}+1}{\sqrt{17}+1}$
$=\frac{-2(\sqrt{17}+1)}{16}$
$=-\frac{\sqrt{17}+1}{8}$
2. (B) Let the second expression $=\mathrm{M}$
A.T.Q,
$\therefore\left(x^{2}+3 x+2\right) \times \mathrm{M}$
$=\left(x^{2}+6 x+8\right)(x+1)(x+1)$
$\Rightarrow[(x+2)(x+1)] \times M$
$=(x+4)(x+2)(x+1)(x+1)$
$\Rightarrow \mathrm{M}=(x+4)(x+1)$
\therefore Required expression $=x^{2}+5 x+4$
3. (B) A.T.Q,
$5500 \times \frac{40}{100} \times \frac{33}{100} \times \frac{6}{11}=396$
4. (A) A.T.Q,
$x \cos \phi-y \sin \phi=\sqrt{x^{2}+y^{2}}$
Squaring on both sides, we get,
$x^{2} \cos ^{2} \phi+y^{2} \sin ^{2} \phi-2 x y \cos \phi \sin \phi$
$=x^{2}+y^{2}$
$\Rightarrow x^{2}\left(1-\sin ^{2} \phi\right)+y^{2}\left(1-\cos ^{2} \phi\right)-2 x y$
$\cos \phi \sin \phi=x^{2}+y^{2}$
$\Rightarrow x^{2} \sin ^{2} \phi+y^{2} \cos ^{2} \phi+2 x y \cos \phi \sin \phi=0$
$\Rightarrow(x \sin \phi+y \cos \phi)^{2}=0$
$\Rightarrow x \sin \phi=-y \cos \phi$
$\Rightarrow \tan ^{2} \phi=\frac{y^{2}}{x^{2}}$
$\Rightarrow \tan ^{2} \phi+1=\frac{y^{2}+x^{2}}{x^{2}}$
$\Rightarrow \sec ^{2} \phi=\frac{y^{2}+x^{2}}{x^{2}}$
$\therefore \cos ^{2} \phi=\frac{x^{2}}{y^{2}+x^{2}}$
and, $\sin ^{2} \phi=\frac{y^{2}}{y^{2}+x^{2}}$
Now,
$\frac{x^{2}}{\left(y^{2}+x^{2}\right) p^{2}}+\frac{y^{2}}{\left(y^{2}+x^{2}\right) q^{2}}=\frac{1}{x^{2}+y^{2}}$
$\therefore \frac{x^{2}}{\mathrm{p}^{2}}+\frac{y^{2}}{\mathrm{q}^{2}}=1$
5. (B) Let $x^{12}=\mathrm{P}$
A.T.Q,
$\frac{\mathrm{P}^{2}+1}{\mathrm{P}}=7$
$\Rightarrow \mathrm{P}+\frac{1}{\mathrm{P}}=7$
$\therefore \frac{x^{72}+1}{x^{36}}=\frac{\mathrm{P}^{6}+1}{\mathrm{P}^{3}}$
$\Rightarrow \mathrm{P}^{3}+\frac{1}{\mathrm{P}^{3}}$

Now,
$\left(\mathrm{P}+\frac{1}{\mathrm{P}}\right)^{3}=(7)^{3}$
$\Rightarrow \mathrm{P}^{3}+\frac{1}{\mathrm{P}^{3}}+3\left(\mathrm{P}+\frac{1}{\mathrm{P}}\right)=343$
$\Rightarrow \mathrm{P}^{3}+\frac{1}{\mathrm{P}^{3}}=343-21$
$\therefore \frac{x^{72}+1}{x^{36}}=322$
6. (D) A.T.Q,
$\frac{\mathrm{M}-x^{2}}{y^{2}+z^{2}}+\frac{\mathrm{M}-y^{2}}{z^{2}+x^{2}}+\frac{\mathrm{M}-z^{2}}{x^{2}+y^{2}}-3=0$
$\Rightarrow \frac{\mathrm{M}-x^{2}-y^{2}-z^{2}}{y^{2}+z^{2}}+\frac{\mathrm{M}-y^{2}-z^{2}-x^{2}}{z^{2}+x^{2}}+$
$\frac{\mathrm{M}-z^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}=0$
$\Rightarrow \mathrm{M}-\left(x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)\left[\frac{1}{y^{2}+z^{2}}+\frac{1}{z^{2}+x^{2}}+\frac{1}{x^{2}+y^{2}}\right]=0$
$\Rightarrow \mathrm{M}-\left(x^{2}+y^{2}+z^{2}\right)=0$
$\therefore \mathrm{M}=x^{2}+y^{2}+z^{2}$
7. (B) Let the number $=x$
A.T.Q,

4	x
5	$y+1$
	$1+4$

$y=5 \times 1+4=9$
$x=9 \times 4+1=37$
Now,

5	37
4	$7-2$
	$1-3$

Hence, required remainders $=2,3$
8. (D) Let the unit place digit $=x$
A.T.Q,
$2[10(x-3)+x]+\frac{7}{9}[10 x+x-3]=121$
$\Rightarrow 22 x-60+\frac{7}{9}[11 x-3]=121$
$\Rightarrow \frac{198 x-540+77 x-21}{9}=121$
$\Rightarrow 275 x-561=1089$
$\Rightarrow 275 x=1650$
$\Rightarrow x=6$
Hence, required number $=36$
and, required sum $=9$
9. (C) Let $x \mathrm{~kg}$ of 1 st mixture and $y \mathrm{~kg}$ of 2 nd mixture is taken.
A.T.Q,
$\frac{x \times \frac{7}{12}}{\frac{2 x}{12}+\frac{y}{3}}=\frac{5}{3}$
$\Rightarrow \frac{7 x}{2 x+4 y}=\frac{5}{3}$
$\Rightarrow 21 x=10 x+20 y$
$\Rightarrow \frac{x}{y}=\frac{20}{11}$
Hence, required ratio $=20: 11$
10. (D) A.T.Q,
L.C.M of $2,3,4,5,6,7$ and $8=840$

Hence, required number
$=(3 \times 840)-1=2519$
11. (A) We know that
$\tan 75^{\circ}=\tan \left(90^{\circ}-15^{\circ}\right)$
$=\cot 15^{\circ}=2+\sqrt{3}$
A.T.Q,
$\frac{\cot 30^{\circ}-\cot 15^{\circ}}{\tan 75^{\circ}-\tan 60^{\circ}}=\frac{\sqrt{3}-2-\sqrt{3}}{2+\sqrt{3}-\sqrt{3}}=-1$
12. (C) $(2.89)^{0.5}=\frac{17}{10}=1.7$
$2-(0.5)^{2}=2-.25=1.75$
$1+\frac{0.5}{1-\frac{1}{2}}=1+1=2$
$\sqrt{3}=1.732$
Hence, the greatest number $=1+\frac{0.5}{1-\frac{1}{2}}$
13. (C) Let distance between A to $\mathrm{B}=x \mathrm{~km}$
A.T.Q,

