SSC TIER II (MATHS) MOCK TEST - 30 (ANSWER KEY)

| 1. | (A) | 11. | (B) | 21. | (A) | 31. | (C) | 41. | (B) | 51. | (C) | 61. | (B) | 71. | (A) | 81. | (C) | 91. | (C) |
| :--- |
| 2. | (B) | 12. | (A) | 22. | (B) | 32. | (B) | 42. | (C) | 52. | (B) | 62. | (D) | 72. | (B) | 82. | (D) | 92. | (D) |
| 3. | (C) | 13. | (D) | 23. | (B) | 33. | (A) | 43. | (A) | 53. | (A) | 63. | (A) | 73. | (C) | 83. | (C) | 93. | (B) |
| 4. | (C) | 14. | (A) | 24. | (C) | 34. | (C) | 44. | (D) | 54. | (A) | 64. | (C) | 74. | (C) | 84. | (B) | 94. | (D) |
| 5. | (B) | 15. | (B) | 25. | (A) | 35. | (C) | 45. | (B) | 55. | (A) | 65. | (A) | 75. | (A) | 85. | (D) | 95. | (A) |
| 6. | (D) | 16. | (C) | 26. | (B) | 36. | (C) | 46. | (B) | 56. | (A) | 66. | (A) | 76. | (B) | 86. | (A) | 96. | (C) |
| 7. | (B) | 17. | (D) | 27. | (C) | 37. | (B) | 47. | (A) | 57. | (B) | 67. | (B) | 77. | (B) | 87. | (B) | 97. | (B) |
| 8. | (A) | 18. | (C) | 28. | (C) | 38. | (A) | 48. | (C) | 58. | (C) | 68. | (C) | 78. | (C) | 88. | (A) | 98. | (D) |
| 9. | (A) | 19. | (B) | 29. | (B) | 39. | (D) | 49. | (C) | 59. | (B) | 69. | (B) | 79. | (B) | 89. | (C) | 99. | (C) |
| 10. | (D) | 20. | (C) | 30. | (C) | 40. | (B) | 50. | (A) | 60. | (B) | 70. | (B) | 80. | (A) | 90. | (B) | 100. | (B) |

SSC TIER II (MATHS) MOCK TEST - 30 (SOLUTION)

1. (A) A.T.Q

Nearest number to 107252 , which is divisible by $17=107253$
Hence,
The number should be added is 1 .
2. (B) Let the number is x.
A.T.Q
$x^{3}-25 x=1056$
Taking option (b)
$(11)^{3}-25(11)=1056$
$\Rightarrow 1331-275=1056$
$\Rightarrow 1056=1056$
Hence, Required number is 11 .
3. (C) A.T.Q

$$
\begin{aligned}
& \frac{5}{6}=0.8 \overline{3} \\
& \frac{8}{11}=0 . \overline{72} \\
& \frac{7}{9}=0 . \overline{7} \\
& \frac{15}{17}=0.88
\end{aligned}
$$

\therefore Required order $=\frac{15}{17}>\frac{5}{6}>\frac{7}{9}>\frac{8}{11}$
4. (C) Let the first natural number $=x$ and, the second natural number $=y$ A.T.Q,
$85 x+34 y$
and, $17(5 x+2 y)$
It is multiple of 17 .
\therefore The number should be multiple of 17 .
Hence, required number $=2754$
5. (B) A.T.Q
$r=32$ (given)
$\therefore \mathrm{d}=32 \times 7=224$
and, $\mathrm{q}=\frac{224}{16}=14$
dividend $=$ (divisor \times quotient $)+$ remainder \Rightarrow Dividend $=(224 \times 14)+32$
\Rightarrow Dividend $=3168$
6. (D) A.T.Q
$x=5+\frac{1}{\sqrt{5}}+\frac{1}{5+\sqrt{5}}+\frac{3}{\sqrt{5}-5}$
$\Rightarrow x=5+\frac{\sqrt{5}}{5}+\frac{5-\sqrt{5}}{20}-\frac{3(5+\sqrt{5})}{20}$
$\Rightarrow x=\frac{100+4 \sqrt{5}+5-\sqrt{5}-3 \sqrt{5}-15}{20}$
$\Rightarrow x=\frac{90}{20}=\frac{9}{2}$
7. (B) Let $\mathrm{P}=(x+y)^{3}-\left(x^{3}+y^{3}\right)$
we know that,
$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
$\therefore \mathrm{P}=x^{3}+y^{3}+3 x y(x+y)-x^{3}-y^{3}$
$\Rightarrow \mathrm{P}=3 x y(x+y)$
\therefore Required factor $=3 x y$
8. (A) A.T.Q
$x=2-\sqrt{5}$
$\therefore \frac{1}{x}=-2-\sqrt{5}$
$x-\frac{1}{x}=2-\sqrt{5}+(2+\sqrt{5})$
$\Rightarrow x-\frac{1}{x}=4$
Cubing on both sides, we get,
$\left(x-\frac{1}{x}\right)^{3}=(4)^{3}$
$\Rightarrow x^{3}-\frac{1}{x^{3}}=64+12$
$\Rightarrow x^{3}-\frac{1}{x^{3}}=76$
9. (A) A.T.Q

Time taken by Mennu in doing whole work $=4 \times 3=12$ hours
Time taken by Komal in doing whole work $=4 \times 4=16$ hours
Time taken by Nisha in doing whole work $=2 \times 3=6$ hours

Work done by them together in 1 hour $=$ 15 units
Time taken by them together doing the double work $=\frac{48 \times 2}{15}=\frac{96}{15}=6 \frac{2}{5}$ hours
10. (D) A.T.Q

	Rohan	$:$	Ankit
Time	3×2	$:$	4
Efficiency	2	$:$	3

\therefore Time taken by Ankit

$$
=\frac{24(2+3)}{3}=40 \text { days }
$$

11. (B) A.T.Q

\therefore Efficiency of Sachin $=46-14=32$ units and, efficiency of Devesh $=14-7=7$ units
\Rightarrow Share of Devesh $=\frac{192}{32} \times 7=₹ 42$
12. (A)