Total time taken by car(t)
$=\frac{x}{\mathrm{p}_{1}}+\frac{x}{\mathrm{p}_{2}}+\frac{x}{\mathrm{p}_{2}}$
$\Rightarrow \mathrm{t}=\frac{\mathrm{p}_{2} x+\mathrm{p}_{1} x+\mathrm{p}_{1} x}{\mathrm{p}_{1} \mathrm{p}_{2}}$
\therefore Average speed of the car
$=\frac{3 x}{\frac{\mathrm{P}_{2} x+2 \mathrm{P}_{1} x}{\mathrm{P}_{1} \mathrm{P}_{2}}}=\frac{3 \mathrm{P}_{1} \mathrm{P}_{2}}{\mathrm{P}_{2}+2 \mathrm{P}_{1}}$
14. (B) Let total number of males $=x$
A.T.Q,
$(x+9) 11.2=x \times 15.1+9 \times 6$
$\Rightarrow 11.2 x+100.8=15.1 x+54$
$\Rightarrow 3.9 x=46.8$
$\Rightarrow x=12$
Hence, total number of males $=12$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

15. (A) A.T.Q,

Total expenditure of the month
$=31 \times 64$
$=₹ 1984$
Expenditure for first 12 days
$=12 \times 76$
= ₹ 912
Expenditure for last 20 days
$=20 \times 56$
= ₹ 1120
\therefore Expenditure for 12 th october
$=(912+1120)-1984=₹ 48$
16. (C) A.T.Q,
$m v-x+x_{1}=\operatorname{mv}_{1}$
$\Rightarrow x_{1}-x=\mathrm{mv}_{1}-\mathrm{mv}$
$\Rightarrow x_{1}-x=\mathrm{m}\left(\mathrm{v}_{1}-\mathrm{v}\right)$
$\Rightarrow \frac{1}{\mathrm{~m}}=\frac{\mathrm{v}_{1}-\mathrm{v}}{x_{1}-x}$
$\Rightarrow \frac{\mathrm{v}-\mathrm{v}_{1}}{x-x_{1}}=\frac{1}{\mathrm{~m}}$
17. (B) Let the number of subiects be n and average markes be x
\therefore Total marks $=\mathrm{n} x$
A.T.Q,
$(n+1)(x-1)=(n x-40)+(23+25)$
$\Rightarrow x-n=9$
and, $(n+2)(x+1)$
$=(n x-40)+(23+25)+57$
$\Rightarrow n x+2 x+\mathrm{n}+2=n x+65$
$\Rightarrow 2 x+n=63$
By solving equation (i) and (ii), we get n = 15
Hence, total number of subiects $=15$
18. (D) Let the age of Ajit $=x$ years
A.T.Q,

	A	W	D	E.S	Y.S
Ages	x	$\frac{8 x}{5}-28$	$\frac{x}{5}$	$\frac{3}{8} x$	$\frac{x \times 3}{10}$
Ages 4 years ago	$x-4$	$8\left(\frac{x}{5}-4\right)$	$\frac{x}{5}-4$		

Now,
$\frac{3 x}{10}+\frac{8 x}{5}-28=x+\frac{x}{5}$
$\Rightarrow \frac{3 x+16 x-12 x}{10}=28$
$\Rightarrow x=40$
\therefore Average age of the family
$=\frac{40+36+8+15+12}{5}$
$=\frac{111}{5}=22.2$ years
19. (C) A.T.Q,
$\frac{0.7 \times 0.7 \times 0.7+0.3 \times 0.3 \times 0.3+0.63}{0.7 \times 0.7+0.3 \times 0.3-0.42}$
$=\frac{(0.7)^{3}+(0.3)^{3}+3(0.3)(0.7)(0.7+0.3)}{(0.7)^{2}+(0.3)^{2}-2(0.7)(0.3)}$
$=\frac{[0.7+0.3]^{3}}{[0.7-0.3]^{2}}=\frac{1}{.16}=6.25$
20. (D) A.T.Q,

$\mathrm{OP}=2$
$\mathrm{OQ}=\frac{3}{2}$
$\mathrm{PQ}=\sqrt{\mathrm{OP}^{2}+\mathrm{OQ}^{2}}=\sqrt{2^{2}+\left(\frac{3}{2}\right)^{2}}$
$=\sqrt{4+\frac{9}{4}}$
$=\sqrt{\frac{25}{4}}=\frac{5}{2}=2.5 \mathrm{~cm}$
21. (A) A.T.Q,

Ratio of times taken by A and $\mathrm{B}=1: 3$
\therefore Time taken by $\mathrm{A}=\frac{40}{2} \times 1=20$ days
Time taken by $B=\frac{40}{2} \times 3=60$ days
Now, A 20
\therefore Required time taken $=\frac{60}{4}=15$ days.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

22. (D) A.T.Q,

In $\triangle \mathrm{ABE}$,
$\frac{\mathrm{AB}}{\mathrm{BE}}=\tan \theta$
$\Rightarrow A B=P \tan \theta \ldots$ (i)
In $\triangle \mathrm{BEC}$,
$\frac{B C}{B E}=\tan \left(90^{\circ}-\theta\right)$
$\Rightarrow \mathrm{BC}=\mathrm{P} \cot \theta$
Height of the tower $=\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$
$\therefore \mathrm{AB}+\mathrm{BC}=\mathrm{P} \tan \theta+\mathrm{P} \cot \theta$
$\Rightarrow \mathrm{AC}=\mathrm{P}\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)$
$\Rightarrow A C=P\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}\right)$
$\Rightarrow A C=P \operatorname{cosec} \theta \sec \theta$
23. (A) Let cost price of an article $=₹ x$
A.T.Q,

Selling price of article $=\frac{125 x}{100}=\frac{5 x}{4}$
Profit $=\frac{5 x}{4}-x=\frac{x}{4}$
New CP $=x+70$
New $S P=\frac{5 x}{4}+40$
\therefore New profit $=\frac{5 x+160}{4}-(x+70)$
$=\frac{5 x+160-4 x-280}{4}=\frac{x-120}{4}$
Now,
$\frac{x}{4}\left(100-\frac{25}{4}\right) \times \frac{1}{100}=\frac{x-120}{4}$
$\Rightarrow \frac{375 x}{4 \times 400}=\frac{x-120}{4}$
$\Rightarrow 25 x=400 \times 120$
$\Rightarrow x=1920$
Hence, cost price of article $=₹ 1920$
24. (C) A.T.Q,

Kusum's age after 11 years $=37$ years
$=37-11=26$ years
\therefore Nitisha's Present age
= $26-8$ = 18 years
Age of Deepika - Age of Nitisha
= Age of Kusum
\therefore Age of Deepika $=26+18=44$ years
Now, Ratio of Nitisha's age and Deepika age $=18: 44=9: 22$
$\therefore \quad \mathrm{x}=22$
25. (B) Let the present age of his son $=x$ years A.T.Q,

Father's present age $=x+5 x=6 x$ Now, After 6 years,
Age of father $=3 \frac{1}{2}$ (age of his son)
$6 x+6=\frac{7}{2}(x+6)$
$\Rightarrow 12 x+12=7 x+42$
$\Rightarrow 5 x=30$
$\Rightarrow x=6$
\therefore Required difference $=\frac{48}{18}=2 \frac{2}{3}$ times
26. (B) A.T.Q,

Milk
: Water

$$
\begin{array}{ll}
\mathrm{I}^{\mathrm{a} t} \text { sol. } & 1: 4=5 \\
2^{\text {nat }} \text { sol. } & 1
\end{array}
$$

New ratio
$\mathrm{I}^{\text {st }}$ sol. 9 : 36
$\begin{array}{cccc}\text { 2nd sol. } & 10: & 20 \\ & 19: & 56\end{array}$
$\mathrm{CP}=\frac{100}{9} /$ litre
CP of 19 litre $=\frac{100 \times 19}{9}=\frac{1900}{9}$
$\mathrm{SP}=\frac{120}{45}=\frac{8}{3} /$ litre
Total SP $=75 \times \frac{8}{3}=₹ 200$
$\operatorname{Loss} \%=\frac{\frac{1900}{9}-200}{\frac{1900}{9}} \times 100=\frac{100}{19}=5.26 \%$
27. (C) Percentage of students who failed in at least one subject $=25+20-10=35$
\therefore Percentage of students who passed in both the subject $=100-35=65$
\therefore Total number of students

$$
=\frac{2600}{65} \times 100=4000
$$

28. (B) Let total marks $=100$
A.T.Q,

Marks obtained by Nitin $=72$
If he had attempted 4 more question, he would have made one more mistake
$\therefore 3$ correct answers scores him 12 marks more
\therefore Each question contains
$=\frac{12}{3}=4$ marks
Hence, total number of questions
$=\frac{100}{4}=25$
29. (D) A.T.Q,

In first six months,
Ratio of their profit $=1: 5: 3$
and rest of the year
Ratio of their profit $=2: 5: 3$
\therefore Total profit $=\frac{930}{3} \times 19=₹ 5890$
30. (B) Let the present age of father
$=x$ years
A.T.Q,
$x=$ sum of of present ages of 4 sons
and, $\frac{2}{3}(x+16)=\frac{1}{3}(x+64)$
$2 x+32=x+64$
$x=32$
\therefore Present age of Father $=32$ years
31. (B) A.T.Q,

> Milk : Water
\(\left.\begin{array}{llll}\mathrm{I}^{t} \& 2 \& : \& 3=5

2^{nd} \& 3 \& : \& 7=10

3^{td} \& 4 \& : \& 1=5\end{array}\right]_{2}^{2 \times 4}\)| $\times 2$ |
| :--- |
| 2×4 |

Now,

$I^{\text {st }}$	8	$:$	12
$2^{\text {nd }}$	9	$:$	21
$3^{\text {rd }}$	32	$:$	8
	49	$:$	41

Hence, Required ratio $=49: 41$
32. (A) A.T.Q,
$1+\tan ^{2} \theta-1+\cos ^{2} \theta-\frac{\operatorname{cosec}^{2} \theta}{\cot ^{2} \theta}+\tan ^{2} \theta \cdot \cos ^{2} \theta$
$=\sec ^{2} \theta-1+\cos ^{2} \theta-\sec ^{2} \theta+\sin ^{2} \theta$
$=1-1=0$
33. (C) A.T.Q,
$\cot 10^{\circ} . \sin 20^{\circ} . \cot 30^{\circ} . \sin 40^{\circ} \ldots . \cot$ $110^{\circ} \sin 120^{\circ}$
$\because \cot 90^{\circ}=0$
$\therefore \cot 10^{\circ} \cdot \sin 20^{\circ} \cdot \cot 30^{\circ}$ $. . \cot 90^{\circ} . \sin 160^{\circ}$
$\cot 110^{\circ} \sin 120^{\circ}=0$
34. (D) A.T.Q,

Required percentage
$=100 \times \frac{8120000\left(\frac{15}{100} \times \frac{3}{7}\right)+\left(\frac{25}{100} \times \frac{3}{4}\right)+\left(\frac{8}{100} \times \frac{3}{8}\right)}{8120000}$
$=28.18 \%$
35. (A) A.T.Q,
$=8120000\left[\left(\frac{20}{100} \times \frac{5}{7}\right)+\left(\frac{25}{100} \times \frac{4}{5}\right)\right]$
$=1160000+1624000=2784000$
36. (C) A.T.Q,

Total number of females of Goa in 2007
$=\frac{8120000 \times 9}{100} \times \frac{4}{7}=417600$
37. (B) A.T.Q,

Required ratio
$=\left(\frac{8120000 \times 11}{100} \times \frac{3}{5}\right):\left(\frac{8120000 \times 12}{100} \times \frac{2}{5}\right)$
= $33: 24$
38. (A) A.T.Q,

Required ratio
$=\left(\frac{812000 \times 9}{100} \times \frac{100}{112}\right):$
$\left(\frac{812000 \times 25}{100} \times \frac{100}{120}\right)=27: 70$
39. (A) A.T.Q,

In first 7 hours first car travels
$(7+6+5+4+3+2+1) \mathrm{km}$ more than second car.
In 8th hour, both car travel with the same speed
\therefore In next 7 hour they will meet
\therefore Both cars travel for 15 hours
\therefore Required distance $=15 \times 15=225 \mathrm{~km}$
40. (D) A.T.Q

Time taken by Rahul to travel from meeting point to patel nagar
$=11: 32 \mathrm{am}-10: 27 \mathrm{am}=1 \mathrm{hr} 5 \mathrm{~min}$
$=1 \frac{1}{12} \mathrm{hr}$.
Time taken by Vipin to travel from meeting point to civil lines.
$=\left(\frac{13}{12} \times \frac{4}{5}\right)=52$ minutes
\therefore Time at which they both reached at the meeting point $=9: 20 \mathrm{am}+52 \mathrm{~min}$ $=10: 12 \mathrm{am}$
\therefore Required time $=10: 27 \mathrm{am}-10: 12 \mathrm{am}$ $=15 \mathrm{~min}$.