A.T.Q

We know that
$\mathrm{PT} \times \mathrm{TQ}=\mathrm{TS} \times \mathrm{RT}$
$\Rightarrow 6 \times 4=3 \times \mathrm{RT}$
$\Rightarrow \mathrm{RT}=8 \mathrm{~cm}$
In $\Delta \mathrm{ROM}$,
$\mathrm{OR}^{2}=\mathrm{OM}^{2}+\mathrm{MR}^{2}$
$\Rightarrow \mathrm{OR}^{2}=(1)^{2}+(5.5)^{2}$
$\Rightarrow \mathrm{OR}^{2}=1+30.25$
$\Rightarrow \mathrm{OR}=\sqrt{31.25} \mathrm{~cm}$
\therefore Area of circle $=\pi \mathrm{r}^{2}$
$=\pi \times(\sqrt{31.25})^{2}$
$=\frac{125}{4} \pi \mathrm{~cm}^{2}$
13. (D) A.T.Q

$\Delta \mathrm{ADN} \cong \Delta \mathrm{ABM}$
Now,
$\frac{\text { Area of } \triangle \mathrm{ABM}}{\text { Area of } \triangle \mathrm{MNC}}=\frac{\frac{1}{2} \times a \times x}{\frac{1}{2} \times(a-x)(a-x)}$
$\Rightarrow \frac{\text { Area of } \triangle \mathrm{ABM}}{\text { Area of } \triangle \mathrm{MNC}}=\frac{a \times x}{(a-x)^{2}}$
$\Delta \mathrm{AMN}$ is equilateral triangle
$\therefore \mathrm{AM}=\mathrm{MN}=y$
In $\triangle \mathrm{ABM}$
$\mathrm{AM}^{2}=\mathrm{AB}^{2}+\mathrm{BM}^{2}$
$y^{2}=a^{2}+x^{2}$
In $\Delta \mathrm{MNC}$
$\mathrm{MN}^{2}=\mathrm{NC}^{2}+\mathrm{MC}^{2}$
$y^{2}=(a-x)^{2}+(a-x)^{2}$
$\Rightarrow y^{2}=2(a-x)^{2}$ \qquad
From equation (ii) and (iii), we get
$a^{2}+x^{2}=2(a-x)^{2}$
$\Rightarrow a^{2}+x^{2}=2(a-x)^{2}$
$\Rightarrow 2 a x=a^{2}+x^{2}-2 a x$
$\Rightarrow 2 \mathrm{a} x=(\mathrm{a}-x)^{2}$
$\frac{\text { Area of } \triangle \mathrm{ABM}}{\text { Area of } \triangle \mathrm{MNC}}=\frac{a x}{2 a x}=\frac{1}{2}$
\therefore Required ratio $=1: 2$
14. (A) Let the tomatoes produce this year $=x^{2}$ and, the tomatoes produce last year $=y^{2}$
A.T.Q
$x^{2}-y^{2}=143$
$\Rightarrow(x-y)(x+y)=143$
$\Rightarrow(x+y)(x-y)=143 \times 1$
$\Rightarrow x+y=143$
$\Rightarrow \frac{x-y=1}{2 x=144}$
$\Rightarrow 2 x=144$
$\Rightarrow x=72$
and $y=71$
\therefore Tomatoes produce this year
$=(72)^{2}=5184$
15. (B) A.T.Q,

$$
\frac{180^{\circ}-\frac{360^{\circ}}{4 x}}{180^{\circ}-\frac{360^{\circ}}{5 x}}=\frac{15}{16}
$$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow \frac{\frac{4 x-2}{4 x}}{\frac{5 x-2}{5 x}}=\frac{15}{16}$
$\Rightarrow 16 x-8=15 x-6$
$\Rightarrow x=2$
\therefore Number of sides $=8$ and 10 .
16. (C) Let total amount $=x$
A.T.Q

$$
\begin{array}{rlrl}
& \frac{x \times 68 \times 75}{100 \times 100} & =5049 \\
\Rightarrow \quad x & =9900
\end{array}
$$

Amount spend on clothes

$$
\begin{aligned}
& =\frac{9900 \times 68 \times 25}{100 \times 100} \\
& =₹ 1683
\end{aligned}
$$

17. (D) A.T.Q

Radius of semi-circle on $\mathrm{PQ}=\frac{1}{2} \mathrm{PQ}$
and Radius semi-circle on $\mathrm{QR}=\frac{1}{2} \mathrm{QR}$
Area of semi-circle on $\mathrm{PQ}=\frac{\pi}{2}\left(\frac{\mathrm{PQ}}{2}\right)^{2}$
$\Rightarrow 77=\frac{22}{7 \times 2} \times \frac{\mathrm{PQ}^{2}}{4}$
$\Rightarrow \mathrm{PQ}=14 \mathrm{~cm}$
Area of semi-circle on $\mathrm{QR}=\frac{\pi}{2}\left(\frac{Q R}{2}\right)^{2}$
$\Rightarrow \frac{6336}{7}=\frac{22}{7 \times 2} \times \frac{Q R^{2}}{4}$
$Q R=48 \mathrm{~cm}$
Now, $\triangle \mathrm{PQR}$ is right angled triangle
$\therefore \mathrm{PQ}^{2}+\mathrm{QR}^{2}=\mathrm{PR}^{2}$
$\Rightarrow \mathrm{PR}^{2}=(14)^{2}+(48)^{2}$
$\Rightarrow \mathrm{PR}^{2}=256+2304$
$\Rightarrow \mathrm{PR}^{2}=2560$
\therefore Required area $=\frac{\pi}{2} \times \frac{2560}{4}=320 \pi \mathrm{~cm}^{2}$
18. (C) A.T.Q

$\because A B$ is the diameter of circle
So, $\angle \mathrm{ACB}=90^{\circ}$ (angle made in semi-circle) and $\mathrm{AB} \| \mathrm{CD}$
$\therefore \angle \mathrm{ACD}+\angle \mathrm{BAC}=180^{\circ}$
and $\angle B A C=\angle B P C=52^{\circ}$
$\therefore \angle \mathrm{BCD}=180^{\circ}-90^{\circ}-52^{\circ}=38^{\circ}$
19. (B) A.T.Q