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

41. (B) A.T.Q

$\mathrm{BD}: \mathrm{AD}=1: 4$ \qquad (given)
Using angle bisector theorem
$\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{BC}} \Rightarrow \frac{4}{1}=\frac{\mathrm{AC}}{12}$
$\Rightarrow A C=48 \mathrm{~cm}$.
Now,
In $\triangle \mathrm{ABC}$
$\mathrm{AB}^{2}=\mathrm{AC}^{2}-\mathrm{BC}^{2}$
$\Rightarrow \mathrm{AB}^{2}=(48)^{2}-(12)^{2}$
$\Rightarrow \mathrm{AB}^{2}=\sqrt{2304-144}$
$\Rightarrow \mathrm{AB}=\sqrt{2160} \mathrm{~cm}$
$\Rightarrow \mathrm{AB}=12 \sqrt{15} \mathrm{~cm}$
\therefore Height of the pole $=12 \sqrt{15} \mathrm{~cm}$
42. (A) A.T.Q
$\pi(\mathrm{r}-\mathrm{P})^{2}=\frac{\pi \mathrm{r}^{2}}{3}$
$\Rightarrow 3(r-P)^{2}=r^{2}$
$\Rightarrow \sqrt{3}(\mathrm{r}-\mathrm{P})=\mathrm{r}$
$\Rightarrow \mathrm{r}=\frac{\sqrt{3} \mathrm{P}}{\sqrt{3}-1}$ unit
\therefore Radius of circle $=\frac{\sqrt{3} P}{\sqrt{3}-1}$ unit
43. (A) A.T.Q

P-1000
Ist year - 100
2nd year $-100+10$
3 rd year $-100+10+10+1$
4th years $-100+10+10+10+1+1+1+0.1$
121 unit $=₹ 1000$
133.1 units $=\frac{1000}{121} \times 133.1=₹ 1100$
44. (C) A.T.Q

In $\triangle \mathrm{OCR}$ and $\triangle \mathrm{RBO}$,
$\mathrm{OC}=\mathrm{OB}$ (radii)
$R C=R B$
$\therefore \triangle \mathrm{OCR} \cong \triangle \mathrm{RBO}$
$\therefore \angle \mathrm{COR}=\angle \mathrm{ROB}$
and $\angle \mathrm{COQ}=\angle \mathrm{QOA}$
$\therefore \angle \mathrm{QOR}=90^{\circ}$
45. (B) A.T.Q

$\angle \mathrm{PRQ}=\angle \mathrm{QPT}=85^{\circ}$
(\because Alternate segment theorem)
$\therefore \angle \mathrm{PQR}=180^{\circ}-85^{\circ}-35^{\circ}=60^{\circ}$
46. (C) A.T.Q
$3 x=\operatorname{cosec} \theta$ and $\frac{3}{x}=\cot \theta$
$\Rightarrow x=\frac{\operatorname{cosec} \theta}{3}$ and $\frac{1}{x}=\frac{\cot \theta}{3}$
$\Rightarrow 6\left(x^{2}-\frac{1}{x^{2}}\right)=6\left(\frac{\operatorname{cosec}^{2} \theta}{9}-\frac{\cot ^{2} \theta}{9}\right)$
$\Rightarrow 6\left(x^{2}-\frac{1}{x^{2}}\right)=\frac{6}{9}$
$\Rightarrow 6\left(x^{2}-\frac{1}{x^{2}}\right)=\frac{2}{3}$
47. (A) A.T.Q

$$
\frac{\sin (\mathrm{A}-\mathrm{B})}{\sin (\mathrm{A}+\mathrm{B})}=\frac{\cos (\mathrm{C}-\mathrm{D})}{\cos (\mathrm{C}+\mathrm{D})}
$$

Using componendo and dividendo, we get
$\frac{\sin (A-B)+\sin (A+B)}{\sin (A-B)-\sin (A+B)}$
$=\frac{\cos (\mathrm{C}-\mathrm{D})+\cos (\mathrm{C}+\mathrm{D})}{\cos (\mathrm{C}-\mathrm{D})-\cos (\mathrm{C}+\mathrm{D})}$
$\Rightarrow-\frac{2 \sin \mathrm{~A} \cos \mathrm{~B}}{2 \sin \mathrm{~B} \cos \mathrm{~A}}=\frac{2 \cos \mathrm{C} \cos \mathrm{D}}{2 \sin \mathrm{C} \sin \mathrm{D}}$
$\Rightarrow-\tan \mathrm{A} \cdot \cot \mathrm{B}=\cot \mathrm{C} \cdot \cot \mathrm{D}$
$\Rightarrow-\cot \mathrm{B}=\cot \mathrm{C} \cdot \cot \mathrm{D} \cot \mathrm{A}$
$\Rightarrow \cot \mathrm{A} \cot \mathrm{C} \cot \mathrm{D}+\cot \mathrm{B}=0$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

48. (B) A.T.Q

$\mathrm{OR}=\mathrm{O}^{\prime} \mathrm{S}=16 \mathrm{~cm}$ (radii)
$\mathrm{RS}=24 \mathrm{~cm}$
$\Delta \mathrm{ROT} \cong \mathrm{TO}$ 'S
$\therefore \mathrm{OT}=\mathrm{O}^{\prime} \mathrm{T}$
and, $\mathrm{RT}=\mathrm{ST}=12 \mathrm{~cm}$
In Δ ROT,
$\mathrm{OT}^{2}=\mathrm{RO}^{2}+\mathrm{RT}^{2}$
$\Rightarrow \mathrm{OT}^{2}=(16)^{2}+(12)^{2}$
$\Rightarrow \mathrm{OT}=\sqrt{256+144}=20 \mathrm{~cm}$
and, $\mathrm{OO}^{\prime}=40 \mathrm{~cm}$
\therefore Length of $\mathrm{PQ}=40 \mathrm{~cm}$
49. (A)

We know that,
$5 \mathrm{QR}^{2}=\mathrm{PQ}^{2}+\mathrm{PR}^{2}$
$\therefore 5\left(13^{2}\right)=\mathrm{PQ}^{2}+(19)^{2}$
$\Rightarrow 845-361=\mathrm{PQ}^{2}$
$\Rightarrow P Q=22 \mathrm{~cm}$
50. (A) A.T.Q
$\sqrt{2} \sin 10^{\circ}\left(\frac{1}{2 \cos 5^{\circ}}+\frac{\cos 40^{\circ}}{\sin 5^{\circ}}-2 \sin 35^{\circ}\right)$
$=\sqrt{2} \sin 10^{\circ}\left(\frac{\sin 5^{\circ}+2 \cos 5^{\circ} \cos 40^{\circ}-2 \sin 35^{\circ} .2 \cos 5^{\circ} \sin 5^{\circ}}{2 \cos 5^{\circ} \sin 5^{\circ}}\right)$
We know that,
$2 \cos \mathrm{~A} \cos \mathrm{~B}=\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$
$=\sqrt{2}\left[\sin 5^{\circ}+\frac{1}{\sqrt{2}}+\cos 35^{\circ}-\left(\cos 25^{\circ}-\cos 45^{\circ}\right)\right]$
$=\sqrt{2}\left[\sin 5^{\circ}+\cos 35^{\circ}-\cos 25^{\circ}+\frac{2}{\sqrt{2}}\right]$
$=\sqrt{2}\left[\sin 5^{\circ}-\sin 5^{\circ}+\sqrt{2}\right]=2$
51. (A) A.T.Q,
$1+\cos ^{2} \mathrm{~A}=3 \sin \mathrm{~A} \cos \mathrm{~A}$
we know that
$\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$
$\therefore \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=3 \sin \mathrm{~A} \cos \mathrm{~A}$
$\sin ^{2} \mathrm{~A}+2 \cos ^{2} \mathrm{~A}=3 \sin \mathrm{~A} \cos \mathrm{~A}$
Dividing by $\sin ^{2} \mathrm{~A}$, we get
$1+2 \cot ^{2} \mathrm{~A}=3 \cot \mathrm{~A}$
$\Rightarrow 2 \cot ^{2} \mathrm{~A}-3 \cot \mathrm{~A}+1=0$
$\Rightarrow 2 \cot ^{2} \mathrm{~A}-2 \cot \mathrm{~A}-\cot \mathrm{A}+1=0$
$\Rightarrow 2 \cot \mathrm{~A}(\cot \mathrm{~A}-1)-1(\cot \mathrm{~A}-1)=0$
$\Rightarrow \cot \mathrm{A}=1 / 2$ or 1
52. (A) A.T.Q,
$a^{3}-a-5 a^{2}=0$
$\Rightarrow \mathrm{a}-\frac{1}{a}=5$
and, $a^{2}+\frac{1}{a^{2}}=27$
$\therefore a^{2}+\frac{1}{a^{2}}+5 a-\frac{5}{a}=27+5(5)=52$
53. (A) A.T.Q,
$\frac{(x+3)^{3}-(x-3)^{3}}{(x+3)^{2}-(x-3)^{2}}=-6$
let $x+3=\mathrm{A}$ and $x-3=\mathrm{B}$
$\therefore \frac{\mathrm{A}^{3}-\mathrm{B}^{3}}{\mathrm{~A}^{2}-\mathrm{B}^{2}}=-6$
$\Rightarrow \frac{(A-B)\left(A^{2}+B^{2}+A B\right)}{(A-B)(A+B)}=-6$
$\Rightarrow \frac{(\mathrm{A}+\mathrm{B})^{2}-\mathrm{AB}}{\mathrm{A}+\mathrm{B}}=-6$
Now,
$\frac{(x+3+x-3)^{2}-(x+3)(x-3)}{(x+3+x-3)}=6$
$\Rightarrow \frac{4 x^{2}-x^{2}+9}{2 x}=-6$
$\Rightarrow x^{2}+3=-4 x$
$\Rightarrow x^{2}+4 x+3=0$
$\Rightarrow x^{2}+3 x+x+3=0$
$\Rightarrow x(x+3)+1(x+3)=0$
$\Rightarrow x=-3$ and $x=-1$
54. (D) A.T.Q,
$x=8-\sqrt{39}=\frac{1}{2}(16-2 \sqrt{39})$
$\Rightarrow x=\frac{1}{2}(\sqrt{13}-\sqrt{3})^{2}$
Now,

$$
\begin{aligned}
& \frac{\sqrt{x}}{\sqrt{56-2 x}-\sqrt{39}} \\
& =\frac{1}{\sqrt{2}} \frac{\sqrt{(\sqrt{13}-\sqrt{3})^{2}}}{\sqrt{56-2(8-\sqrt{39})}-\sqrt{39}} \\
& =\frac{1}{\sqrt{2}} \frac{(\sqrt{13}-\sqrt{3})}{1+\sqrt{39}-\sqrt{39}}=\frac{1}{\sqrt{2}}(\sqrt{13}-\sqrt{3})
\end{aligned}
$$

55. (D) A.T.Q
$64 p^{3}-\frac{1}{512}-6 p^{2}+\frac{3}{16} p=\left(4 p-\frac{1}{8}\right)^{3}$
Now,
$=\left(4 \times \frac{25}{32}-\frac{1}{8}\right)^{3}=\left(\frac{24}{8}\right)^{3}=(3)^{3}=27$
56. (C) A.T.Q,
$\frac{y^{3}-y^{2}}{3 y^{3}+y^{2}}+\frac{y^{2}-y}{y^{2}+3 y}+\frac{y^{2}}{2 y+1}$
putting the value of $y=1$ in equation (i) we get,
$\frac{1-1}{3+1}+\frac{1-1}{1+3}+\frac{1}{2(1)+1}=\frac{1}{3}$
Now, from options
$\frac{1}{3 \mathrm{p}^{2}}=\frac{1}{3(1)}=\frac{1}{3}$
Hence, required answer is C.
57. (A) A.T.Q
$\sqrt{x}=\sqrt{3}+\sqrt{2}$
$\Rightarrow x=5+2 \sqrt{6}$ and, $\frac{1}{x}=5-2 \sqrt{6}$
Now, $x+\frac{1}{x}=5+2 \sqrt{6}+5-2 \sqrt{6}$
$\Rightarrow x+\frac{1}{x}=10 \Rightarrow x^{2}+\frac{1}{x^{2}}=98$
and, $x^{3}+\frac{1}{x^{3}}=1000-30=970$
$\frac{x^{9}+x^{8}+x^{4}+x^{3}}{x^{6}}=x^{3}+x^{2}+\frac{1}{x^{2}}+\frac{1}{x^{3}}$
$\therefore\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x^{3}+\frac{1}{x^{3}}\right)=98+970=1068$
58. (B) A.T.Q
$(4 x-2)^{2}+(8 y-6)^{2}+(4 z+3)^{2}=0$
$\Rightarrow x=\frac{1}{2}, y=\frac{3}{4}$ and $z=\frac{-3}{4}$
Now, we know that
$x^{3}+y^{2}+z^{3}-3 x y z$
$=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

$$
=\frac{\left(\frac{1}{2}+\frac{3}{4}-\frac{3}{4}\right)\left[\left(\frac{1}{2}-\frac{3}{4}\right)^{2}+\left(\frac{3}{4}+\frac{3}{4}\right)^{2}+\left(-\frac{3}{4}-\frac{1}{2}\right)^{2}\right]}{2\left[\left(\frac{1}{2}\right)^{2}+\left(\frac{3}{4}\right)^{2}+\left(\frac{-3}{4}\right)^{2}\right]}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\frac{1}{2}\left[\left(-\frac{1}{4}\right)^{2}+\left(\frac{3}{2}\right)^{2}+\left(-\frac{5}{4}\right)^{2}\right]}{2\left[\frac{1}{4}+\frac{9}{16}+\frac{9}{16}\right]} \\
& =\frac{62}{16} \times \frac{1}{2} \times \frac{1}{2} \times \frac{16}{22}=\frac{31}{44}
\end{aligned}
$$

59. (A) A.T.Q

In $\Delta \mathrm{PMQ}$,
$\mathrm{PM} \perp \mathrm{QR}$
$\mathrm{PM}^{2}=\mathrm{PQ}^{2}-\mathrm{MQ}^{2}$
$\Rightarrow \mathrm{PM}^{2}=(12)^{2}-(6)^{2}$
$\Rightarrow \mathrm{PM}^{2}=144-36=108$
$\Rightarrow P M=6 \sqrt{3} \mathrm{~cm}$
In $\triangle \mathrm{PSM}$,
$\mathrm{PS}^{2}=\mathrm{SM}^{2}+\mathrm{PM}^{2}$
$\Rightarrow \mathrm{PS}^{2}=(6 \sqrt{3})^{2}+(2)^{2}$
$\Rightarrow \mathrm{PS}^{2}=108+4=112$
$\Rightarrow \mathrm{PS}=4 \sqrt{7} \mathrm{~cm}$
60. (B) A.T.Q