Slope of the straight line

$$
m=\tan 120^{\circ}
$$

$\Rightarrow m=-\frac{1}{\sqrt{3}}$
The equation of straight line passing through (x, y) and slope m is
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y+2=-\frac{1}{\sqrt{3}}(x-0)$
\therefore Required equation $=\sqrt{3} y+2 \sqrt{3}+x=0$
20. (C) A.T.Q

We know that,

$$
\mathrm{d}=\frac{|A m+B n+C|}{\sqrt{A^{2}+B^{2}}}
$$

\therefore Lengh of perpendicular

$$
\begin{aligned}
& =\frac{|15 \times 4+8 \times 3+18|}{\sqrt{15^{2}+8^{2}}} \\
& =\frac{60+24+18}{\sqrt{225+64}} \\
& =\frac{102}{17}=6 \text { units }
\end{aligned}
$$

21. (A) A.T.Q

In $\triangle \mathrm{ABM}$,
$\mathrm{BM}^{2}=\mathrm{AM}^{2}-\mathrm{AB}^{2}$
$\mathrm{BM}^{2}=(85)^{2}-(77)^{2}$
$\Rightarrow \mathrm{BM}^{2}=7225-5929$
$\Rightarrow \mathrm{BM}^{2}=1296$
$\Rightarrow B M=36 \mathrm{~m}$
In $\triangle \mathrm{DMC}$,
$\mathrm{MC}^{2}=\mathrm{DM}^{2}-\mathrm{DC}^{2}$
$\Rightarrow \mathrm{MC}^{2}=7225-7056$
$\Rightarrow \mathrm{MC}=13 \mathrm{~m}$
\therefore Width of the street $=36+13=39 \mathrm{~m}$
22. (B) Let the initial length of reactangle $=x \mathrm{~m}$ and, the initial breath of reactangle $=y \mathrm{~m}$
A.T.Q
$2 \times 4 x+2 \times y=480$
$\Rightarrow 4 x+y=240$ \qquad
and, $4 x \times y=12800$
$\Rightarrow x y=3200$ \qquad
Putting the value of $x=40$ in equation,
(i) and (ii), we get,
$4(40)+y=240$

$$
\Rightarrow y=80
$$

and, $40 \times y=3200$

$$
\Rightarrow y=80
$$

Hence, the initial length of reactangle $=40$ meter
23. (B) Let length and breath are x and y respectively.
A.T.Q
$x y=240$ \qquad
and $2(x+y)=52$
$\Rightarrow x+y=26$ \qquad (ii)

Squaring both sides of equation (ii), we get,
$(x+y)^{2}=(26)^{2}$
$\Rightarrow x^{2}+y^{2}+2 x y=676$
$\Rightarrow x^{2}+y^{2}+2(240)=676$
$\Rightarrow x^{2}+y^{2}=676-480$
$\Rightarrow x^{2}+y^{2}=676-480$
$\Rightarrow x^{2}+y^{2}=196$
$\Rightarrow \sqrt{x^{2}+y^{2}}=14 \mathrm{~m}$
Hence, length of diagonal $=14$ meter
24. (C) A.T.Q

Largest number $=420$
Smallest number $=204$
Average $=\frac{420+204}{2}=312$
25. (A) A.T.Q,

Height of the cone
$=\sqrt{l^{2}-r^{2}}$
$=\sqrt{(17)^{2}-(8)^{2}}$
$=\sqrt{289-64}=\sqrt{225}$
$h=15 \mathrm{~cm}$

Now,
Volume of the cone $=$ Volume of sphere

$$
\begin{aligned}
& \frac{1}{3} \pi r^{2} h=\frac{4}{3} \pi R^{3} \\
\Rightarrow & 16 \times 15=R^{3} \\
\Rightarrow & R=2 \sqrt[3]{30} \mathrm{~cm}
\end{aligned}
$$

\therefore Radius of the sphere $=2 \sqrt[3]{30} \mathrm{~cm}$
26. (B) A.T.Q

Distance travel by first man in 1 hour $=6 \mathrm{~km}$
\therefore Time taken by second man to meet
first $\operatorname{man}=\frac{6}{8-6}=3$ hours
Total distance travel by first man in (3
+1) hours $=4 \times 6=24 \mathrm{~km}$
At 2 p.m first man will be 24 km away from the starting point.
and, At 2 pm third man will be 12 km away from the starting point.
\therefore Distance between first man and third $\operatorname{man}=24-12=12 \mathrm{~km}$
\therefore They meet after $=\frac{12}{12+6}=\frac{12}{18}$

$$
=40 \text { minutes }
$$

Required time $=2: 40 \mathrm{pm}$
So, first man meets to third man at 2:40p.m.
27. (C)

Circum-radius of $\triangle \mathrm{ABC}(\mathrm{AD})=\frac{6}{\sqrt{3}} \mathrm{~cm}$
$=2 \sqrt{3} \mathrm{~cm}$
and, In radius of $\triangle \mathrm{ABC}(\mathrm{DE})=\frac{6}{2 \sqrt{3}}=\sqrt{3} \mathrm{~cm}$
Hence, required difference
$=\pi\left(r_{1}\right)^{2}-\pi\left(r_{2}\right)^{2}$
$=\pi\left[(2 \sqrt{3})^{2}-(\sqrt{3})^{2}\right]$
$=\pi[12-3]$
$=9 \pi \mathrm{~cm}^{2}$
28. (C) A.T.Q
$\frac{1}{3} \times \pi \times r_{1}^{2} \times 3 h=\frac{1}{3} \times \pi \times r_{2}^{2} \times 2 h$
$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{\sqrt{2}}{\sqrt{3}}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow r_{2}=\frac{\sqrt{3}}{\sqrt{2}} r_{1}$
Required difference $=\sqrt{\frac{3}{2}}$ times
29. (B)