We know that
In radius of right angle triangle
$=\frac{\mathrm{AB}+\mathrm{BC}-\mathrm{AC}}{2}=\frac{6+8-10}{2}=2 \mathrm{~cm}$
and, circum-radius of right angle triangle
$=\frac{\text { Hypotenuse }}{2}=\frac{10}{2}=5 \mathrm{~cm}$
\therefore Required ratio $=\frac{\pi(2)^{2}}{\pi(5)^{2}}=\frac{4}{25}$
61. (A) In $\triangle \mathrm{BDC}$

$\tan \phi=\frac{\mathrm{BD}}{\mathrm{BC}}=\frac{\mathrm{AB}}{2 \mathrm{BC}}$
$\because(D$ is the mid point of $A B)$
$\Rightarrow \tan \phi=\frac{1}{2 \mathrm{~m}}(\mathrm{BC}=\mathrm{m} \mathrm{AB})$
$\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}$
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\tan \theta+\frac{1}{2 \mathrm{~m}}}{1-\frac{\tan \theta}{2 \mathrm{~m}}}$
$\Rightarrow 1-\frac{\tan \theta}{2 \mathrm{~m}}=\mathrm{m}\left[\tan \theta+\frac{1}{2 \mathrm{~m}}\right]$
$\Rightarrow \mathrm{m} \tan \theta+\frac{\tan \theta}{2 \mathrm{~m}}=1-\frac{1}{2}$
$\Rightarrow \tan \theta=\frac{2 \mathrm{~m}}{2\left(2 \mathrm{~m}^{2}+1\right)}$
$\Rightarrow \tan \theta=\frac{\mathrm{m}}{2 \mathrm{~m}^{2}+1}$
62. (C)

Side of the rombus
$=\frac{\text { Perimeter }}{4}=\frac{p}{4}$ unit
\therefore Let AC $=2 a$
$\mathrm{OA}=\mathrm{OC}=a$
$B D=2 c$
$\therefore \mathrm{OB}=\mathrm{OD}=\mathrm{c}$
In $\triangle \mathrm{OBC}$,
$a^{2}+c^{2}=\frac{p^{2}}{16}$
$16 a^{2}+16 c^{2}=p^{2}$
and, $2 a+2 c=y / 2$
$\Rightarrow 4 a+4 c=y$
On squaring, we get
$\Rightarrow 16 a^{2}+16 c^{2}+32 a c=y^{2}$
Solving equation (i) and (iii)
$p^{2}=y^{2}-32 \mathrm{ac}$
$\Rightarrow y^{2}-p^{2}=32 a c$
$\Rightarrow \frac{1}{16}\left(y^{2}-p^{2}\right)=2 a c$
Area of rombus $=\frac{1}{2} \times 2 a \times 2 c$
\therefore Required area $=\frac{1}{16}\left(y^{2}-p^{2}\right)$
63. (D) A.T.Q,

Area of ground $=\frac{700}{35} \times 100=2000 \mathrm{~m}^{2}$
Now,
$2000=40 \times$ length
\therefore Length $=50 \mathrm{~m}$
New length $=50+55=105 \mathrm{~m}$
New area $=105 \times 40=4200 \mathrm{~m}^{2}$
\therefore Required expenditure
$=\frac{4200 \times 35}{100}=₹ 1470$
64. (A)

Slant height of bucket
$=\sqrt{(\mathrm{R}-\mathrm{r})^{2}+\mathrm{h}^{2}} \Rightarrow l=\sqrt{8^{2}+6^{2}}$
$\Rightarrow l=10 \mathrm{~cm}$
Total surface area
$=\pi\left[(\mathrm{R}+\mathrm{r}) l+\mathrm{R}^{2}+r^{2}\right]$
$=\pi\left[(14+6) 10+(14)^{2}+(6)^{2}\right]$
$=\frac{22}{7}[200+196+36]$
$=1357.71 \mathrm{~cm}^{2}$
65. (B) A.T.Q,
$3 x+\frac{3}{x}=1 \quad \Rightarrow x+\frac{1}{x}=\frac{1}{3}$
$\left(x+\frac{1}{x}\right)^{3}=\frac{1}{27}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=\frac{1}{27}-1=\frac{-26}{27}$
66. (D) A.T.Q,

Volume of conical vessel $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times 15 \times 14 \times 14=3080 \mathrm{~cm}^{3}$
Volume of 7 spheres $=\frac{3080}{4}=770 \mathrm{~cm}^{3}$
\therefore Volume of each sphere $=\frac{770}{7}=110 \mathrm{~cm}^{3}$
67. (B) Let the number of girls in class $\mathrm{A}=x$ and, the number of boys in class $\mathrm{A}=y$ Number of boys in B $=x$ and, total number of student in class B
$=(x+y) \times \frac{150}{100}=\frac{3}{2}(x+y)$
Total number of boys in both class
$=x+y$
Total number of student's in both class
$=(x+y)+\frac{3}{2}(x+y)=\frac{5}{2}(x+y)$
Required percentage $=\frac{2(x+y)}{5(x+y)} \times 100=40 \%$
68. (A) A.T.Q,
S.P. of first article $=\frac{2000(100+x)}{100}$
$=2000+20 x$
Profit on first article
$=2000+20 x-2000=20 x$
S.P of second article
$=\frac{4000(100+2 x)}{100} \times \frac{(100-x)}{100}$
$=\frac{2(100+2 x)(100-x)}{5}$
$=\frac{20000+200 x-4 x^{2}}{5}$
\therefore Profit on second article
$=\frac{20000+200 x-4 x^{2}-20000}{5}$
$=\frac{200 x-4 x^{2}}{5}$
Now,
$20 x=\frac{200 x-4 x^{2}}{5}$
$\Rightarrow 100 x=200 x-4 x^{2}$
$\Rightarrow 4 x^{2}=100 x \Rightarrow x=25 \%$
Hence, required value of $x=25 \%$
69. (B) A.T.Q

51 units $=₹ 459$
100 units $=\frac{459}{51} \times 100=₹ 900$
70. (C) A.T.Q,

$$
\begin{aligned}
& \left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}-2=x+\frac{1}{x} \\
& \Rightarrow\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}=4+2 \\
& \Rightarrow \sqrt{x}+\frac{1}{\sqrt{x}}=\sqrt{6}
\end{aligned}
$$

71. (C) Let $\mathrm{SP}=₹ x$
A.T.Q
$\left(\frac{\mathrm{CP}-x}{\mathrm{CP}}\right) \times 100=\left(\frac{2 x-\mathrm{CP}}{\mathrm{CP}}\right) \times 100$
$\Rightarrow \mathrm{CP}-x=2 x-\mathrm{CP}$
$\Rightarrow x=\frac{2}{3} \mathrm{CP} \Rightarrow \frac{\mathrm{SP}}{\mathrm{CP}}=\frac{2}{3}$
$\therefore \operatorname{loss} \%=\frac{1}{3} \times 100=33 \frac{1}{3} \%$
72. (B)
CP

SP
first article 4
second article 3

Now, CP SP
first article 1620
second article 1520
Difference of the profits $=[5-4]=1$ units 1 unit = 75
$\therefore 20$ units $=75 \times 20$
\therefore Selling price of each article $=₹ 1500$
73. (C) We know that,

$$
\frac{\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{H}_{1}}{\mathrm{D}_{1}}=\frac{\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{H}_{2}}{\mathrm{D}_{2}}
$$

$\therefore \frac{60 \times 80 \times 12}{1}=\frac{50 \times 60 \times 10}{\mathrm{D}_{2}}$
\therefore Required fraction $=\frac{25}{48}$
74. (B) Let A, B and C together can complete a work in x hours.
A.T.Q

Time taken by $\mathrm{A}=(x+1)$ hours
Time taken by $B=(x+6)$ hours
Time taken by $\mathrm{C}=2 x$ hours
$\therefore \frac{1}{x}=\frac{1}{x+6}+\frac{1}{x+1}+\frac{1}{2 x}$
$\Rightarrow \frac{1}{2 x}=\frac{2 x+7}{x^{2}+7 x+6}$
$\Rightarrow 3 x^{2}+7 x-6=0$
$\Rightarrow x=\frac{2}{3}$
Time taken by $\mathrm{A}=\frac{2}{3}+1=\frac{5}{3}$ hours
Time taken by $B=\frac{2}{3}+6=\frac{20}{3}$ hours
\therefore Required time $=\frac{1}{\frac{3}{5}+\frac{3}{20}}=\frac{4}{3}$ days
75. (D) A.T.Q

Time taken by Anil to complete the work
$=\frac{3}{2} \times 4=6 \mathrm{hrs}$.
Time taken by Sandeep to complete the
work

$$
=6 \times \frac{3}{2}=9 \mathrm{hrs} .
$$

$A-6$
$S-9 / 2$$\frac{3}{18}$
\therefore Efficiency of Kamesh $=3 \times \frac{3}{2}=4.5$
\therefore They will complete the work in
$=\frac{18}{(3+2+4.5)}=\frac{18}{9.5}=1 \frac{17}{19}$ days
76. (B) A.T.Q

Ist pipe $\rightarrow 12$
2nd pipe $\rightarrow-8$$\searrow_{-3}^{2} 24$

1 unit will be empited in $=1 \mathrm{hrs}$.
Required time taken $=\frac{24 \times \frac{1}{8}}{1}=3 \mathrm{hrs}$.
77. (A) A.T.Q

A	$:$	$B+C$
1		$3=4] 5$
B	$:$	$A+C$
1	$:$	$4=5] 4$
Now,		
A	$:$	$B+C$
5	$:$	$15=20$
B	$:$	$A+C$
4	$:$	$16=20$

$\therefore \quad$ Ratio of their shares $=5: 4: 11$
$\therefore \quad$ Required difference
$=19200\left(\frac{5-4}{20}\right)=₹ 960$
78. (B) Let total profit $=36$

Profit of $\mathrm{A}=\frac{1}{9} \times 36=4$ units
Profit of $B=\frac{1}{4} \times 36=9$ units

	A	B	C
Capital \rightarrow		y	1840
Time \rightarrow	3	6	8
Profit \rightarrow	4	9	23

Now, $\frac{1840 \times 8}{6 y}=\frac{23}{9}$
$y=\frac{1840 \times 8 \times 9}{23 \times 6} \Rightarrow y=960$
and, $\frac{6 y}{3 x}=\frac{9}{4}$
$\Rightarrow x=\frac{6 \times 960 \times 4}{3 \times 9}$
$\Rightarrow \quad x=$ ₹ 853.33
Capital of $\mathrm{A}=₹ 853.33$
Capital of $B=₹ 960$
79. (B) A.T.Q

Time taken by A to complete the race
$=\frac{360}{24} \times 5=75 \mathrm{sec}$
and, time taken by B to run 300 m
$=75+12.5=87.5 \mathrm{sec}$
\therefore Speed of $B=\frac{300}{87.5}=\frac{24}{7}=3 \frac{3}{7} \mathrm{~m} / \mathrm{sec}$
80. (D) Let total distance $=\mathrm{D} \mathrm{km}$

Speed of boat $=x \mathrm{~km} / \mathrm{hr}$
Speed of current $=y \mathrm{~km} / \mathrm{hr}$
A.T.Q
$3\left(\frac{\mathrm{D}}{x+y}\right)=2\left(\frac{\mathrm{D}}{x-y}\right)$
$\Rightarrow x=5 y$
$\Rightarrow \frac{x}{y}=\frac{5}{1}$
\therefore Required ratio $=5: 1$
81. (B) Let the principal $=x$

Let the time $=t$
$\frac{x \times 20 \times t}{3 \times 100}+x=9000$
$\Rightarrow x t+15 x=135000$
and, $\frac{x \times 5 \times t}{100}+x=8000$
$\Rightarrow x t+20 x=160000$
Solving equation (i) and (ii), wet get
$5 x=25000$
$\Rightarrow x=5000$
After putting the value of x, we get
$t=12$
Hence, required time $=12$ years
82. (C) A.T.Q,

Effictive rate of interest $=\frac{5 \times 80}{100}=4 \%$
Required amount $=10000\left(1+\frac{4}{100}\right)^{2}$
$=10000 \times \frac{26}{25} \times \frac{26}{25}=16 \times 26 \times 26$
= ₹ 10816
83. (A) A.T.Q

Relative speed of trains
$=15+21=36 \mathrm{~km} / \mathrm{hr}$
Time after they meet $=\frac{90}{36}=\frac{5}{2} \mathrm{hr}$.
Distance travelled in 150 minutes $=90 \mathrm{~km}$
\therefore Distance travelled in 1 minutes
$\frac{90000}{150} \times 1=600$ meter
\therefore Required distance $=600$ meter
84. (B) Let speed of Arjun $=x \mathrm{~km} / \mathrm{hr}$ Speed of Karan $=(x-4) \mathrm{km} / \mathrm{hr}$
A.T.Q
$\frac{63}{x-4}=\frac{84+21}{x}$
$\Rightarrow 63 x=105 x-420$
$\Rightarrow 42 x=420$
$\Rightarrow x=10$
$\therefore \quad$ Speed of karan $=10-4=6 \mathrm{~km} / \mathrm{hr}$
85. (C) Let the number of persons $=x$
A.T.Q,
$75 \times x=(x+4) 65$
$\Rightarrow 75 x=65 x+260$
$\Rightarrow x=26$
\therefore Number of persons initially $=26$
86. (D) Let the cost price $=x$
A.T.Q
S.P $=\frac{x \times 125}{100}=\frac{5 x}{4}$