A.T.Q,
$\angle \mathrm{BAE}=\angle \mathrm{DAE}=30^{\circ}$
($\because \mathrm{AE}$ is the angle bisctor of BAD)
and, $\angle \mathrm{BAD}=\angle \mathrm{BAE}+\angle \mathrm{DAE}$
$=30^{\circ}+30^{\circ}=60^{\circ}$
$\angle \mathrm{DAC}=\angle \mathrm{BAD}=60^{\circ}$
$\angle \mathrm{EAC}=\angle \mathrm{EAD}+\angle \mathrm{DAC}$
$\Rightarrow \angle \mathrm{EAC}=30^{\circ}+60^{\circ}=90^{\circ}$
So, It $\angle \mathrm{EAC}$ is right angle triangle
$\therefore \mathrm{AC}^{2}=\mathrm{EC}^{2}-\mathrm{AE}^{2}$
$\Rightarrow \mathrm{AC}^{2}=(39)^{2}-(15)^{2}$
$\Rightarrow \mathrm{AC}^{2}=1521-225$
$\Rightarrow A C^{2}=1296$
$\Rightarrow A C=36 \mathrm{~cm}$
\therefore Area of $\triangle \mathrm{AEC}=\frac{1}{2} \times 15 \times 36=270 \mathrm{~cm}^{2}$
30. (C) A.T.Q,

\therefore Length of $\mathrm{SP}=9-x+0.7+x=9.7 \mathrm{~cm}$
31. (C) A.T.Q,
$1 \times 2+2 \times 3+3 \times 4 \ldots \ldots \ldots .+16 \times 17$
we know that,
$1 \times 2+2 \times 3+3 \times 4$ \qquad $+x(x+1)$
$=\frac{x(x+1)(x+2)}{3}$
$1 \times 2+2 \times 3 \times 3 \times 4 \ldots .+16(17)$
$=\frac{16 \times 17 \times 18}{3}$
Hence, required sum $=1632$
32. (B) A,.T.Q

Total sum of page numbers $=\frac{40(41)}{2}=820$
Sum of the page numbers sheet

$$
=820-795=25
$$

\therefore Required numbers $=12$ and 13
33. (A) A.T.Q
$\cot \theta+\cos \theta=p$
$\cot \theta-\cos \theta=q$
Now
$p^{2}-q^{2}=\cot ^{2} \theta+\cos ^{2} \theta+2 \cot \theta \cos \theta-$
$\cot ^{2} \theta-\cos ^{2} \theta+2 \cos \theta \cot \theta$
$\Rightarrow p^{2}-q^{2}=4\left(\frac{\cos ^{2} \theta}{\sin \theta}\right)$

$$
\begin{aligned}
& =4\left(\frac{1-\sin ^{2} \theta}{\sin \theta}\right) \\
& =4(\operatorname{cosec} \theta-\sin \theta)
\end{aligned}
$$

34. (C) A.T.Q
$\frac{2 \cos \theta}{1+\cos \theta+\sin \theta}=x$
$\Rightarrow \frac{2 \cos \theta(1+\cos \theta-\sin \theta)}{(1+\cos \theta+\sin \theta)(1+\cos \theta-\sin \theta)}=x$
$\Rightarrow \frac{2 \cos \theta(1+\cos \theta-\sin \theta)}{(1+\cos \theta)^{2}-\sin ^{2} \theta}=x$
$\Rightarrow \frac{2 \cos \theta(1+\cos \theta-\sin \theta)}{\left(1+\cos ^{2} \theta+2 \cos \theta-\sin ^{2} \theta\right)}=x$
$\Rightarrow \frac{2 \cos \theta(1+\cos \theta-\sin \theta)}{\left(2 \cos ^{2} \theta+2 \cos \theta\right)}=x$
$\Rightarrow \frac{2 \cos \theta(1+\cos \theta-\sin \theta)}{2 \cos \theta(\cos \theta+1)}=x$
$\Rightarrow \frac{1-\sin \theta+\cos \theta}{1+\cos \theta}=x$
35. (C) A.T.Q

In $\triangle \mathrm{ABC}$,
$\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 30^{\circ}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \mathrm{BC}=\sqrt{3} \mathrm{AB}$
Now, In $\triangle \mathrm{ABD}$
$\frac{\mathrm{AB}}{\mathrm{BD}}=\tan 60^{\circ}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{BD}}=\sqrt{3}$
$\Rightarrow \mathrm{BD}=\frac{\mathrm{AB}}{\sqrt{3}}$
and, $\mathrm{DC}=\mathrm{BC}-\mathrm{BD}$
$\Rightarrow \mathrm{DC}=\sqrt{3} \mathrm{AB}-\frac{\mathrm{AB}}{\sqrt{3}}$
$\Rightarrow \mathrm{DC}=\frac{3 \mathrm{AB}-\mathrm{AB}}{\sqrt{3}}=\frac{2 A B}{\sqrt{3}}$
Time taken by the car to travel distance of $\frac{2 A B}{\sqrt{3}}=40$ minutes
\therefore Time taken by the car to travel distance of $\frac{A B}{\sqrt{3}}=\frac{40}{2 A B} \times \frac{\sqrt{3} \times A B}{\sqrt{3}}=20$ minutes
Hence, required time $=20+40=60$ minutes
36. (C) A.T.Q,

Let the length of sides of regular Hexagon
$=\mathrm{acm}$
\therefore Diagonal (AD) of Hexagon $=2 \mathrm{acm}$ In $\triangle \mathrm{ABO}$
$\frac{h_{1}}{a}=\tan 30^{\circ}$
$\Rightarrow \frac{h_{1}}{a}=\frac{1}{\sqrt{3}}$
$\Rightarrow h_{1}=\frac{a}{\sqrt{3}} \mathrm{~cm}$

Now, In $\triangle \mathrm{ADO}$
$\frac{h_{2}}{A D}=\tan 60^{\circ}$
$\Rightarrow \frac{h_{2}}{2 a}=\sqrt{3}$
$\Rightarrow h_{2}=2 \sqrt{3} a \mathrm{~cm}$
\therefore Required ratio $=h_{1}: h_{2}$
$=\frac{a}{\sqrt{3}}: 2 \sqrt{3} a=1: 6$
37. (B) A.T.Q

$\frac{h}{20-x}=\frac{1}{\sqrt{3}}$
$\Rightarrow \sqrt{3} h=20-x$
$\Rightarrow x=20-\sqrt{3} h$
and,
$\frac{h}{x}=\sqrt{3}$
$\Rightarrow x=\frac{h}{\sqrt{3}}$
Solving equation (i) and (ii), we get,
$20-\sqrt{3} h=\frac{h}{\sqrt{3}}$
$\Rightarrow 20 \sqrt{3}-3 h=h$
$\Rightarrow \mathrm{h}=5 \sqrt{3}$
\therefore Height of kite $=5 \sqrt{3} \mathrm{~km}$
38. (A) A.T.Q
$\frac{\sqrt{3}}{\sqrt{19+8 \sqrt{3}}-\sqrt{19-8 \sqrt{3}}}$
$=\frac{\sqrt{3}}{\sqrt{16+3+2 \times 4 \times \sqrt{3}}-\sqrt{16+3-2 \times 4 \sqrt{3}}}$
$=\frac{\sqrt{3}}{(4+\sqrt{3})-(4-\sqrt{3})}$
$=\frac{\sqrt{3}}{2 \sqrt{3}}=\frac{1}{2}$

$K D$

 Campus

 Campus
 KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

39. (D) A.T.Q
$\cos x=\sin 60^{\circ} \cos 30^{\circ}-\sin ^{2} 30^{\circ}$
$\Rightarrow \cos x=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{2}\right)^{2}$
$\Rightarrow \cos x=\frac{3}{4}-\frac{1}{4}$
$\Rightarrow \cos x=\frac{2}{4}=\frac{1}{2}$
$\Rightarrow x=60^{\circ}$
40. (B) A.T.Q
$\frac{1}{\operatorname{cosec}^{2} \theta}+\frac{\sin ^{2} \theta\left(2 \cos ^{4}-\cos ^{2} \theta\right)}{\sin ^{2} \theta-2 \sin ^{4} \theta}$

$$
=\sin ^{2} \theta+\frac{\sin ^{2} \theta \cos ^{2} \theta\left(2 \cos ^{2} \theta-1\right)}{\sin ^{2} \theta\left(1-2 \sin ^{2} \theta\right)}
$$

$\Rightarrow \sin ^{2} \theta+\cos ^{2} \theta=1$
41. (B) A.T.Q
$a+b+c=5$
$a^{2}+b^{2}+c^{2}=29$.
and, $a^{3}+b^{3}+c^{3}=83$
Putting the values of a, b and c are 4,3 and -2

$$
\begin{aligned}
& a+b+c=4+3-2=5 \\
& a^{2}+b^{2}+c^{2}=16+9+4=29
\end{aligned}
$$

and, $a^{3}+b^{3}+c^{3}=264+27-8=83$
All three equations are satisfied \therefore Value of abc $=4 \times 3 \times(-2)=-24$
42. (C) A.T.Q
$\frac{1}{a}=\frac{x+y}{x y}, \frac{1}{b}=\frac{x+z}{x z}$ and $\frac{1}{c}=\frac{y+z}{y z}$
Now, $\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{x+y}{x y}+\frac{x+z}{x z}-\frac{y+z}{y z}$
$\Rightarrow \frac{b c+a c-a b}{a b c}=\frac{z x+z y+x y+y z-x y-x z}{x y z}$
$\Rightarrow \frac{b c+a c-a b}{a b c}=\frac{2 y z}{x y z}$
$\Rightarrow x=\frac{2(a b c)}{b c+a c-a b}$
43. (A) A.T.Q
$x(x-4)=-2$
$\Rightarrow x-4=\frac{-2}{x}$
Cubing on both sides of equation, we get

$$
x^{3}(x-4)^{3}=(-2)^{3}
$$

$\Rightarrow x^{3}\left[x^{3}-64-12 x(x-4)\right]=-8$
$\Rightarrow x^{3}\left[x^{3}-64-12 x \times(-2 / x)\right]=-8$
$\Rightarrow x^{3}\left(x^{3}-40\right)=-8$
44. (D) $\left(x^{n}+1\right)$ is divisible by $(x+1)$, when n is odd
$\Rightarrow\left(67^{67}+1\right)$ is divisible by $(67+1)$
$\Rightarrow\left[\left(67^{67}+1\right)+66\right] \div 68$
Gives remainder 66.
\therefore When $\left(67^{67}+67\right)$ is divided by 68 , then remainder is 66 .
45. (B) We know that,
$a^{3}+b^{3}+c^{3}-3 a b c$
$=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$=\frac{1}{2}(a+b+c)\left(2 a^{2}+2 b^{2}+2 c^{2}-2 \mathrm{ab}-2 \mathrm{bc}-\right.$ 2ca]
$=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+\left(c-a^{2}\right)\right]$ now,
$\frac{a^{3}+b^{3}+c^{3}-3 a b c}{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}$
$\Rightarrow \frac{\frac{(a+b+c)}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)\right]^{2}}{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}$
$\Rightarrow \frac{35+20-15}{2}=20$
46. (B) A.T.Q
$2^{64}-(2+1)\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)$
$\left(2^{16}+1\right)\left(2^{32}+1\right)$
$=2^{64}-(2-1)(2+1)\left(2^{2}+1\right)\left(2^{4}+1\right)$
$\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)$
$=2^{64}-\left(2^{64}-1\right)$
$=2^{64}-2^{64}+1=1$
47. (A) A.T.Q
$2 p=\sqrt{x}+\frac{1}{\sqrt{x}}$
Squaring both sides, we get
$4 p^{2}-4=x+\frac{1}{x}+2-4$
$\Rightarrow 4\left(p^{2}-1\right)=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}$
$\sqrt{p^{2}-1}=\frac{1}{2}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)$
Now,
$\Rightarrow \frac{\frac{1}{2}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)}{\frac{1}{2}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{1}{2}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)}=\frac{\frac{x-1}{\sqrt{x}}}{\frac{2}{\sqrt{x}}}$
$=\frac{x-1}{2}$
48. (C) A.T.Q
$\frac{a^{2}+b c}{a^{2}-b c}+\frac{b^{2}+c a}{b^{2}-c a}+\frac{c^{2}+a b}{c^{2}-a b}=1$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009