Profit $=\frac{5 x}{4}-x=\frac{x}{4}$
Now,
$\mathrm{CP}=x+60$
and, $\mathrm{SP}=\frac{5 x}{4}+40$
\therefore Profit $=\frac{5 x+160-4 x-240}{4}$
$=\frac{x-80}{4}$
Now, $\frac{x}{4} \times\left(100-\frac{20}{3}\right) \times \frac{1}{100}=\frac{x-80}{4}$
$\Rightarrow \frac{70 x}{300}=\frac{x-80}{4}$
$\Rightarrow 2 x=2400$
$\Rightarrow x=1200$
\therefore Cost price of article $=₹ 1200$
87. (B) A.T.Q

Let the side of equilateral triangle $=a$ In radius of the equilateral triangle
$=\frac{a}{2 \sqrt{3}}$
Now,
$\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{AR} \perp \mathrm{DE}$
$\mathrm{AS}=\frac{\sqrt{3}}{2} a, \mathrm{RS}=\frac{a}{\sqrt{3}}$ and $\mathrm{AR}=\frac{\sqrt{3}}{2} a-\frac{a}{\sqrt{3}}$
$\Rightarrow \mathrm{AR}=\frac{3 a-2 a}{2 \sqrt{3}}=\frac{a}{2 \sqrt{3}}$
$\therefore \mathrm{AR}=\frac{1}{3} \mathrm{AS}$
Radius of smaller circle
$=\frac{1}{3} \times \frac{a}{2 \sqrt{3}}=\frac{a}{6 \sqrt{3}}$
Required ratio $=\pi\left(\frac{a}{6 \sqrt{3}}\right)^{2}: \pi\left(\frac{a}{2 \sqrt{3}}\right)^{2}$
$=\frac{\pi a^{2}}{108}: \frac{\pi a^{2}}{12}=1: 9$
88. (B) A.T.Q
$7 \mathrm{~A}=5 \mathrm{~B}$

$$
\Rightarrow \frac{\mathrm{A}}{\mathrm{~B}}=\frac{5}{7}
$$

and, $6 \mathrm{~B}=11 \mathrm{C}$
$\Rightarrow \frac{B}{C}=\frac{11}{6}$
Now, A : B : C $5: 7: 7$ $11: 11$: 6 $55: 77: 42$
\therefore Minimum number of coins $=55+77+42$ $=174$
89. (B) $\angle \mathrm{BOC}=90^{\circ}+\frac{1}{2} \angle \mathrm{BAC}$

$$
=90^{\circ}+20^{\circ}=110^{\circ}
$$

90. (A) New arithmetic mean $=(34+8) \times 3.5$

$$
=147
$$

91. (C)

$\mathrm{AP}=\mathrm{PB}=3 \mathrm{~cm}$
$\therefore \mathrm{SP}=\sqrt{3^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2} \mathrm{~cm}$
and, $\mathrm{SE}=\mathrm{PE}=\frac{3}{\sqrt{2}} \mathrm{~cm}$
$\therefore \mathrm{EH}=\sqrt{\left(\frac{3}{\sqrt{2}}\right)^{2}+\left(\frac{3}{\sqrt{2}}\right)^{2}}$
$=\sqrt{\frac{9}{2}+\frac{9}{2}}=\sqrt{\frac{18}{2}}=3 \mathrm{~cm}$
Now, Sum of area of squres
$=(6)^{2}+(3 \sqrt{2})^{2}+(3)^{2}$ \qquad
$=36+18+9$ \qquad
series is G.P
\therefore a (first term) $=36$
and, $r=\frac{1}{2}$
\therefore sum of an infinite G.P. $=\frac{a}{1-r}$
\therefore Required sum $=\frac{36}{1-\frac{1}{2}}=\frac{36 \times 2}{1}$
$=72 \mathrm{~cm}^{2}$
92. (A)

Surface area of sphere ball $=4 \pi r^{2}$
$=4 \pi \times 12 \times 12=576 \pi \mathrm{~cm}^{2}$
Total surface area of two pieces
$=\frac{5}{24}$ more than the surface area of ball
\therefore extra area $=\frac{5}{24} \times 576 \pi=120 \pi \mathrm{~cm}^{2}$
$\therefore \quad \pi \mathrm{r}_{1}{ }^{2}+\pi \mathrm{r}^{2}{ }_{1}=120 \pi \mathrm{~cm}^{2}$
$\mathrm{r}_{1}{ }^{2}=60 \mathrm{~cm}$
Now, $x^{2}=r^{2}-r_{1}{ }^{2}$
$\Rightarrow x^{2}=144-60$
$\Rightarrow x^{2}=84$
$\Rightarrow x=2 \sqrt{21} \mathrm{~cm}$
\therefore Required distance $=2 \sqrt{21} \mathrm{~cm}$
93. (C) Area of floor $=12 \times 9=108 \mathrm{~m}^{2}$
\therefore Number of tiles of cover the floor
$=\frac{108}{0.6 \times 0.6}=300$ tiles
\therefore Required expenditure $=300 \times 7=₹ 2100$
94. (C) A.T.Q

Volume of cylinder
$=\pi \times 5 \times 5 \times 17=425 \pi \mathrm{~cm}^{3}$
Required volume of water
$=425 \pi-\left(\frac{1}{3} \pi \times 5 \times 5 \times 12+\frac{2 \pi}{3} \times 5 \times 5 \times 5\right)$
$=425 \pi-\frac{550 \pi}{3}=\frac{725 \pi}{3}=759.5 \mathrm{~cm}^{3}$
95. (C) A.T.Q

$\angle \mathrm{ABX}=130-30^{\circ}=100^{\circ}$
$\therefore \quad \angle \mathrm{ABD}=180^{\circ}-100^{\circ}=80^{\circ}$
$\left.\therefore \angle \mathrm{CDQ}=80^{\circ}+45^{\circ}\right)=125^{\circ}$
96. (A) A.T.Q

Total number of students of class 10th and class 12 th in school C
$=\left(\frac{12800 \times 25}{100}+\frac{16800 \times 20}{100}\right)=6560$
97. (D) A.T.Q,

Required ratio $=\frac{16800 \times 10}{100}: \frac{12800 \times 16}{100}$
= $105: 128$
98. (B) A.T.Q,

Required number of students
$=\frac{12800 \times 27}{100}=3456$
99. (A) A.T.Q,

Required number of students
$=\frac{16800 \times 29}{100}=4872$
100. (C) A.T.Q,

Required percentage

$$
=\left[\frac{\frac{12800 \times 36}{100}}{\frac{16800 \times 39}{100}} \times 100\right]=\frac{4608}{6552} \times 100=70.33 \%
$$

Note:- If you face any problem regarding result or marks scored, please contact 9313111777
Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock Test.