Adding 3 on both sides, we get,
$\frac{a^{2}+b c}{a^{2}-b c}+1+\frac{b^{2}+c a}{b^{2}-c a}+1+\frac{c^{2}+a b}{c^{2}-a b}+1$
$=1+3$
$\Rightarrow \frac{2 a^{2}}{a^{2}-b c}+\frac{2 b^{2}}{b^{2}-c a}+\frac{2 c^{2}}{c^{2}-a b}=4$
$\Rightarrow \frac{a^{2}}{a^{2}-b c}+\frac{b^{2}}{b^{2}-c a}+\frac{c^{2}}{c^{2}-a b}=2$
49. (C) Let the principle $=1000$ unit
A.T.Q
$25 \%=\frac{25}{100}=\frac{1}{4}$
Principle $\rightarrow 1000$
Ist year $\rightarrow 250$
2 nd year $\rightarrow 250+62.5$
3rd year $\rightarrow 250+62.5+62.5+15.625$
Difference between C.I. and SI
$=203.125$ units
When $\mathrm{P}=1000$, then difference
$=203.125$
\therefore Required difference $=\frac{1000}{203.125} \times 182$
= ₹ 896
50. (A) A.T.Q

Sachin's income after end of third year
$=\frac{36000 \times 90 \times 95 \times 115}{100 \times 100 \times 100}=₹ 35397$
51. (C) A.T.Q

\therefore Ratio of cost price of T.V. and A.C $=4: 7$
So, cost price of A.C.
$=\frac{22000}{11} \times 7=₹ 14000$
52. (B) Let income of Sachin $=₹ x$
A.T.Q
$\frac{(100-80)}{80} \times 100=16368$
$\Rightarrow x=\frac{16368 \times 100 \times 100}{93 \times 88}$
$\Rightarrow x=20000$
53. (A) A.T.Q

Hence, profit $\%=\frac{26}{65} \times 100=40 \%$
54. (A) Let two numbers are x and y
A.T.Q
$x-y=3 z$
$x+y=11 z$
and, $x y=56 z$
By solving equation (i) and (ii)
$x=7 z$ and $\mathrm{y}=4 z$
From equation (iii)
$7 z \times 4 z=28 z^{2}$
$z=2$
$x-y=6$
\therefore Required difference $=6$
55. (A) A.T.Q

Ratio of their savings = 4:1
\therefore Savings of Ram and Syam
$=\frac{5000}{5} \times 4$ and $\frac{5000}{5} \times 1$
= ₹ 4000 and ₹ 1000
Now,
$2 x-5 y=4000$
$x-3 y=1000$ \qquad
Solving equation (i) and (ii), we get $x=7000$
Hence, monthly income of Mohan = ₹ 7000
56. (A) From option (A)
$23+13-\frac{299}{100}=36-2.99=33.01 \%$
57. (B) Let total number of article $=₹ x$ A.T.Q.,

$$
\begin{aligned}
& \frac{36}{12} \times x+\frac{24}{12} \times x-\frac{27}{12} \times 2 x=90 \\
\Rightarrow & \frac{60 x-54 x}{12}=90 \\
\Rightarrow & 6 x=90 \times 12 \\
\Rightarrow & 2 x=360
\end{aligned}
$$

\therefore Total number of articles $=360$
58. (C) Let the numbers

$$
=n, n+1, n+2, n+3
$$

A.T.Q
$=\frac{n+n+1+n+2+n+3+n+4+n+5+n+6}{7}=\mathrm{m}$
$\Rightarrow \frac{7 n+21}{7}=\mathrm{m}$
$\Rightarrow \mathrm{m}=n+3$
\therefore Required average
$=\frac{m+m+1+m+2+m+3 \ldots \ldots \ldots m+7}{8}$
$=\frac{8 m+28}{8}=\frac{2 m+7}{2}$
59. (B) A.T.Q

28 units $=₹ 56$
\therefore Selling price $=\frac{133 \times 56}{28}=₹ 266$
60. (B) Let profit $=x$

$$
C P=100
$$

A.T.Q
$2(100+x)=100+3 x$
$\Rightarrow \quad x=100$
Profit $=100 \%$
61. (B) A.T.Q
$\mathrm{A}-21$
$\mathrm{~B}-28$ $\mathrm{7}_{6}^{8} 168$
\therefore Work done by $(\mathrm{A}+\mathrm{B}+\mathrm{C})$ in 6 days
$=(8+15+14+15+8+21)$
\therefore Work done in 12 days $=81 \times 2=162$
Now, remaining work $=168-162=6$
Hence, work must be done $=12+\frac{6}{8}=$
$12 \frac{3}{4}$ days
62. (D) Let the number of days $=x$
A.T.Q
$\frac{672}{x}-\frac{672}{(x+4)}=4$
$\Rightarrow \frac{672 x+4 \times 672-672 x}{x^{2}+4 x}=4$
$\Rightarrow x^{2}+4 x-672=0$
$\Rightarrow x^{2}+28 x-24 x-672=0$
$\Rightarrow x(x+28)-24(x+28)=0$
$\Rightarrow x=-28$ and $x=24$
Required number of days $=24$ days
63. (A) Let pipe A alone can fill the tank $=x \mathrm{hr}$ and pipe B alone can empty the tank
$=y \mathrm{hr}$
A.T.Q
$2\left(\frac{1}{x}-\frac{1}{y}\right)=\left(\frac{1}{x}+\frac{1}{y}\right)$
$\Rightarrow 2(y-x)=x+y$
$\Rightarrow y=3 x$
$\Rightarrow \frac{x}{y}=\frac{1}{3}$
\therefore Required ratio $=3: 1$
64. (C) Let S

SP	Item
100	100
80	150

When there is no profit means

$$
\mathrm{CP}=\mathrm{SP}
$$

$\therefore \quad \mathrm{CP}=80$
Hence, profit $=\frac{(100-80)}{80} \times 100=25 \%$
65. (A) A.T.Q

Total sum of three numbers

$$
=1200 \times 3=3600
$$

$\therefore 2 x+3 x+4 x=3600$
$\Rightarrow \quad x=400$
\therefore First number $=400 \times 2=800$
Second number $=400 \times 3=1200$
Third number $=400 \times 4=1600$
Now,
$\frac{800 \times 110}{100}+\frac{1200 \times 80}{100}+\frac{1600 \times(100+x)}{100}$
$=\frac{3600 \times 104}{100}$
$\Rightarrow 880+960+16 \times(100+x)=3744$
$\Rightarrow \quad 100+x=\frac{1904}{16}$
$\Rightarrow \quad 100+x=119$
$\Rightarrow \quad x=19$
\therefore Required increment $=19 \%$
66. (A) A.T.Q

Total surfare area of copper cube $=$ Total
surface area of zinc coubid
$\Rightarrow 6 a^{2}=2\left[2 l^{2}+8 l^{2}+4 l^{2}\right]$
$\Rightarrow 6 a^{2}=28 l^{2}$
$\Rightarrow \frac{a^{2}}{l^{2}}=\frac{14}{3}$
$\Rightarrow \frac{a}{l}=\left(\frac{14}{3}\right)^{1 / 2}$

$$
\frac{a^{3}}{l^{3}}=\left(\frac{14}{3}\right)^{3 / 2}
$$

\therefore Volume ratio of cube and cuboid
$=a^{3}: l b h$

$$
=\left(\frac{14}{3}\right)^{3 / 2}: 8
$$

67. (B) Let the total number $=100$
A.T.Q

Markes obtain by Arjun $=\frac{40 \times 90}{100}=36$
Markes obtain by Bheem $=\frac{36 \times 800}{900}=32$
Markes obtain by Karan $=\frac{68 \times 1000}{1700}=40$
\therefore Required percentage $=0$

Campus
 KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
68. (C) Let total profit $=x$
A.T.Q

Ratio of their investment $=3: 4: 5$
$\frac{x \times 12}{100}+\frac{x \times 73}{100} \times \frac{4}{12}=2180$
$\Rightarrow x=6000$
Profit of $\mathrm{C}=\frac{6000 \times 73}{100} \times \frac{5}{12}=₹ 1825$
69. (B) A.T.Q

X	Y	Z
1500	1350	1296
	1875	1800

In race of 1500 mX beat $Z=204 \mathrm{~m}$
\therefore Required difference
$=\frac{204}{1500} \times 2000=272 \mathrm{~m}$
70. (B) Let the speed of the trains be $3 x \mathrm{~m} / \mathrm{s}$ and $4 x \mathrm{~m} / \mathrm{s}$
Then, length of each train
$=\frac{(3 x+4 x) \times 20}{2}=70 x$
Now,
Distance travelled by faster train in 35
seconds $=35 \times 4 x=140 x$
and,
$70 x+700=140 x$
$\Rightarrow 70 x=700$
Length of each train $=700 \mathrm{~m}$
71. (A) A.T.Q

Net price of 100 kg tea $=\frac{32 \times 99}{100}$
$=₹ 31.68$ per kg
Now, using Alligation

\therefore Required ratio $=18: 7$
72. (B) A.T.Q

Total weight of 7 different experiments
$=7 \times 53.735=376.145 \mathrm{~kg}$
Weight of first three experiments
$=54.005 \times 3=162.015 \mathrm{~kg}$
and, the weight of sixth and seventh experiment
$=(54.005-0.010) \times 2=107.990 \mathrm{~kg}$
Now, the weight of fourth and fifth experiment
$=376.145-162.015-107.990$
$=106.14 \mathrm{~kg}$
and the difference of their weight

$$
=0.004 \mathrm{~kg}
$$

Weight of fourth experiment
$=\frac{106.14+0.004}{2}=53.072 \mathrm{~kg}$
73. (C) A.T.Q

The efficiency of A, B and C be 1, 2 and 2 respectively.
Then, total work $=1 \times 18=18$ units
Now, workdone by A and B in 3 days

$$
=3 \times 3=9 \text { units }
$$

Remaining work $=18-9=9$ units
Then, time taken by A and C to complete remaining work $=\frac{9}{3}=3$ days
74. (C) A.T.Q
$\frac{(N+J) \times 12}{1}=\frac{3.5 \mathrm{~N}+7.5 \mathrm{~J}}{\frac{1}{3}}$
$\Rightarrow 4 \mathrm{~N}+4 \mathrm{~J}=3.5 \mathrm{~N}+7.5 \mathrm{~J}$
$\Rightarrow 0.5 \mathrm{~N}=3.5 \mathrm{~J}$
$\Rightarrow \mathrm{N}=7 \mathrm{~J}$
$\Rightarrow \frac{\mathrm{N}}{\mathrm{J}}=\frac{7}{1} \rightarrow$ Efficiency of Neetu
Now, total work $=(\mathrm{N}+\mathrm{J}) \times 12$
$=(1+7) \times 12=96$ units
Time taken by Jyoti to complete the work $=\frac{96}{1}=96$ hours
75. (A)

$\mathrm{C} \rightarrow 56 \longrightarrow 12$
Work done by A in 4 days $=21 \times 4=84$ units
and, work could be done by C in 12 days
$=12 \times 12=144$ units
Now, time taken to complete the work
$=\frac{672-84+144}{14+12}=\frac{366}{13}=28 \frac{2}{13}$ days
76. (B) A.T.Q
$(4 \mathrm{M}+3 \mathrm{~B}) \times 5=(2 \mathrm{~W}+3 \mathrm{~B}) \times 5=(4 \mathrm{M}+3 \mathrm{~W}) \times 5$
On comparing, we get,
Ratio of efficiency of man, woman and boys = 1:2:2
Now, total work $=(4 \mathrm{M}+3 \mathrm{~B}) \times 5$
$=(4 \times 1+3 \times 2) \times 5=50$ units
Then, time taken by one man, one woman and one boy to complete the work with double efficiency
$=\frac{50}{(1+2+2) \times 2}=\frac{50}{10}=5$ days

Campus
 KD Campus Pvt. Ltd

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
77. (B) Let the price of the third variety of tea per kg be ₹ x
A.T.Q
$136 \times 1+147 \times 1+x \times 3=161 \times 5$
$\Rightarrow 136+147+3 x=805$
On solving, we get $x=174$
\therefore Price of the tea $=₹ 174$ per kg
78. (C) A.T.Q

CP of coffee powder for 10 cups of coffee
= ₹ 20
CP of milk for 10 cups of coffee $=2 \times 30$
= ₹ 60
Total CP = ₹80
Now, SP $=80 \times \frac{125}{100}=₹ 100$
Then, SP of each cup of coffee
$=\frac{100}{10}=₹ 10$ per kg
79. (B) A.T.Q
$\begin{array}{lll}\text { year } 2005 \quad 2006 & 2007\end{array}$
Sale $100 \quad 30 \quad 100$
Required percentage incerment in sale
$=\frac{100-30}{30} \times 100=\frac{70}{30} \times 100=233.3 \%$
80. (A) A.T.Q
$\frac{x \times Q \times t}{100}+x=\frac{y \times P \times t}{100}+y$
$\Rightarrow \frac{(Q x-P y) \times t}{100}=y-x$
$\Rightarrow t=\frac{(y-x) \times 100}{Q x-P y}$
$\Rightarrow t=\frac{100(x-y)}{P y-Q x}$
81. (C) Using Alligation method, we get

$(1+2)=3$ units $=60$ coins
Then, number of $₹ 5$ coins $=2$ units
$=\frac{60}{3} \times 2=40$ coins
82. (D) A.T.Q

Total profit $=3 \times 30=90$
and, total loss $=2 \times 20=40$
Then, net profit $=90-40=50$
Now, gain percent $=\frac{50}{3+2}=10 \%$
83. (C) A.T.Q

Sugar in first mixture

Sugar in second mixture

\therefore Required ratio $=1: 3$
84. (B) A.T.Q

Discount $=\frac{20}{120} \times 100=\frac{50}{3} \%$
$\therefore \mathrm{CP}=\frac{100 \times 100 \times 3}{350}=\frac{600}{7}$
\therefore Required ratio $=\frac{50}{3}: \frac{600}{7}=7: 36$
85. (D) A.T.Q
$x=\sqrt{3}+\frac{1}{\sqrt{3}}$
Squaring both sides, we get
$x^{2}=3+\frac{1}{3}+2$
$\Rightarrow x^{2}=\frac{16}{3}$
$\Rightarrow x^{4}=\frac{256}{9}$
and, $y=\sqrt{3}-\frac{1}{\sqrt{3}}$
$\Rightarrow y^{2}=\frac{4}{3}$
$\Rightarrow y^{4}=\frac{16}{9}$
Now, $x^{4}+y^{4}=\frac{256}{9}+\frac{16}{9}=\frac{272}{9}$
86. (A) Let speed of boat $=x \mathrm{~km} / \mathrm{hr}$ Speed of stream $=y \mathrm{~km} / \mathrm{hr}$
A.T.Q
$\frac{12}{x-y}+\frac{18}{x+y}=3$
$\frac{36}{x-y}+\frac{24}{x+y}=\frac{13}{2}$
Solving equation (i) and (ii), we get
\therefore Speed of boat $=2 \mathrm{~km} / \mathrm{hr}$

2007, OUTRAM LINES, 1ST FLOOR, OPPOSITE MUKHERJEE NAGAR POLICE STATION, DELHI-110009
87. (B) Required area $=\frac{4}{20} \times(60+20)=16$ acres
88. (A) Required ratio $=72: 90$
89. (C) A.T.Q
10% of $72^{\circ}=\frac{72 \times 10}{100}=7.2$
Required angle $=50^{\circ}+7.2^{\circ} \times \frac{2}{3}$
$=50^{\circ}+4.8^{\circ}=54.8^{\circ}$
90. (B) Let the production of barley $=x$
A.T.Q,

Production of maize $=3 x$
Production of wheat $=12 x$
Required ratio $=\frac{12 x}{50}: \frac{x}{48}=288: 25$
91. (C) A.T.Q
wheat, rice and maize
$=\left(\frac{50}{360} \times 100+\frac{72}{360} \times 100+\frac{60}{360} \times 100\right)$
$=51 \%$ (approximate)
92. (D) Let speed of $\mathrm{A}=x$ meter $/ \mathrm{min}$.
speed of $B=y$ meter $/ \mathrm{min}$.
Let they meet after $=t$ minutes
A.T.Q

Distance traveled by A after meeting $=72 x$
Distance traveled by B after meeting $=18 y$
Distance traveled by A after crossing
= distance traveled by B before crossing
$y t=72 x$ (i)
$x t=18 y$ (ii)

Solving equation (i) and (ii), we get.
$x y t^{2}=72 \times 18 \times x y$
$t=36$
\therefore Required time $=18+36=54$ minutes
93. (B) A.T.Q

Total length $=160+140=300 \mathrm{~m}$
Relative speed $=(77+67) \mathrm{km} / \mathrm{hr}$
$=144 \times \frac{5}{18}=40 \mathrm{~m} / \mathrm{sec}$
\therefore Required time $=\frac{300}{40}=7 \frac{1}{2}$ seconds
94. (D) A.T.Q

SI for one year $=\frac{880}{2}=440$
\therefore Required rate $=\frac{11}{440} \times 100=2.5 \%$
95. (A) A.T.Q
$3\left(\frac{D}{x+y}\right)=\frac{D}{x-y}$
$\Rightarrow 3 x-3 y=x+y$
$\Rightarrow 2 x=4 y$
$\Rightarrow x=2 y$
\therefore Speed of current $=\frac{26}{3 \times 2}=4 \frac{1}{3} \mathrm{~km} / \mathrm{hr}$
96. (C) Required percentage increase
$=\frac{120-100}{100} \times 100=20 \%$
97. (B) A.T.Q

Average production at given years
$=\frac{100+120+110+140+75+130}{6}$
$=\frac{675}{6}=112.5$
Hence, required years $=2013,2015$ and 2017
98. (D) A.T.Q

Sum of production during odd years
$=120+140+130=390$
Sum of production during even years
$=100+110+75=285$
\therefore Required difference $=\frac{390}{285}=1.37$ times
99. (C) Total production in 2013 and 2015
$=120+140=260$
Production in $2017=130$
100. (B) Average production during given years
$=\frac{100+120+110+140+75+130}{6}$
= 112.5
\therefore Required production $=113000$ tonnes

Note:- If your opinion differs regarding any answer, please message the mock test and question number to 8860330003

Note:- Whatsapp with Mock Test No. and Question No. at 7053606571 for any of the doubts. Join the group and you may also share your suggestions and experience of Sunday Mock

Note:- If you face any problem regarding result or marks scored, please contact 9313111777

